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Fractional powers of closed linear operators were first constructed
by Bochner [2] and subsequently Feller [3], for the Laplacian operator.
These constructions depend in an essential way on the fact that the
Laplacian generates a semigroup. Phillips [6] in fact showed that these
constructions (for positive indices less than one) were part of a more
general one based on the Kolmogoroff-Levy representation theorem for
infinitely divisible distributions. Finally, the present author constructed
an operational calculus [1] for infinitesimal generators affording in par-
ticular a systematic study of the representation and properties of these
operators.

In this paper we obtain a new construction for fractional powers in
which it is not required that the base operator generate a semigroup;
indeed its domain need not even be dense. Since the semigroup is not
available, the previous constructions, based as they are on the Riemann-
Liouville integrals, are not possible. However, we shall show, if the
resolvent exists for λ > 0, and is O(l/λ) for all λ, (a weaker condition
will suffice at the origin, see § 7), then fractional powers may still be
constructed, using an abstract version of the Stieltjes transform.

It is immediate that a closed operator A, for which ||λiZ(λ, A)\\ <
My does not necessarily generate a semigroup of any type. For a simple
example, let the Banach space be 12( — oo, oo) and let A correspond to
multiplying the nth coordinate by n(l + i) say. Then for λ > 0,
\\R(XJA)\\ < i/lΓ/λ, whereas A does not generate a semigroup, since
no right-half plane is free of the spectra of A. An example in which
A has no spectra in the right half plane and yet no semigroup is
generated is given by Phillips [4].

The main motivation for the construction of fractional powers is
the application to abstract Cauchy problems of the type:

(1) -^u(t) ± Au(t) = 0

for n > 2, and it turns out that for the solution of (1.1), A itself need
not be an infinitesimal generator. In this paper we study only the
case n = 2, and we expect to consider the general case later.

The properties of newly constructed fractional powers are identical
with those obtained in [1] for the case where A is a generator, with
one important difference; namely that — (—A)Λ generates semigroups in
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general only for a < 1/2. On the other hand, these are the only ex-
ponents that matter in the application to Cauchy problems of the type
(1.1).

1. Construction of fractional powers* Let A be a closed linear
operator with domain and range in a Banach space X. Let each λ > 0
belong to its resolvent set and let (Ho)

\\XR(X, A)\\ < M < oo , λ > 0.

We have already noted that these conditions do not imply that A generate
a semigroup of any kind. Let x e D(A), Then for 0 < a < 1, the
integral

[°XΛ-1R(XfA)AxdX
Jo

where X" is taken positive, is convergent in the Bochner or absolute
sense, since it can be expressed as

, A)x - x]dX + ί°V-\β(λ, A)AxdX

and both of these intergals are absolutely convergent in view of (iϊ0).
We define a linear operater JΛ such that:

(2.1) Jax = sιnπa[°Xa'1R(Xf A)(-A)xdX , 0 < SReα < 1.
π Jo

For 0 < 3ϊe a < 2, we define for each x e D{A2)

M J"x = πi -a)na) \>"ί^x A) - τh
+ sinττα:/2( — A)x .

For xeD{A*) definitions (2.1) and (2.2) coincide for overlapping ranges
of a. More generally, for a such that n — 1 < 3ΐe a < n, we define, for
x e D(An):

(2.3) J«x = J«-n+\-A)n~ιx .

For n - 1 < 3ΐeα < n, we define for x e D(An+1)

(2.4) J«x = Jre-n+1(-A)n-1a? .

These definitions are also evidently consistent. In (2.1), the principal
value of X" is taken so that λα is positive for a positive.

We shall now obtain some properties of these operators which will
qualify them to be recognized as fractional powers. First, if A does
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generate a semigroup, these coincide with the previous definitions in [1].
In particular, if we specialize —A to be denote multiplication by the
complex number s, non-negative, on the space of complex numbers, the
definitions yield s", principal determination.

LEMMA 2.1. The operators J* can be extended to be closed linear.

Proof. The operators J* being linear, it is enough to show that
for any sequence xn, xn e D{Ja), converging to zero, the sequence J"xn,
if convergent, has zero limit also. To be specific, let 0 < 3ϊe a < 1.
Consider

yn = R(\, A)J«xn ,

for fixed λ. Now R(λ, A)xn e D(A) = D(J") and it readily follow from
(2.1) that

(2.5) R(\, A)J"xn = J*R(\, A)xn .

