
INTEGRAL CLOSURE OF DIFFERENTIAL RINGS

EDWARD C. POSNER

We prove that a commutative differentiably simple ring of charac-
teristic zero finitely generated over its field of constants is integrally
closed in its field of quotients. (A ring is differentiably simple if it has
non-trivial multiplication and has no ideal invariant under a given family
of derivations; i.e., has no differential ideals other than (0). The field
of constants is the subring of the ring annihilated by each derivation
of the family of derivations.) The result of the first sentence is used
to obtain a condition that the powers of an element of a function field
in one variable form an integral basis. The following results from [1]
will be used: A commutative differentiably simple ring of characteristic
zero is an integral domain whose ring of constants is a field. Crucial
is the following lemma:

LEMMA. Let F be a field of characteristic zero; x19 —-,xn be n
independent transcendentals over F; y19 , yq be integral over x19 ,
xn; and d an F-derivation of F[x, y] into itself. Then d (or rather
its natural extension to F(x, y)) sends Ox (the set of elements of F(x} y)
integral over x19 , xn) into itself.

Proof. In general any F-derivation of F(x, y) into itself can be
written as

<=i dXt

Ai elements of F(x, y)f 1 ̂  i <£ n9 Further, d maps F[x9 y] into itself
if and only if d(xt) is in F[x9 y] for each i and d(y3) is in F[x9 y] for
each j . The first set of conditions is equivalent to the condition that
Ai be in F[x9y] for each i.

In order to be able to use power series, we assume that F is
algebraically closed. For if not, let F be its algebraic closure. Let d
also be the extension of d to F(x9 y). Since d sends F[x9 y] into itself,
d send Ox into itself, where Ox denotes the ring of integral functions
of F(x9 y). A fortiori, d sends Ox into Oz. But Ox ΓΊ F[x9 y] = Ox so
actually d sends Ox into itself as required.

Let P be a place of F(xf y) over F which has residue field F and
which is finnite on x19 * 9xn. We will prove that if g, in F(x,y), is
finite at P, d(g) is finite at P. Let at denote the residue of xt at P;
then there exist uniformizing parameters t19 , tn at P such that
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xt — a% is a positive integral power of ti9 say x% — ai — tf*. Every ele-
ment B of F(x9 y) finite at P has a power series in t19 , ίw with
coefficients in i*\ We call the smallest power of tt occurring in this
series the ί-order of B at P, and denote it by oτάFΛB; the definition
of ordjp.i B extends to arbitrary elements B of F(x, y) in an obvious
way. Fixing i, we see that if ordP ) i d(B) Ξ> o r d P ί B for every B finite
at P then orάPΛ d(B) ^ 0 for every such B. Suppose there exists some
B finite at P with ordP > ίd(B) < o r d P i ί B . Then at — pi < 0, where
^ = o r d P ί A o so that rt = j>« — α< > 0, and ordP i ί J? = r4 + ord P ί ώl? for
every (B) in F(#, #) with o r d P ί B Φ 0. Since rf maps ^[α?, #] into itself,
the only values which ordP i ί B can have when B is in F[x, y] are integral
multiples of rlf for otherwise some element of F[x, y] would have
negative i-order. Since t19 •••,*« are uniformizing parameters, it follows
that r% — 1, for otherwise we could replace ί4 by t\\ Thus, d drops
positive i-orders by 1, so that ordPiίd(JB) ^ 0 for every B finite at P
Since this holds for every i, d(B) is finite at P whenever B is. Since
this holds for every P, we conclude that d maps Ox into itself.

THEOREM 1. Let Fbe afield of characteristic zero, A=F[z19 z2, ,zk]
a commutative finitely generated ring extension of F. Let D be a
(finite or infinite) family of derivations of A into itself over F. Let
A be differentiably simple under D. Then A is integrally closed in its
quotient field K.

Proof. A is an integral domain by (1). By Noether's Normalization
Lemma, we can write A = F[xlf •• 9xn;ylf •••,?/<,], with n the trans-
cendence degree of K\F and ylf * ,yq interal over xlf , xn. To prove
A — Ox, let / denote the conductor of Ox, that is, the set of elements
u of F[x, y] such that u Oxd F[x, y]; by [3], pp. 271-2, prop. 6, / is
a non-zero ideal of F[xf y]. To prove / differential under D, let d be
in D, h be in /, g be in Ox. Then h g is in F[xy y]t d(h g) is in
F[x, y], d(h)g + hd(g) is in F[x, y]. Now d(g) is in Ox by the lemma
so hd(g) is in F[x, y] since h is in I. Then d(h)g is in F[x9 y]f I is
differential under D. Then I = F[x9 y] so 1 Ox c i^[^, y]9Ox = F[x9 y]
as promised.

