
TWO EXTREMAL PROBLEMS
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l Introduction* Let ^ 0 be the class of all complex trigonometric
polynomials P of the form Po + Pxe

iφ + P2e
2ίφ + . Let σ and μ be,

respectively normalized Lebesgue measure and any finite non-negative
Borel measure on the real interval ( — π, π]. Suppose μ — μA + μs, with
dμA(φ) = f(Φ)dσ(φ), is the Lebesgue decomposition of μ into absolutely
continuous and singular measures. In this note we shall be concerned
with two generalizations of the problem Qo: Find

Uμ) = inf Π I 1 + e'*P(e'*) |2 dμ(φ)f .

Qo was solved by Szego for the case μ — μA and in general by M. G.

Krein and Kolmogorov. They showed that Uμ) = exp i \ logfdσ if log/

is integrable and Uμ) = 0 otherwise. (See [3], pp. 44, 231.)

We shall consider:

Problem Qλ: Suppose I | g \2 dμ < oo. Find

and

Problem Q2: S u p p o s e \ \ h \ d σ <oo. Find

I2(h, μ) = sup Phdσ jj |P|2c^] έ}.

Clearly I^e-'*, μ) = I0(μ). Also

[1,(1, μ)Γ = mί ([\ I P I Pdσ

so Qo is a particularization of both Qx and Q2. There are other special
cases of Qλ and Q2 that can be found in the work of Szego [5] and
Grenander and Szego [3]. Of particular interest are the following:

( i ) Let g(φ) — e~iίfc+1)φ, where & is a positive integer. Then Qx is
the problem of linear prediction k units ahead of time ([3], p. 184).

(ii) Let h(φ) = 1/(1 - ae~iφ)y \ a | < 1. Then

μ) = sup
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See [3], p. 48.
Throughout we shall indulge in the following notational conveniences:

We shall write I^g, f) and I2(h, f) for Iλ(g, μA) and I2(h, μA) respectively,
and, in certain contexts, consider two functions identical that are equal
everywhere except for a set of Lebesgue measure zero.

We have divided this note into six sections. First we indicate an
interesting duality between I1{e~iφg(φ)1 f) and I2(g, 1//) that relates the
problems Qx and Q2 under certain restrictive hypotheses. In section
three we fashion the theory that will handle Qτ and Q2. This is the
solution of a Riemann-Hilbert problem (which we call problem Q3), which
is applied in §§ 4, 5 and 6 to Qx and Q2.

2. Duality of Iλ and I2 This will fall out of the following Banach
space lemma:

Let ^o be a subspace of a Banach space £f and let ^ L be the
annihίlator of ^ in the dual space £f*. If ge^, then

inf{ | | 9 + P\\ : Pe &ά = sup {| l(g)\: I e &0\ \\l \\ ̂  1} .

For a proof see Bonsall [2].

THEOREM 1. Suppose f and 1// are in L\—πf π) and \ \g\2fdσ<co.

Then

Sketch of proof. By the above lemma

Ue- +giΦ), f) = sup {| j e-**g(φ)h(φ)f(φ)dσ | / [ j | h |2 fdσf } ,

where the supremum is taken over all h such that \ eίnφh(φ)f(φ)dσ = 0

for n = 0,1, 2, . Through the substitution e~iφhf = P if follows that

= sup P \2j

where now the supremum is taken over all P such that I einφP(φ)dσ = 0

for n = 1, 2, . It can be shown that it is sufficient merely to con-
sider suprema for Pe ^ 0 , which proves the theorem.

The restrictive condition llfeU{—π,π) seems essential to the for-
mulation of the preceding duality relation, but at least this relation
indicates that there exist close tie-ins between Qx and Q2. We shall
solve a Riemann-Hilbert problem for the unit circle that, when applied
to Qx and Q2, solves both.
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3* The Riemann-Hilbert problem Q3. Let / be a non-negative func-
tion in L1 = U(—π, π), and suppose that & is the closure of ^ 0 in the
Hubert space L\f) of functions square integrable with respect to the
measure fdσ. Thus, for example, & in L\l) = L2 can be identified
with the Hardy space H2. The problem Q3 is:

Given keL1, find functions P e ^ and q satisfying

( 1 ) Pf = k + q , and

( 2 ) ί qe~inφ dσ = 0 , w = 0, 1,

(Note that since \ | P\2fdσ < oo, we have PfeL1 and so g= Pf—keL1.