Moreover, since AR(λ, A) is bounded linear, so is J*R(X, A). Hence if
limit J*xn = y, we have from (2.5) that i?(λ, A)y is zero, hence y is
zero also. The proof for other values of a is similar.

LEMMA 2.2. For x e D{An), JΛx is analytic in a for 0 < 9ieα < n.

Proof. This may be directly verified from the definitions. In par-
ticular, it may be noted that for x e D{Aco)y JΛx is analytic for 9ie a > 0.

For elements in certain domains larger than the ones in Lemma
2.2, we retain continuity. Thus

LEMMA 2.3. Let x e D(A) and Ax e D(A). Then for 0 < 3ΐe a < 1
and a tending to 1 in a fixed sector about 1, JΛx-^ —Ax.

Proof. We note that since Ax e D(A), λ#(λ, A)Ax —> Ax as λ —* oo.
Now

J*x - (~A)x = [X>smπaXa-1\R(\ A) - —-—~](-A)xdX ,
Jo π L λ + 1J+

and the integral can be split into two parts, one from 0 to L and the
other from L to infinity. For fixed L, the first part goes to zero since
it is 0(| sin πa\). The second part in absolute value is

<
sin π(l — a)

τr(l - σ)
sup| | [λΛ(λ,i l) - I](-A)x\\ + M L"~2 \\Ax\

\σ - 2 |
a = 3ΐe a.
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and hence goes to zero also.
We do not in general have convergence to the identity at the origin,

a = 0. For if for some x, Ax = 0, Jax is zero also. However, we can
state:

LEMMA 2.4. For any x e D(A) such that XR(X, A)x —• 0 as λ —* 0,
J°°x —>xasa-+0 + ina fixed sector about 0.

Proof. We have

JΛx - x = - s m πa [ΪR(\, A)AX
π J L

[ΪR(\, A)AX +
π Jo L λ +

_ __ sin πa \~^aR(X, A)(x + Ax) ^
π Jo λ + 1

and the result follows from the second integral as a simple estimation
shows.

LEMMA 2.5. Let x e D(A2). Then for 0 <9ϊe (a + β) < 1,

(2.6) J"+βx = J"Jβx .

Proo/. For x e D(A2), it is clear from (2.1) that Jβx e D(A) =
D(Ja). Moreover we have:

7Γ 7Γ J o j o

where the double integral is absolutely convergent, and can be rewritten
as

sirwra sinπ£ Γ ^ + ^ - i ^ f ^ ^ A)R(\,

Using the first resolvent equation, we have

R(\σ, A)R(Xf A)A2x = σ i g ( λ σ > A ) ~ ^ ( λ ^ A) (-A)x
1 — σ

so that we have finally, after a change of variable:

^ , A)(-A)aκZλ .
Jo

where the constant

sinπα sinπ/3 Γ1 (σβ-1 + σ"-1 — σ"^ — σ~β) -,
π π Jo (1 — σ)

evaluates to sin π{a + B)/π, thus verifying (2.6),
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The semigroup property is readily extended to all exponents for
x e D{A°°). For exponents less than some finite positive number this
domain can be enlarged. First, however, we define:

(2.7) {-AY = Smallest closed extension of J* .

We term this the principal value, even though we cannot, in general,
claim that any other determination will differ from it by only a factor
of expίπfc for integral k. For an example see [1]. On the other hand,
the principal determination still enjoys a uniqueness property similar to
the one obtained by Hille [4] for linear bounded operators. We state
this as a Lemma:

LEMMA 2.5. Let x e D(A°°). Then

(2.8) lim sup }og\\(rAy+tηχ}ϊ < π , 0 < a.

Moreover, it is not possible to find a determination of {—AY analytic
in a for x e D{A°°), interpolating integral powers, and preserving the
extremal property, other than the one given in (2.7).

Proof. A direct calculation yields (2.8). The uniqueness part follows
as in [4, p. 496], using a classical result of F. Carlson.

We note that all these fractional powers are uniquely determined by
their values on D{An) each for a large enough n. [Actually on D{A°°),
the latter domain being dense in D{A). See § 3, Lemma 3.1.] The semi-
group property (2.6) can be sharpened to read

(2.9) {-A)"*? - [{~AY{~Af]c ,

the right side being the smallest closure of ( — A)*{ —A)β. This follows
essentially from the fact that J* (and hence ( — ̂ 4.)*) commutes with
R{\, A), as in [1].

