
COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. FOGUEL

l Introduction* Let H be a separable Hubert space. The follow-
ing two problems will be studied:

1. Given a bounded normal operator A, of multiplicity m, what
are the conditions, on the bounded measurable function /, so that the
multiplicity of S —/(A) is n, n < oo?

2. How to compute the multiplicity of a normal operator that com-
mutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity n, n < oo.
There exist a Borel measure μ and n Borel sets in the complex plane
eιZDe2i) ••• 3 e w , such that, up to unitary equivalence,

(1.1) H=±L&,e<)

This is the Multiplicity Theorem. (See Theorem X. 5.10) of | l j .
The operator S has uniform multiplicity if ex — β2 = = en

The resolution of the identity, of a normal operator A, will be
denoted by E(A; a). The Boolean algebra of projections, generated by
E(A; a) will be denoted by &A. Let E(a) stand for E(S; a) and @ for
®s. Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:
Let S be a normal operator of multiplicity n, and B a normal

operator that commutes with S. Let H and S be represented by 1.1.

THEOREM A. There exist k Borel measurable bounded complex
functions y1(X)y •• ,2/Λ(λ) and k matrices of Borel measurable bounded
complex functions ε^λ), •• ,eΛ(λ) such that:

For a fixed λ the matrices ε^λ) are disjoint self adjoint projec-
tions whose sum is the identity and

(1.2)
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Equivalently, if the self adjoint projections Eiy are defined by

EA

(1.3)

REMARK. In the above decomposition the numbers y^X) for a fixed
λ are different eigenvalues of a certain matrix. Thus for each λ there
is an integer k' < k such that

0i(λ) =£ ί/j(λ) i ^ j i,j < k', εt(λ) =^0 i < fc' ,

and

2/*'+i(λ) = = 2/fc(λ) = 0 ,

εfc+1(λ) = . . . = efc+1(λ) = 0 .

This is essential for the proof of Lemma 2.1. Also the matrices εέ(λ)
are n x n matrices.

THEOREM B. The number n is the largest integer such that there
exists a nilpotent operator, commuting with S, of order n. See [2]
Theorem 3.1 and its corollary.

2. The multiplicity of a function of an operator* The main re-
sult in this section is:

THEOREM 2.1. Let A be a normal operator of multiplicity m,
m < oo, and f a bounded measurable function. The operator S = f(A)
has finite multiplicity, if and only if, there exist k disjoint Borel
sets βlf •••,&; and k bounded measurable functions z^X), •• ,«fc(λ) such
that:

a. σ(A) = \Jβt.
ί = l

b. if X 6 βi then ^(/(λ)) = λ almost

everywhere, with respect to E(A; a).
Proof of sufficiency of conditions a and b. Let St and A% be the

restrictions of S and A to E(A β^H. Then
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= ( f(X)E(A;d\)
Jβi

hence

Now, it follows from Theorem B that

muAi > muSi (muT = multiplicity of T)

But the multiplicity function is subadditive:

muS <

To see this we have to observe that muS is the smallest number n
such that there exists a set of n elements, {x19 xn}, xi e H and span
{E{ά)xlJ a a Borel set} — H. (n generating elements.)

Thus

k k

ΎΠUA < Σ muSi < Σ wίuAi < mk < oo .
i=Ί ί=l

In order to prove necessity we need the following :

LEMMA 2.1. Let S = f(A) have finite multiplicity n and let

be the representation 1.3

Proof. For every Borel set α i?(α) e &A because S = /(^4). Let
£7(α) be maximal with respect to the property that E(a)E1 e QlA. Such
a maximal projection exists by Zorn's Lemma. Now if E(σ(S) — a) Φ 0
there exists, by the proof of 3.2 in [2] a set β such that:

β c σ(S) - α £7(/3) ̂  0

and for some Borel set γ

1 = E(β)E(A;y)e(£Λ.

This contradicts the maximality of a, hence E(a) = I.
Proof of necessity of conditions a and b. Let S hsve finite multi-

plicity n. By Lemma 2.1 there exist n sets βt such that E(A; βt) = Et.
Thus
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E(A;βi)E(A;βj) = 0 if i Φ j

and

±E(A;βt) = I.

Therefore the sets βt can be chosen to be disjoint and satisfy
condition a. Also

A = Σ US)Et = Σ *t(/(A))JE7(A; A) = Σ ( zί(f(X)E(A; dX) .
ί = i i = i i = i j β

Hence, if βczβi then

= ( XE(A; dX) = ( ^ ( / ( λ ) ) ^ ; dλ)
Jβ Jβ

or: on the set βtX — ̂ (/(λ)) almost everywhere with respect to the
measure E(A\a).

DEFINITION. The function / will be said to have k repetitions, with
respect to the measure E(A α), if conditions a and b of Theorem 2.1
are satisfied.

In the rest of this section we compute muS. It is enough to con-
sider the case where the operator A has uniform multiplicity m: other-
wise A can be written as direct sum of operators of uniform multiplicity
and one has to study each component of A separately.