REMARK. D can always be taken to be finite since the derivations
of F[x9 y] into itself form a finite F[x9 y]-modu\e.

The converse of Theorem 1 is false, i.e., there are integrally closed
finitely generated domains which are not differentiably simple under any
family of .F-derivations. For example, let y2 = x\ + x\. Then F[x9 y] = Ox

but is not differentiably simple over F. In fact, the ideal (x19 x29 y) of
F[x9 y] is differential for any derivation, as is easy to see. But when
n = 1, we do have the converse. (For background material, see
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pp. 83-88.)

THEOREM 2. Let K be a function field in one variable over a field
F of characteristic zero, and let x be an element of K transcendental
over F. Let Ox denote the set of elements of K integral over x. Then
Ox is differentiably simple with field of constants F under a family
of two or fewer derivations.

Proof. First we shall specify the derivations. Ox is a Dedekind
ring, i.e., every ideal of Ox is invertible. Let K = F(x,y) with y
integral over x and let f(x, y) = 0 be the irreducible monic for y. Define
d on K by

d(g(x,v)) = &-&—&-&-.
dx dy dy dx

This is well-defined, and d sends Ox into itself by the lemma. Let J
be the ideal of Ox generated by the values of d of integral elements.
/ is invertible, so there exist ht{x, y) in if, 1 ̂  i ^ q, such that htd
sends Ox into itself and such that there exist ut in Ox, 1 rg i ^ q, with
^Uihtd(ut) = 1. (q can be taken to be 2. For J is generated by fx

and fy9 since d(M(x, y)) = fyMx — fxMy for M in K. q can be taken to
be 1 if and only if / is principal, which need not occur.) The family
D is {hλd, " ,hqd}. To prove Ox differentiably simple under A suppose
the contrary. As in the preceding and following theorems, F may be
assumed to be algebraically closed. If Ox has a non-zero differential
ideal, it has a maximal differential ideal /, since Ox has a unit. OJ is
not contained in /, so by Theorem 4 of [1], /is prime. But every prime
ideal of Ox is maximal; in fact, if w belongs to Ox, there is a λ in F
with w — λ in I. Since I is differential for D, hid{w) — /^d(λ) is in I,
1 <: i <; q, hid(w) is in 7, 1 <£ i ^ q. That is, h^w) is in I for all w
in Ox. Then Σ?=A^(%) = 1> 1 is in J, I = 0^. This contradiction proves
that Oa has no differential ideals. Its field of constants is F. For if
u is in F(x, y) and d(u) = 0 then (dldx)(u) = 0, so that % belongs to ΐ\

THEOREM 3. Lei iΓ, F, x, Ox be as in the hypothesis of Theorem 2.
Let R be an order of Ox and let y be an element of K integral over x
with irreducible monic f such that K = F(x, y). Then R = Ox if and
only if y belongs to R and the ideal J in R generated by fx and fy is
invertible.

Proof. If R = Ox, then y belongs to R and every ideal in R is
invertible. Conversely, suppose that y belongs to R and that J, the
ideal generated in R by the values of cί, is invertible. (Here d is the
same derivation as in Theorem 2.) That is, assume that there exist ht
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in K, 1 g i ^ q, with htd sending R into itself, and elements vt in R,
1 ^ ί ^ <Z, with 1 = Σi=iW(v«) We shall prove it! differentiably simple
under D = {ftt(Z, •• ,feβ<Z}. It is known that every prime ideal of i2 is
maximal; it fact, if I is a prime ideal of R, and w is an element of R,
there is a λ in i*7 with w — λ in /. If iϋ has a differential ideal, it has
a maximal differential ideal, and one proceeds as in Theorem 2. So R
is differentiably simple under D. By Theorem 1, R is integrally closed
in K, i.e., iϋ = 0 x as required.

As an illustration, let K = i*\£, #) with /(a?, y) = yn — P(x) = 0,
w ^ 1, P a polynomial in x with no repeated roots. Here R — F[x, y].
Let us examine the ideal in F[x, y] generated by fx and fy, i.e., by
P'{x) and yn~\ This ideal contains yn-χy = yn = P(cc) and p'(a?). P(#)
and P'(x) have no common factor, so there are polynomials Q(x) and
S(x) with QP + SP' = 1. Then the ideal generated by / x and /„ is
.P[^, y] and so is trivially invertible. We conclude F[x, y] = Ox.
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