3. Spectral theory* We next examine the spectra of the operators
{ — A)a. For this purpose we denote the second commutant of the set
{R{X, A), λ > 0} by 33. Then 33 is a commutative Banach algebra with
unit, and is strongly closed. Moreover, using the Gelfand theory, the
linear multiplicative functionals over 33 split into two classes 9JΪ0 and 2Jϊlβ

For any m e 3Jίo>

m[R{\, A)] = 0

while for any m e 3Kj, there is an s e σ[A], such that

m[R{x, A)] = l/(λ - s)
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for every λ > 0.
For any function a of bounded variation on compact Borel sets of

the half-line [0, oo) such that

( " | | Λ ( λ , A ) α j | | d | α | < c o
Jo

it is clear that setting

θ(a)x — \ R(X, A)xda

θ(a) 6 33. We now collect some special functions we shall need in the
sequel. Let μ be a complex number such that μ + \ s \a exp ίaθ Φ 0, for
any | s | and — π < θ < π, and fixed α, 0 < 3ΐeα < 1. We can always
find such a number for | a | sufficiently small, and we shall assume this
is the case. Let

(3.1) f(X) - (l/τr)(l/2i)[(μ + λ-e-"*)-1 - (μ + λ̂

Next, for each t > 0, let

(3.2) flf(λ; t) = (1/τr) 3fm.[exp (-ίλ γ exp - i

for some fixed γ, 0 < γ < 1/2. Then

and

i; t)dX

both belong to 33, the integrals existing in the Bochner sense in the
uniform topology. Moreover, for m e 3Jt19 with corresponding — s e σ(A),
we have

(3.3) [μ + Γ
o λ + S

The integral on the right is of course the Stieltjes transform and exists
for any s not on the negative real axis. [For the properties of Stieltjes
transforms explicitly or implicitly used here see [7].] On the other
hand, we note that the spectrum of A may be empty. Similarly,

(3.4) m(S(t)) = ΓlίAL*) dx = exp -ί** .
Jo λ + S

[Here and throughout, s" = | s \* exp iaθ, —π<θ<π].

LEMMA 3.1. For every x e X, S(t)x e D(A°°) for every t > 0. For
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x e D(A), \\S(t)x - x || — 0 as t -> 0 + .

Proof. We note that for every positive integer n,

(3.5) [°Xn I g(X, t)\\\ R(X, A ) \ \ d X < ™
Jo

and

(3.6) ί°°λnflf(λ; t)dX = 0 , including π == 0.
Jo

For any x e X,

AR(X, A)x = XR(X9 A)x — x .

Hence

ί oo poo

R(X, A)g(X; t)dλ - x g(X; t)dX
o Jo

= \ R(X, A)Xg(λ; t)xdX
Jo

using (3.5) and (3.6). In a similar manner we can extend this to any
positive integer n.

(3.7) AnS(t)x = [°°XnR(X, A)xg(X; t)dX .
Jo

This shows that S(t)x e D{A°°). Next let xeD(A). Now

(3.8) S(t)x ~x=: [~g(X; t)ΪR(X, A) ~ —~\xdX

where we have used

Γ λ - ^ λ ; t)dX = 1 .
Jo

Since x e D{A), we can rewrite (3.8) as

S(t)x - x = f°°flf(λ, fyX-ΉiX, A)AxdX
Jo

and the integral on the right is seen to go to zero with t. To see that
the result is true for x e D(A), we have only to note that (using Ho)
\\S(t)\\<M.

Now, since ( — A)" is closed and S(t)x e D(A°°) for every x, ( — A)"S(t)
is linear bounded and e S3. Actually, more is true. Thus:

LEMMA 3.2.

(3.9) (-A)»S(t) = [~i2(λ, A)fc(λ, t)dX, 0 < 3ΐe a < 1,
Jo
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where

h(X, t) = - L - [e'iπaXa exp (-tXy exp -ΐπγ) - ei3r"λα exp (-ίλ γ exp +ΐτrγ)l .

Δ7ΓI

Proof. We note that for m e 3Jix,

mΓΓJ2(λ, A)Λ(λ, ί)dλl = Γ ^ λ ' * > dλ
LJo J Jo X + s

and the Stieltjes transform on the right evaluates to
(—tsΛ) .