We first list some pref actory material. We associate with any non-
negative feL1 such that log feL1 the analytic functions

F+(z) = exp i - ί e* + z log f(φ) dσ(φ), \ z
2 J eiφ — z

( 3 )
F-{z) = exp i ( g + 6<* log/(0) ώσ(φ), \z\>l.

2 J « — eιφ

F+ and F " belong to H2 and if2 respectively, and F~(z) = F+(l/^) if
I« I > 1. (A function ί 7^) is said to belong to Kp if F(l/z) belongs to
Hp.) Since the boundary functions in H2 and K2 exist in mean square,
we can define

f+(φ) = lim F+ire**) ,
r-»i—

( 4 ) /"(</>) = lim F-ίre1*) .

These functions satisfy

( 5 ) f(Φ) = f~(Φ)f+(Φ) = I f+(Φ) |2 - I f-(φ) |2.
For any non-negative feL1 and ε > 0 we define F*(z), fHΦ) by (3)

and (4) with / replaced by fs = / + ε. Here we need not assume that
log/e IΛ Note that since / + ε ^ ε > 0 , we have IIFt e £Γ°° and 1/Fτ e iί0 0.
Moreover \ft(Φ) |2 = /(Φ) + ε, so |/β-(φ) | - |/ε

+(φ) | ^ [/(φ)]1/2.
Next we define an operator ( )+ as follows. Its domain D consists

of all L1 functions k with Fourier series Σ - ~ cne
ίnφ such that Σ ~ I cw |2 < oo,

and k+ is the function with Fourier series ^cne
inφ. We define the

operator ( )_ by k- — k — k+. Notice that k+ e H2 and fc_ e K1 with

Λa = 0 .

Our discussion of Q3 proceeds in the following order. First we prove
uniqueness. Then we solve Q3 in certain special cases (these being suf-
ficient, it will turn out, to handle Qx), and finally find the solution in
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the general case.
We are indebted to the referee for the proof of the next lemma.

LEMMA 2. Q3 has at most one solution.

Proof. Suppose Pf — q where P e ^ and q satisfies (2). Then P
is orthogonal, in L\f), to all exponentials einφ (n ̂  0). Since P belongs
to the closed manifold & spanned by these exponentials we conclude
P = 0 .

One can formally solve Q3 by means of the usual factorization methods
(see [4], for example). Write / = / + / " , so Pf=k + q implies

Applying ( )+ to both sides we obtain Pf+ = (&//")+, P =
The following theorem justifies this procedure in certain cases.

THEOREM 3. ( i ) Suppose logfeL1 and k/f~eD. Then Q3 has
the solution

(ii) Suppose logfφL1 and WjfeL1. Then Q3 has the solution

P q 0

Proof. ( i ) Let ε > 0. Since the function / + is outer, it follows
from a theorem of Beurling [1] that there exists a Po e ̂ 0 such that

— P f+

Therefore by (5)

1 / k

do < ε .

fdσ < ε ,

so P as defined in (6) belongs to ^. Furthermore, with q as defined
in (6),

It remains to show that qe K1. Certainly q belongs to K112 since it is
the product of the two K1 functions —/" and (fc//~)_. But since also
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q = Pf- k, it belongs to L\ Therefore ([6], p. 163) qeK1.
(ii) If log/0L1, the space & is identical with L\f) ([3], §33)

and so k/fe &.
We now give the complete solution of Q3.