The following Theorem is needed:

THEOREM 2.2 Let H be the direct sum of the orthogonal subspaces
Hlf •• ,Hk. Let Si be a normal operator, on Ήu of uniform, multi-
plicity mt and S be the direct sum of S,t.

if

E(S; a) = 0 whenever E(S,i] a) = 0 for some i

then

muS = Σ m% '
i = l

Proof. It is enough to prove that muS > ΣLi ^V Let σ = σ(S^) =
. . . = σ(Sk) = σ(S). By the Spectral Multiplicity Theorem each operator
Si can be described as follows: There exists a measure μ% on σ and
Hi is the direct sum of fmi spaces L2(μt). The operator Si is given by

γmι(
χy
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Now, the measures μt are equivalent, by the condition of the
Theorem. Thus there exist functions ^ , ^ 6 L(μi+1) 1 < i < k — 1 such
that

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let
us define an operator on H:

If x 6 Hif

then

If

then

X =

Mx e Ht, Mx =

/-4-x(λ)

0

0 \

x e Hίf x —

e ί/"ί+1, Λfa? =

0

Where Hk+1 is the zero space.
It is easy to see that Mis a bounded operator and

= 0
but

k

Σ
M1'1
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Also MS = SM, hence muS > Σ i - i ^ i

REMARK. It was proved in Theorem 2.1 that if a function / has k
repetitions then

muf(A) < kmuA .

However the number of repetitions of a function is not uniquely
defined. In order to compute muf(A) we have to find the minimal
number of repetitions. This is what the next Theorem does.

THEOREM 2.3. Let A be a normal operator of uniform multiplicity
m. Let f be a bounded measurable function which has k repetitions
with respect to the measure E(A a). A necessary and sufficient con-
dition that muS = mk, where S = f{A), is:

There exists a Borel set aQ

(2.1) E(A;f-\aQ))Φθ

and

E(A)f-\a)) = 0 whenever £(A;/- !(a)nA) = 0 for some i and
acza0.

Proof. Assume condition 2.1. We may restrict A and S to
E(A;f-\aQ))H. Let

and Aiy St the restriction of A, S to Ht. Now

f(At) = S, zt(St) - A,

(See Theorem 2.1.). Thus the operators St have uniform multiplicity
m because the operators At do. It follows from Theorem 2.2 that the
multiplicity of S restricted to E{A\f~1(aQ))H is mk. But muS <mk,
hence muS = mk.

(Note that on aQ the operator S has uniform multiplicity mk). Con-
versely, let us assume that for each Borel set a0 with E(A\f~1{a^)) Φ 0,
there exists a subset a such that E(A;f-\a))Φθ but E(A;f-1(a)nβi)=G
for some i. Let E(A\f"\a^) be maximal with respect to the property

Let E(A)f-\a,)) be maximal, with respect to the property

a.Πa^φ and E(A;f-\a2))E(A;β2) = 0

and choose inductively α3 an, α4 Π α^ = ^
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There exist such maximal projections by Zorn's Lemma. Now if
E{A\ Uf-i/"1^*)) ^ I there will be a set a and an integer j such that

α Π ( ύ «*) = 0; E(A;f-\a) Π /?,) - 0

Thus a} will not be maximal. Let

βj = βji) (/"W n A), i > 2 .

Then UJ=2/3J — tfOA) and on β3 the function / possesses a bounded
measurable inverse. Thus / has k — 1 repetitions and m^S < m(k — 1).

3 The multiplicity of a matrix of functions. Let S be a normal
operator of uniform multiplicity n. Let B be a normal operator and
BS = &B. The operator i? is represented as the matrix of functions
Σ?-i2/ί(λ)εi(λ) a n d also 5 = ^LiVi(S)Ei (Equation 1.2 and 1.3). Let us
denote by Bt and St the restrictions of JB and S, respectively, to

THEOREM 3.1. ΓΛe operator B has finite multiplicity, if and only
if, the functions y% have ji(ji < CΌ ) repetitions with respect to the spec-
tral measure of St.

Also

i = l

k fc

max muBh < ^ mu BL < X jίmuSί .
I i

Proof. From the definition of multiplicity, as the smallest number
of generating elements, it follows that

max muBi < muB < Σ nhuBt .
i 4 = 1

Now, Bi=yi(St)f hence the rest of the Theorem follows from Theorem 2.1.
The problem of this section is reduced to the following

H = Σ #*# where £ ^ = 0 if i ^ i
i = i

and Bt = restriction 5 to ϋ^ϋ", where the multiplicity of B% is known.
Now by decomposing each operator Bt into sum of operators of uniform
multiplicity we will have H = ΣΓ=i ί̂ «, where the spaces Ht are mutually
orthogonal, and Ĉ  == restriction of B to iϊ^ is an operator of uniform
multiplicity. We shall show how to compute muB from muC% by
reducing this case to the one studied in Theorem 2.2,
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Denote the projection on £Γ4 by F%. Let E(B\ai) be the maximal
projection such that

Such a projection exists by Zorn's Lemma. Finally let βt =
σ(B) — at. On βt the spectral measure of C% can vanish only when
the spectral measure of B vanishes. Now E(B\ \JΐlJ3t) = I because

The set σ(B) can be decomposed into disjoint sets jj such that
a. Each jj is a subset of one of the sets βJQ.
b. If y} Π βι Φ ψ then γ̂  c βt.
Assuming, for a moment, that this decomposition is given then

muB = max mu (B restricted to E(B 7j)H) .

But the multiplicity of B restricted to E(B; yj)H is

V mu(Ci restricted to J5(B; γ̂ JEZ,)Δ-X

by Theorem 2.2.
We shall show how to choose the sets γ4 by an induction argument

on the number m. Let γx = βx — \Ji^2fiifii- This set (which might be
void) satisfies conditions a and b. The rest of σ(B) is

U β&) u (u (βi - β

In both sets there are only m — 1 subsets and by induction there exists
a decomposition.
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