While this is the same as m[( — A)"S(t)], this does not necessarily consti-
tute a proof of (3.9) since the radical of 35 may be non-empty. How-
ever, a direct proof is possible. Thus we have

and changing variable of integration and using

R(Xσ, A)(-A)R(X) = σBQ^A)
1 — σ

this can be written

[°°R(\, A)h(X, t)dX
Jo i

where

h(X, t) = 9(X, t)[ ^ ~ ^ dσ + [a- ^ ^ ~ 9 ^ da
Jo (1 — σ) Jo (1 — σ)

which is readily verified to be the function required in (3.9).

LEMMA 3.3.

(3.10) θ{f){-AγS{t) = [~R(\, A)q(X, t)dX
Jo

where

q(χ t) = 1 Γ \"e-iπ" exp ( - tXy exp - iπj) __ X»e'** exp ( - tλγ exp iπy) Ί
27ri L μ + λ* exp —i7rα μ + X* exp ΐπα J

Proof. The Stieltjes tranform of g(λ, ί) is readily verified to be

f" q(X, t)dt = g^exp -^sy

Jo λ + 8 μ + s*



FRACTIONAL POWERS OF CLOSED OPERATORS 427

As in Lemma 3.2, this is not quite enough to prove (3.10). On the
other hand, a direct proof may be given by double integration using
the resolvent equation, and noting that

q(X, ί) = \\h(X, t)(f(Xσ) - σ-ifWσ)) +f(X)(h(Xσ, t) - σ^hi\lσ9t)))^- .
Jo a — 1

LEMMA 3.4.

(3.11) θ(f)S(t) == Γi2(λ, A)r(\, t)dX
Jo

where

(X t) — 1 Γ e χ P (~ tW e χ P ~ JπΎ) _ exp (— tXy exp iπγ) 1
2τri L μ + X" exp — iπa μ + X* exp iπa J "

Proof. The Stieltjes transform of r(λ, t) is

f-r(λ, t ) r f λ = exp -tsi
Jo λ + s μ + sα

As in Lemma 3.3, we can establish (3.11) by double integration, using
the resolvent equation.

LEMMA 3.5. Let x e D{A). Then with μ as in Lemma 3.1,

(3.12) [μ + (-AYW(f)x = x .

Proof. From the previous Lemmas it is immediate that

μθ(f)S(t) + (-A)«θ(f)S(t) =

for every t > 0. Let a? e D(A). Since

and by Lemma 3.2, S(t)x —>x as t —• 0, (3.12) follows by letting ί —»0,
and noting that (—A)a is closed.

We are now ready to prove the spectral mapping theorem.

THEOREM 3.1. Let D(A) be dense in X. Then

(3.13) σ[(-A)"] - [σ(-A)]", 3ϊe a > 0.

Proof. First let \a\ be so small that we can find a μ as in Lemma
3.1. By Lemma 3.5, for X e D(A), (3.12) holds, and D{A) being dense
in X, continues to hold for any x. Since for x e D{(—A)Λ), Θ{f)(—A)ax =
(-A)*θ(f)x, we see that 0(/) is a resolvent of -(-^)",0(/)=J?(w, -(-A)*).
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This is enough to prove that for these α, (3.13) holds. For, let δ be a
number different from + μ sμch that — 8 Φ [σ( — A)]a. Then consider
[ 7 + (δ - μ)R(μ, -(-AY)], This belongs to S3, and

m[I + (δ - μ)R(μ, -(-AY)] = 1 me SOI,

_ δ + s"

μ
m

Hence this element has an inverse in 33, and this is easily seen to be
R(δ, — (—AY). For other values of α, we note that for a such that
p[( — AY] is not empty, we have a sharper version of (2.9):

(-A)n<* = [(-AYY for every integer n.

Again, by the general spectral mapping theorem for closed operators
with a non-empty resolvent set [4], we see that (3.13) holds for na.
Finally, we note that for a — a + ib, and a2 + b2 < α, it is always pos-
sible to find a μ such μ + s" Φ 0 for all s not on the negative real axis.
Hence (3.13) follows for all α, 3ίe a > 0.

4 Some stability properties* We shall call a property of A stable,
if the same property holds for — ( — AY at least for 0 < a < 1. We now
state some stable properties of A.

4Λ. Let A be linear bounded. Then —( — AY is also bounded for
every α, 9ϊe a > 0.

4.2. Let A* be the adjoint of A. In view of hypothesis Ho we
can, following Phillips [4], define A® using his definition (Definition 14.3.1,
p. 424). For \a\ sufficiently small, we note that — { — AY also satisfies
hypothesis Ho, so that we can also define [( — A)*]®. We then have that

[(-AY]® - [(-A)®]* .