THEOREM 4. ( i ) The limit

2

dσ

exists either finitely or infinitely,
(ii) A necessary and sufficient condition that Q3 have a solution

P, q is that the limit be finite.
(iii) If the limit is finite then

P = lim i

•in the space L\f), and

\\P\*fdσ = lim\\(klfϊ)+\*dσ .
J 8->0+ J

Proof. Assume first that Qd has a solution P, q and divide both

sides of (1) by /ε~~. Since g//ε~ e K1 and \ qjfvdσ = 0 we have qjfς eD

and (g//8-)+ = 0; also P///Γ eL2cD. Therefore we can apply ( )+ to
both sides, obtaining

Consequently

(7) j |(fc//r)+ l 2 ^ ^ J IP///Γ I'dσ ^ \\P\*fdσ ,

and so

(8 ) lim sup ( \(klfτ)+ I2 da < oo .
ε->o+ J

Conversely suppose that {εj is a sequence of ε's such that εn —> 0 + and

(9) j |(AΪ//Γ)+Nα = 0(1) for ε = en .

By Theorem 3(i) there corresponds to each ε = εn a solution Pe, qΈ of
(/ + ε)Pε = k + q2. We have

(10) J I P ε |
2 /dσ ^ j I P ε |

2 / ε dσ = j |(fc//Γ)+ I2 dσ = 0(1) .

Thus there exists a subsequence of {εn} such that {Pε} converges weakly
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in L\f) to an element P e ^ . It will follow that P, Pf-k satisfies
Q3 if the L1 function q = Pf — k satisfies (2). We have for n = 0,1, 2,

q(φ)e-ίn*dσ = J {Pε(φ)[/(φ) + ε]

[P(φ) - Pε(φ)]/(φ)e-^(2<7 - ε

Theorem 3(i) implies that Jx — 0. By the weak convergence of the P r

we can make J2 as small as desired by taking εn sufficiently smalL

Finally (10) implies that \ | ε1/2Pε |
2 dσ = 0(1), so by the Schwarz inequal-

ity I Ja I ^ ε1/2 ( I ε1/2Pε | dσ = O(ε1/2) as εn ~> 0. Thus P, q satisfy Q3, so

(8), holds and (9) is true for any sequence {εm} of ε's that converge to
0 + . By what we have shown there corresponds to any such sequence
{εm} a subsequence such that P ε converges weakly to the unique (Lem-
ma 2) element P. Thus we can consider ε to be a real variable and
conclude that P ε converges weakly in L\f) to P e & as ε —> 0 + provided
that

limim inf ί | fe//r)+ Γ da < oo .
S->0+ J

We next prove that in fact P ε converges strongly to P in L\f).

It suffices to show that \ | P ε \2fdσ —> \ | P \2fdσ. Weak convergence gives.

lim inf | P ε \2 fdσ ^ | P \2fdσ .
ε-+o+ J J

On the other hand, as in (7),

ί I P ε \2fdσ S [ I P ε \*f*da = \ |(/b//ε")+ |2 dσ S
J J J

so

l i m s u p ( I P ε \
2fdσ s\\P I 2 f d σ .

ε->o+ J J

Thus

lim (I P ε \>fdσ

exists, and equals

+ \2dσ = \\P\2fdσ .
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Thus the proof is complete.

4. Solution of Q1Φ In Qλ we wish to find

where g is a given function in L\μ). Since I±{g, μ) represents the dis-
tance from g to the manifold ^ 0 in L\μ), there exists a (unique) func-
tion P belonging to the closure &f of ^ 0 in L\μ) such that

This function P is such that g + P is orthogonal to ^ 0 , so

[<7(Φ) + P(Φ)]e'tnφdμ(φ) = 0 n = 0, 1, 2,

It follows from a theorem of the brothers Riesz ([6], p. 158) that the
measure v given by

v{E) = [g(φ) + P(φ)]dμ(φ)

is absolutely continuous with respect to Lebesgue measure. Let F be
a Borel set of Lebesgue measure zero such that μs((—κ, π] — F) = 0.
Then g + P vanishes on F almost everywhere with respect to μs, so

( I g + P |2 dμs = 0
JF

and

j I flf + P |2 d// - j I flr + P |2 dμA = j | ff +

Since μ ^ ^ it follows that I^g, //) — Ĵ r̂, / ) , and this common value
is attained by the same extremizing function P e £/**'c^5.

