A SPHERE CHARACTERIZATION RELATED TO
BLASCHKE’S CONJECTURE

LEoN W. GREEN

Let S be a Ci-surface supplied with a complete positive-definite
Riemannian metric. If R = R(s) is a geodesic ray with initial element
(point and direction) e = (P, ) and arc-length s, and & = (P, 6 + «/2) is
an orthogonal element at P, we call F(e) the focal distance for e if
R(F(e)) is the first focal point along R to the element k. (This defini-
tion will be given an analytic form in §1.)

THEOREM 1. If F'(e) is finite and independent of the initial ele-
ment e in the unit tangent bundle of S, then S has constant positive
curvature.

The hypothesis implies that 2F(e) is the distance to the first point
conjugate to P along R; hence this conjugate distance is constant. A long-
standing conjecture of Blaschke’s is: if the conjugate distance on S is
finite and independent of the initial element, the surface has constant
positive curvature. If one accepts as true a sentence (Blaschke [2], top
of page 228) in his critique of Reidemeister’s erroneous proof ([1], Anhang)
of the conjecture, it is sufficient to prove the theorem as we state it for
focal points. However, we have not been able to prove the assertion
contained in that sentence.

Busemann ([3], Theorem 21.10) has proved an analogue of our theorem
for G-spaces of dimension greater than two, so the generalization to
Riemannian manifolds of higher dimension is contained in his result.
For two-dimensional G-spaces even of class C=, Blaschke’s conjecture
is false, as examples of Hamel show [4].

In §1 we give the analytic setting of the problem and summarize
the pertinent known facts. §2 contains a result in ordinary differential
equations which implies the main theorem.

1. Express the line element of S in geodesic polar coordinates with
center P:

(L) ds* = dr* + G*do* .
Then it is known that G = G(r, 6) satisfies the Jacobi differential equation

(J) Grr(’ry 6) + K(’r', H)G(’i", 9) =0 R
G(0, 0) =0, G.0,0) =1,
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where K(r, 0) is the Gaussian curvature of S at a distance » from the
point P along the geodesic ray with initial element (P, d). Along any
such ray the line element is positive definite for 0 < » < C(6), where
C(0) is the first positive value of » for which G(r, ) = 0. The point
(C(9), 0) is the first point conjugate to P along the ray R(s) = (s, 6).
The mapping from the (7, 6) plane to S is locally one-to-one along any
geodesic ray (s, 8) of length less than C(P, 6). The first point focal to
P along (s, 0) is defined to be the point (F'(6), 0), where F'(0) is the first
zero of G,(r, 0) for increasing r, Geometrically, it is the first point along
a ray at which the geodesic circle of that radius ceases to be (locally)
strictly convex. Thus we may drop the transversality parts of the usual
calculus of variations definition, provided we understand that *‘‘focal”’
in our sense has a restricted meaning.

For the remainder of this section we shall assume that C(P,6) is
finite and independent of P and 8 on S. Without loss of generality we
may assume that this constant is #. Much of Blaschke’s discussion ([2],
§ 102) holds, and the following paragraph will be a summary without
proof of the verifiable statements which he makes that we will need.

All geodesics of S are closed. Any two geodesics which pass through
the point P intersect at a point P’, the common point conjugate to P
along all rays through P. S is covered by a homeomorph of the two-
sphere with the same conjugate point distance. From now on we as-
sume S simply-connected and call the distinct and unique point P’ the
antipode of P. The distance from P to P’ along any ray is =; the
length of every closed geodesic is 27. The mapping of points into their
antipodes is an isometric involution of S onto itself. (Most of these
facts are also proved for G-spaces in Busemann [3].)

It follows that the line element (L) with any center P is definite
for 0 < r < m. Since the Gaussian curvature is a scalar function on the
surface, we may consider (J) along a fixed closed geodesic as an ordinary
differential equation with periodic coefficients. Choosing a different ori-
gin on the same geodesic and solving (J) yields a solution in the original
coordinates with initial values prescribed at some point other than r =
0. Any solution u(r) of (J) which vanishes at 7, also vanishes at », =
nrw. Since the antipodal map is an isometry, K(r, 8) = K(r + =, ) and
the function G in (L) satisfies G(r — 7@, 0 + ) = G(r, 6) for 0 < r < =.
Because of the uniqueness of the solutions under the imposed boundary
conditions, if we consider a solution u(r) of (J) with the same initial
conditions as defined for all », u(r) = —u(r — w). Consequently every
solution of (J) is odd-harmonic and periodic of period 2.