4.3. Let A be the infinitesimal generator of a positive contraction
semigroup. Then so is —( — AY, for 0 < a < 1.

4.4. Let X be a Hubert space. If A is dissipative, so is —( — AY
for 0 < a < 1.

4.5. Let A be compact. Then so is ( — AY for every a.

4.6. If for some x e ί , and s not on the negative real axis Ax =
— sa?, then (—A)*x — s*x also.

5. Generation of semigroups. We now come to what is perhaps
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the most important single property of these fractional powers (at least
as far as applications to differential equations are concerned) viz., gener-
ation of semigroups. We shall show that for 0 < a < 1/2, — ( — )" generate
strongly continuous semigroups, uniformly continuous away from the
origin. We shall also obtain a representation for these semigroups in
terms of R(X, A),, λ > 0.

THEOREM 5.1. Let D(A) be dense, and let A satisfy Ho. Then for
0 < a < 1/2, — (—A)σ as defined by 2.7, generates a semigroup SΛ(t)f

which is strongly continuous for t > 0, uniformly continuous for t > 0.

Proof. First let 0 < a < 1/2. Let

(5.1) Sβ(ί) - [°R(X, A)g(X, t; a)dX
Jo

where

g(X, t; a) = (1/π) sin (tX* sin πa) exp ( — tX* cos πa) .

Then (5.1) is a Bochner integral. The Stieltjes transform of g(X, t; a)
is, as we have noted before in § 3,

g(X, t; a)dX = exp — ίs α .

However, this alone does not necessarily suffice to verify the semigroup
property of S^t). A direct proof can be given, however, following the
lines of Lemma 3.3. We shall next show that the infinitesimal generator
of SΛ(t) is — (—A)*, by showing that the resolvent of the latter for
μ > 0, is the Laplace transform of SΛ(t). The Laplace transform can,
further, be taken in the uniform topology, since SJt) is readily seen to
be uniformly continuous for t > 0, by direct computation from (5.1).
Now,

\ ° Γ [°°e-^g{X9 t;)dtdX

, A)\ ~]
1 μ + X«e~ιπ« J

]dx

which as we have seen in Lemma 3.5, is the resolvent of —( — AY for
μ > 0. The strong continuity of SJt) has already been proved in Lemma
3.1.

Next let a = 1/2. Let

(5.2) S1/2(ί) = Γ~i2(λ, A) sin VTtdX ,
Jo

where the integral is to be taken at infinity in the Cauchy sense. The
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convergence in the Cauchy sense can be seen as follows. By an inte-
gration by parts, we have, for each L,

— Γi2(λ, A) sin V~XtdX = R(L, A)f(L, t) + Γ R(\ A)2f(X, t)dX ,
71 Jo Jo71 Jo

where

f(X, t) = M\mVVtdσ = JJ2βinτ/λ£ _ 2yTcoeVTn _
π Jo TΓL t2 t J

Now the first term goes to zero as L —> co , and the second term is a
convergent Bochner integral at infinity. Hence

(5.3) Sll2(t) = — ί°°#(λ, A) sin l/Yίdλ = ί°°i2(λ, Aff{\, t)d\ .
π Jo Jo

Next, S1ι2(t) is readily seen to be uniformly continuous for t > 0. A
simple computation using (5.3) also shows that ||S1/2(£)|| < Const. The
semigroup property can be verified directly as before. Again, the La-
place transform of S1/2(ί) is seen to be the resolvent of — ( — A)112. The
strong continuity at the origin may be seen from:

\Sll2(t)X-X\\=: — [Ti2(λ, A ) - — Ί^si
π Jo L X J

ίdλl

For fixed L and t sufficiently small, the first term is O(t). The second
term is

and hence goes to zero also. Since || S1/2(t) \\ is bounded, strong continuity
follows. This completes the proof of the theorem.

For values of a > 1/2, —{—AY does not necessarily generate a
semigroup of any type, as the following simple counter-example shows.
Let X = 12(— oo, oo), and let A correspond to multiplying the wth co-
ordinate by (1 + ί)n. For a > 1/2, no right half plane is free of spectra
of —{—AY, (as follows readily from Theorem 3.1) so that they cannot
be generators of any semigroup.