Now,

5 lΰ(Φ) + P(Φ)]e~ίnφf(Φ)dσ = 0 n = 0, 1, . ,

so if we set q = (g + P)/ we have Pf = — gf + q, where P e ^ and <?
satisfies (2). Since (gfflf = g2feL\ we can apply Theorem 3 to this
situation. The extremizing function

-(l/Λ)(f l/ + ) + if

ff if log/0 L 1 ,
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and since

Ug, f) = [\ Iff + P \2fdσf = [j \q \ηfdσf

we have

Tί χ T{ ~ \\\\{gn-\*dσf if log/6 U

vθ if log/0 U.

5. Solution of Q2. Given A e L1, we will evaluate

UK μ) = |up P |

Since μ ^ μA it is clear that if I2{h,f) is finite so is I2(h, μ). We shall
show that, conversely, if I2(h, μ) is finite then so is I2(h, f) and in fact
Uhyf) — Iz(h> f1)- So now suppose I2(h, μ) < oo. Then the linear func-
tional L on ^ 0 given by

L(P) =

is bounded on L\μ). Therefore if &>' denotes the closure of ^ 0 in

L\μ), there is a uniquely determined Qe^f such that L(P) = \PQdμ.

Then we have

" e-^[Q(φ)dμ(φ) - h(φ)dσ(φ)] - 0 n = 0, 1, .. .

We again apply the F. and M. Riesz theorem, and deduce that the
measure v given by

v(Έ) = [ Qdμ - ί hdσ
}E )E

is absolutely continuous with respect to Lebesgue measure. Letting F
be a Borel set of Lebesgue measure zero such that μs{{—iz, π] — F) = 0,
we see that Q vanishes on F almost everywhere with respect to μs.
Consequently

j e-in*[Q(φ)f(Φ) - Hφ)]dσ(φ) - 0 n = 0, 1,

so Qf = h + q, where Q e ^ ' c ^ and q satisfies (2). Thus the linear
functional

L(P) =[phdσ= [pQfdσ,
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P e ^0> is bounded on L2(/), so I2(h,f) is finite and in fact equals I2(h, μ).
We deduce from Theorem 4 that

UK μ) = I2(h, /) = lim Γί I (Λ//e-)+ |
2 dσf ,

and Q may be exhibited as an L\f) limit in the mean.

6» Some formulae for I2(h, μ)Φ We can obtain a simpler formula
for I2(h, μ) if we assume that WjfeL1 and apply Theorem 3. Then

as =ϋ
\2lfdσj

if log/6L1,

if log/^L1.

This, in conjunction with our solution of Qlf gives the duality discussed
in Theorem 1. Note that the hypothesis 1/feL1 of Theorem 1 implies
that logfeL1.

Another simple formula for I2(h, μ) is available if we know that the
Fourier series Σ-~ Keίnφ of h is such that h^n = 0(Ron) as n —> + oo
for some J?o > 1. Then the function H(z) = ̂  h-nz~n is analytic in
\z\> 1/Ro. We have

_ |2 dσ ,(K/f7)+ ?dσ = \\ (

which by the Parseval relation equals

e^h(φ)f}(Φ)dσ \r-» -^\ z»+1H(z)/F;(z)dz

\z\=B

where 1/JBO < R < 1- Let us also assume that log/eL1, so
defined and

is well-

in L2 as ε —* 0 +. It follows that

UK μf - Σ
o 2π J\Z\=B

Now, if we write

F+(z)
ST1 f ^n

— 2-Λ J n" J
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, μf = v

Thus if H is the Hankel matrix [h-.n-m]n>m=0, and Φ the column vector
with components fOf fu , then

Uh,μ) = \\HΦ\\,

where the norm is that of I2.
For example, let a be such that | a | < 1 and consider

Thus we wish to evaluate /2(1/(1 — ae~iφ), μ). Here &_w = an, n = 0,1,
so

Uh, μy = - I a

as in [2], p. 48.
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