If we adjoin the condition that F'(e¢) is constant (and equals 7/2),
then every solution of (J) which vanishes at 7, has zero first derivative
at r, + w/2.
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2. The analytic situation which we shall exploit may now be sum-
marized as follows:
(H) Every solution of the differential equation

J" y'(r) + K(r)y(r) =0

is odd-harmonic (i.e., y(r — @) = —y(r)), periodic of period 27, and if
y(r,) = 0, then ¥'(r, + 7/2) = 0 (focal point condition). Here K(r) is
continuous and of period =.

In this section w(r, a) will always designate a solution of (J’) satis-
fying w(a, a) = 0, wa,a) =1. We set u(r) = w(r,0) and let w»(r) be
that solution of (J’) with the initial conditions v(0) = 1, v'(0) = 0.

LEMMA. Under the assumptions (H), w(a + /2, a) is independent

of a.
Proof. In terms of the independent basis of solutions we may write
(1) w(r, a) = v(a)u(r) — w@)v(r) .
Then the focal point condition becomes
(2) v(a)u'(a + 7/2) = u(a)v'(a + 7/2)
for every a. Putting b = a + 7/2 and using the odd-harmonicity,
(3) (b + /2w (b) = w(b + 7/2)v'(b)
for every b. Now differentiate (1) with respect to a:
wo(r, @) = v'(@)u(r) — uw'(a)v(r) .

Using (3), we see that w,(a + 7/2,a) = 0. Combining this with the
hypothesis on the derivative with respect to the first variable, we con-
clude that the total derivative with respect to a of w(a + 7/2, a) is
zero for all @. This proves the lemma.

THEOREM 2. Under the hypotheses (H), K(r) is identically 1.

Proof. At any point @ where u'(a + 7/2) = 0 we may solve (2) for
v(a) and substitute in (1) to find the constant value of w(a + 7/2, a):

w(z/2) = w(xn/2, 0) = w(a + 7/2,a)
(4) = [w(a + 7/2)]" @)@ + 7/2u(a + ©/2)
— w(@)v(e + 7/2)u'(a + 7/2)]
= —u(a)/w'(e + 7/2) ,
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using the fact that the Wronskian is constant. In particular, at every
such point a, u(e) = 0 also. Hence we may divide (2) further to find
that, for all intervals in which %'(a + 7/2) +# 0,
vwa)/u(a) = v'(a + 7/2)/u(a + 7/2) .
Differentiating and substituting from (J'):
[u(@)v'(a) — v(@)u'(@)]/[u(a)]*
_ W@+ 7/2)v"(a + 7/2) — v'(a + 7/2)u"(a + 7/2)
[w'(a + =/2)]*

_ K@+ #[2)[v'(e + 7/2)w(a + 7/2) — w'(a + 7/2)v(a + 7/2)]
[u'(a@ + 7/2)]* '

Another recognition of the Wronskian allows us to conclude that

K(a + 7/2) = [““%J/Z)T = [u(z[2)]~*,

a constant independent of a. The fact that the zeroes of wu'(r) are
isolated together with the continuity of K completes the argument that
K is constant everywhere. (Or one may notice that the choice of origin
was arbitrary.) Since the period of the solutions is 27, the value of K
is determined. This completes the proof of Theorem 2, and clearly im-
plies the truth of Theorem 1.

3. Warren Loud has indicated to me how to obtain non-constant
periodic functions K(r) such that all solutions of (J’) are periodic and
odd-harmonic (cf. his monograph [6], §3). Hence the method given here
cannot be directly extended to prove Blaschke’s conjecture. (Perhaps
this remark should be added to Blaschke’s ‘‘“Warnungstafel’’.)

If one considers the equation (J) as a one-parameter family of or-
dinary differential equations and uses the hypothesis that the spectral
value 0 does not change under perturbation, one obtains (in the analytic
case) an infinite sequence of conditions on the derivatives of K(r, 6), of
which that given by Blaschke ([2], page 226) is only the first.

By using classical Sturm-Liouville techniques, one can also prove

THEOREM 3. Let K(r, 0) be analytic for |0| < 6, and such that
K(r, 6) — o uniformly in some interval of r as 0 — 6,. Then it can-
not happen that every solution of (J) is periodic with period indepen-
dent of 6.

We omit the proof. (It is essentially given, e.g., in Haupt [5].)
If it were not for the growth hypothesis, which doesn’t correspond to
the geometrical situation, this would imply the truth of Blaschke’s con-
jecture, since any two points on S lie on a geodesic circle.
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