We note in passing that (5.1) leads to a simple rigorous proof of
Feller's expansion for the stable densities [3] for 0 < a < 1/2. For,
denoting the stable density by F(ξf t; α), we have

F(ξ, t a) = — [°e-ξλ gm [exp (~tX« exp -ίπa)]dX
π Jo

and expanding the second factor and interchanging integration and
summation, which is obviously permissible, we have
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F(ξ, t; a) — —— X ^ Lξ-n*-L sin πanΓ(l + na)
π 0 nl

which is Feller7s expansion.

6 Application to abstract Cauchy problems. We shall next consider
an application of the foregoing theory to a class of Cauchy problems.
Indeed, this was the application which largely motivated the theory.
This class may be considered a generalization of the abstract Cauchy
problem of the type

u(t) = Au(t)

and is related to (though different from) the class treated by Hille [4, 5].
Thus we shall examine abstract Cauchy problems of the type

(6.1) ^jψ- + (~l)nAu(t) = 0 , n > 2.

More precisely, we shall phrase the problem as follows:
Given a complex Banach space X, and a closed linear operator A

with domain dense in X and range in X, find a function u{t) such that
( i ) u(t) is n times continuously differentiate in [0, 00)
(ii) u(t) eD(A) for t > 0
(iii) u(t) satisfies (6.1) for t > 0, and the initial conditions

lim || u^it) — uk || = 0 for prescribed uk, k = 0,1, , r, r < n.

This is the reduced problem ('probleme reduit') in the terminology of
Hille [5, p. 42], n — r being the defect ('default'). In addition to the
existence of solutions [with some defect], we are of course interested
in the uniqueness of the solutions. Now, if the operator A satisfies Ho,
we are [by Theorem 5.1] assured of solutions for some suitable defect,
but the question of uniqueness remains. On the other hand, if we do
have unique solutions for some A, we would certainly like to know
whether this implies that A satisfy Ho, since this would then characterize
the solutions completely. In what follows we are concerned exclusively
with the case n = 2. Our main result may be stated as follows:

THEOREM 6.1. Let n = 2. Suppose A satisfies HQ. Then for each
u0 e D{A), the reduced problem with defect one has a solution such that

(6.2) sup I \u(t) \\< co .

Moreover, there is only one such solution, and it is given by

(6.3) u(t) - S1/a(tK
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where the semigroup S1/2(ί) is uniformly continuous for t > 0, and has
the representation (5.3). Further, for each t > 0, range of S1/2(t) c D(A)
and Slh(t) is analytic of class H(φ, —φ), φ > 0. Conversely, suppose
for each u0 e D(A), the reduced problem has a unique solution satis-
fying (6.2) for some A. Then setting u(t) = S(t)u0, yields S(t) as a
strongly continuous semigroup. Suppose range of S(t)a D(A), and S(t)
is analytic of class H(φ, —φ) for some φ > 0. Then A satisfies Ho, and
S(t) = S1/2(t) as given by (5.3).

We need some Lemmas.

LEMMA 6.1. Let A satisfy Ho. Then R(X, A) exists in the sector
—φ< arg λ < φ, where (Tan Φ)M = 1.

Proof. Let ε > 0, and γεΛf = 1 — ε. For any t, \ t | < γε, and
σ > 0 consider I + [(σ + itσ) — σ]R(σ, A). This element has an inverse
given by the series

Σ[-itσΛ(cr f A)]"
0

and is clearly convergent, being majorized by the geometric series

1
Σ11 \nMn <

1-7SM

Moreover this also shows that the inverse is bounded in norm by
(1 — γgikf)"1. Now, by the first resolvent equation, it follows that

R(σ + itσ, A) = [I - [(σ + itσ) - σ]R(σf A)Y1R{σi A)

and is in norm

\\R(σ + itσ,A)\\< M .
(1 - yεM)σ

The assertion of the lemma follows readily from this.

LEMMA 6.2. Suppose A satisfies hypothesis Ho. Then for each a,
0 < a < 1/2, λ e pl-i-A)"] for - ψ - π/2 < argλ < πβ + ψ for some

Proof. The proof is immediate from the spectral mapping theorem,
Theorem 3.1, and Lemma 6.1 above. We can take ψ = πβ — a(π — φ).

LEMMA 6.3. Let A satisfy Ho. Then for 0 < a < 1/2, the semigroup
Sa(t), defined by 5.1 and (5.3) is analytic, of class H(ψlf φ2) (Cf [4], p.
325, Definition 10.6.1), with φλ = — aφ, φ2 = aψ, ψ being defined in
Lemma 6.1.



FRACTIONAL POWERS OF CLOSED OPERATORS 433

Proof. Let μ be such that 9ΐe μ > 0. Then for each a, 0 < a <
1/2, we know from Lemma 3.5 that μ e ρ[ — (—A)"] and

(6.4)

From this it readily follows that

/r* r\ ii τ>/.. / Λ \rϊ,\ I ^ •*•'•*•

where the constant M is the same as in Ho. Next let ε < 0 be given.
Then from Lemma 6.1 it follows that for —φ + ε < argλ < —φ — ε,
there is a constant Mε such that

(6.6) \\XR(X,A)\\ < M ε .

Let —φ + ε < ψ < +φ - ε. Let λ be >0. Then

R(\, e~ι*A) = e^R(Xe^f A) .

Further it follows from (6.6) that

\\XR(X,e-^A)\\<Mε,

so that (Aexp— iψ) satisfies Ho. Then we can define ( — e~l^A)a using
(2.7), and a simple contour integration shows that for 0 < a < 1,

Moreover, applying (6.5) we know that for SReμ > 0,

But

Hence we obtain that for X such that 3ΐe (λe"'^) > 0 ,

/ Λ\M\ II ^ M-p

But this implies that the conditions for Sa(t) to be of class H(φ, φ2) as
given by Hille ([4] p. 383, Theorem 12.8.1) are satisfied, thus proving
lemma.

Proof of Theorem. We begin with the first part. Thus let A satisfy
Ho. Setting u(t) = S1/2(t)u0, we get one solution satisfying (6.2). We
shall now show that this solution is unique. Let v(t) be a possibly
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different solution. By assumption v\t) is continuous at t = 0. Let vx

be v'(0). Let w0 = S(l)^, and w2 = S(ΐ)v19 where S(ί) is defined as in
Lemma 3.1. Let w(t) = S(l)v(t). Then w(t), w'(t) e D(A°°) and

(6.7)

Let

Then since

w"(t)

L(λ, w)

+ Aw(t) = 0 .

= [°e-χtw{t)dt ,
Jo

λ > 0.

we get that w'^exp — λί goes to zero at infinity, and hence by Laplace
transforming (6.7) we have:

[λ2 + A]L{X, w) — Xw0 + wx .

Since B2 = —A, where we have written B for —( — A)1'2, this can be
rewritten

[XI - JB]L(λ, w) == R(Xw0 + wλ) .

Since

R(X, B) =

this yields

w'(ί) + Bw(t) = Sll2(t)Bw0

Hence

so that

_ [S1/a(ί(w(ί)] S1/a(2ί)wi + Sll2(2s)Bw0at

Slt2(2t)w1dt + ΓS l l2(2t)Bw0dt
o Jo

- Sin(2t)w0 - -i-
2 Jo

Hence

Sll2(t)Bw(t) - S1/2(2ίK +

Now because of analyticity in a sector, zero does not belong to the point
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spectrum of S1/2(ί) for any t > 0. Writing Sφ(~t) for the inverse, and
using (6.2), we have that

(6.8) Sup || SllΛ(-t)(w1 - Bw0) || < ~ .

We shall now show that for any element z such that z e Π^>(̂ i/a( —*))

and Sup || S1}2(-t)z || < oo, Bz = 0. For this let

(6.9) F(λ) = (V'S^ί- ίJsdί , 3ΐe λ < 0 .
Jo

Then it is readily verified that

Now by Lemma 6.2, we know that R(X, B) exists for — ψ — π/2 <
argλ < ψ» + τr/2 and hence there is a common domain where —F(X) =
R(X,B)z. Hence for 5Reλ<0, — F(λ) is the analytic continuation of
i2(λ, B). Moreover, using the results of Lemma 6.3, it follows that
II λF(λ) || < const., in a sector and || λJB(λ, B)z \\ < const, in an intersect-
ing sector, their union being the entire plane. Hence it follows that
λjβ(λ, B)z = z, since XR(X, B)z —> z for λ > 0. Hence 1?2 = 0, as required.
Hence S1{2(t)z = 2, so that

S(t)w(t) = S(2£)w0 - ί(^! - Bw0) .

Hence using (6.2), ^ = BwQ. Since ^0 e ί)(A), using S(l/n) in place of
S(l) and taking limits, we readily obtain that

v'(0) = Bu0

and hence that v(ί) = S1/2(ί)%0. That range at S1/2(ί)c J5(A) follows from
the representation (5.3).

We now proceed to the second part of the theorem. That S(t) is a
semigroup, strongly continuous at the origin with | |£(ί) | | < const., fol-
lows by arguments similar to the one used in Lemma 23.9.4 p. 627 of
[4]. Let B be the infinitesimal generator of S(t). Then for x e D(A),
it is clear B2x = —Ax. For x e D(B2) on the other hand, we note that
since for t > 0, S(t)x e D(A), B2S(t)x = -AS(t)x, so that letting ί — 0,
it follows that B2x — —Ax also, since A is closed. Next we note that

λ2 ~ A = (iλ - J5)(iλ + S)

so that for λ > 0, λ e /o(A) since S(t) is analytic, and

JB(λ, A) = i 2 / T

Again since S(ί) is analytic, of class H(φ, — ψ), it readily follows that
|| \R(ίX,B) || < Const., for λ real, from which we obtain that || λJB(λ, A)|| <
Const., for λ > 0, Or, A satisfies hypothesis Ho. That S(t) = Sφ(t) is
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immediate from the first part of the theorem.
Additional properties of the solutions can of course be deduced from

the representation (5.3). For instance, we note a rate of growth prop-
erty: viz., for each x e X, \\ Slj2(t)x || —> 0 as t -* oo, if χR(x)x —> 0 as

7. Some extensions* In this section we shall indicate some possible
extensions of the foregoing theory.

The basic hypothesis Ho concerning the operator A can be weakened.
Thus suppose A satisfies Hx\

For each λ > 0, λ e p(A) and

(i) ||Λ(λ,A)|| = 0(l/λ) as

(ϋ) Γ
Jo

λσ II R(X, A) || dX < oo , for some σ, 0 < σ < 1.

Then it is possible to define (—A)* for 5Reα > σ, still using definition
(2.7). The hypothesis Hx is satisfied for instance if A generates a semi-
group T{ξ) such that it is strongly continuous for ξ > 0, and

(7.1) J j l T O I I f — t f f <co .

The latter condition was used in [1], whereas hypothesis Hx is similar
to the one stated by Hille [4] (although of course the Hille condition is
stronger since he considered only bounded operators). We shall show
that for infinitesimal generators, Ήλ and (7.1) are equivalent.

LEMMA 7.1. Suppose A is the infinitesimal generator of a strongly
continuous semigroup T(ξ). Then if (7.1) holds, A satisfies Hx. Con-
versely, if A satisfies H19 T{ξ) satisfies (7.1).

Proof. Suppose (7.1) holds. Then clearly

l i m < 0

so that R(X, A) exists for λ > 0 and is of order 1/λ for λ —> oo. Next

,A)\\dX< λ ' l e-λί\\T(ξ)\\dξdX
Jo Jo

< const + ΓII T(ξ) || dξ [Vλ έλσdλ
Ji Jo

f °°

< const I || T(ξ) || ξ~σ~1dξ < oo .
Ji

To prove the converse we shall use some results from [1]. Let S(ω) be
the B-algebra associated with T(ξ) as in [1] L(ώ) being the subspace of
functions (Borel measurable) such that
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\~\\T(ξ)\\\f(ξ)\dξ
Jo

<

Let Aw be the infinitesimal generator of the translation semigroup.
Defining (-Aw)

a using (2.7) it follows for fe D(AW), setting

that
(-λ)"φ(λ, /) = φ(λ, g) , 3ie λ < 0 ,

and hence that for any μ > 0,

μ — λ

is a multiplier defined over all of L(ώ). By the factor theorem (cf [1]),
it follows that there is a corresponding function in S(ώ) (actually in
L(ω)) and further an evaluation of this function shows that (7.1) is
satisfied.

While for 3ΐeα > σ, we can define ( — Ay, it is not possible to de-
fine, in general, (—Ay for 9ΐeλ < σ, at least not as a closed operator
whose domain includes the domain of A. This may be seen as in the
converse part of Lemma 7.1, using || T(ξ)\\ = (1 + ξ)σ.

For A satisfying Hλ with σ < 1/2, —(—Ay continues to generate
strongly continuous semigroups for a < 1/2, satisfying

We do not know at present whether the semigroups are necessarily
analytic of class H(Φi9 Φ2).
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