ON A COMMUTATOR RESULT OF
TAUSSKY AND ZASSENHAUS

MARVIN MARCUS' AND N. A. KHAN?

1. Introduction and results. Let M, denote the set of m-square
matrices over a field F. For A, B in M, let [A, B] = AB — BA’, where
A’ is the transpose of A and define inductively

(1.1) [4, B], = [A, [4, Bli-] .
If P'JP = A, then
[4, X] = [P'JP, X]| = P'[J, PXP'|(P),
and similarly
(1.2) [4, X, = P7'[J, PXP'|(P7") .

Now for a fixed A let T be the linear map of M, into itself defined
by

(1.3) T(Y) =14, Y]

and (1.1) implies that
YY) =1[A, Y], .

In a recent paper [1], Taussky and Zassenhaus showed that A is non-
derogatory if and only if any nonsingular X in the null space of T
1s symmetric. In this note we investigate the structure of the null
space of both T and T? for arbitrary A.

Enlarge the field F' to include )\, ¢ =1, -+, p, the distinct eigenvalues
of A, and let (x — )%, J=1,c0,m,€;,> +«+ >y, t=1,--+,p be
the distinct elementary divisors of A where (x — )\,)%s appears with
multiplicity r,;. Set m, = S Ty, the algebraic multiplicity of ;.
Let 9(T) denote the null space of T, o(T) denote the subspace of sym-
metric matrices in YT), and v(T) denote the subspace of skew-symmetric
matrices in N(T). We show that

7y K

(1.4) dim () = 5[ 5 (rtes + 2ry 5 ruee) |

i=11J=1

”,

. » 4 %
(1.5) dim o(T) = %gl [Z {'r”(r“ + 1)e,; + 27'”]6;];11*”6%}] ,

=
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2 M 4
w8 dimyT) = 5[5 {riee, — 1 +4r, 3 rueat],
i=1LJ=1 k=J+1

n

(1.7 dim o(T?) = _;_ é‘, [z {'r“(ze“ — 1) 4y + 4y, z, 'rme“c}] .

In case A is nonderogatory, n, =1, r,, =1,1=1, ---, p and (1.4) and
(1.5) reduce to

dim 9(T) = n = dim o(T) .
Thus every matrixz X satisfying
(1.8) AX = XA

where A is mon-derogatory is symmetric, the result in [1]. Moreover,
if every matrix X satisfying (1.8) is symmetric then dim »(7") = dim o(T').
Using the formulas (1.4) and (1.5) we see that this condition implies that

n,

D D i3
22 (riy — rigey + 2 g.; ”'wkgaﬂ"'mem =0.

i=1

BN

[
I
fA

Now since 7, e,; and n, are all positive integers we conclude that
ry=15=1,+-+,m,and n, = 1. That is, there is only one elementary
divisor corresponding to each eigenvalue. Hence, if every matriz X
satisfying (1.8) is symmetric then A is mon-derogatory, a result also
found in [1].

We also show in this case that 9(T') consists of matrices of the form
PXP’ where P is fixed (depending on A) and X is persymmetric, (i.e. all
the entries of X on each line perpendicular to the main diagonal are
equal).

We next note that 7(7T) = o(T) + ¥(T) (direct) and (T?) = o(T? +
v(T?) (direct). The first statement is easy to show; we indicate the
brief proof of the second statement:

Since X=X+X' X—-x

L=+ S5 i Xen(TY), then

THX + X') = [4, [4, X + X']]
=[4, [4, X]+ [4, X"]
[4, [4, X]] + [4, [4, X]]
T™(X) — [4, [4, X]]
= [4, [4, X]T
= (TX)) =0.

Il

Similarly, T X — X’) = 0. Thus any X e 7(T"?) is expressible uniquely
as a sum of two elements, one in ¢(7T?) and the other in ¥(7?). Hence
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(1.9) dim ¥(T) = dim (T) — dim o(T)

1 &
= 5 > [Z {”'n(”'w — De;; + 2Ti1k§17zkeik}] ,

J=1

(1.10) dim ¥(T?) = dim 7(T% — dim o(T?)
"y

» "
= % > [Z‘ {7‘%1(26“ — 1) — 1y + 4ry, 3, ”'mem}] .
i= k571

In case A is non-derogatory, (1.6), (1.7) and (1.10) reduce to
dim (7% =2n — p,
dim o(T?% = n
dimy(T)=n—1p.

We thus conclude that unless all the eigenvalues of A are distinct
(p = m) there exist skew-symmetric matrices X satisfying

(1.11) A’X — 2AXA"+ XA =0.
If p=mn, and A is non-derogatory
dim (T? = n = dim a(T?)

and any matric X satisfying (1.11) is symmetric.
On the other hand suppose

dim »(T?) = dim o(T?) .
From (1.6) and (1.7) we conclude that

g

» K
,:.2__1' [jgl {1"3;(26“ e 1) - Tij + 47‘.1]’6;—17'“56“6}] = 0 .

Hence n, =1, r,, =1, e;, =1 and we conclude that p = n. That
is, if every matrixz X satisfying (1.11) is symmetric then the eigenvalues
of A are distinct.

We show finally (Theorem 2) that ¢f A is an n-square matrix with
p distinct eigenvalues then both dim ¥(T) and dim¥(T*) are at most
i(n — p)(m — p + 1). Moreover, for each p this bound is best possible.

Thus if there exists a skew-symmetric solution of (1.8) or (1.11),
then A has multiple eigenvalues, without the assumption that A is non-
derogatory.

I1. Proofs. Let E,;e M, be the matrix with 1 in position ¢, j and
0 elsewhere. With respect to this basis, ordered lexicographically, it
may be checked that T has the matrix representaion
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(2.1) T=IQA—ARI

where ® indicates Kronecker product.

From (1.2) we may take A to be in Jordan canonical form .J, since
[4, X], =0 if and only if [J, PXP'], = 0 and PXP’is symmetric if and
only if X is. We write

2.2) J =,
where
2.3) T =N, + 350U,

i=1 1 st

>V indicates direct sum, I, is a t-square identity matrix, U, is t-square
auxiliary unit matrix (i.e. 1 in the superdiagonal and 0 elsewhere) and

Tji
> Uest is the direct sum of Ue” with itself »;; times.
By a routine computation we see that

THY) = 0

if and only if

(2.4) > (Z)(_l)ng—st,(J;)w =0, s,t=1,+0,p,

a=0

where Y = (Y,), s,t =1, ---, p is a partitioning of Y conformal with
the partitioning of J given by (2.2).
For s # t, it is clear that the matrix representation of (2.4),

(Im& ® Js - Jt ® Ims)k

has the single nonzero eigenvalue (A, — \,)* and thus Y, = 0. Hence
we need only consider the equation (2.4) for s = t. We may again parti-
tion Y,, conformally with J, in (2.3). We are thus led to consider the
null space of the mapping

(2.5) (L,®U,— U, QL) .

LEMMA 1. Let T=1,Q U,— U,Q I, Then

(2.6) dim »(T") = min (m, n) ,
. o 2min(m,n), if m+n
@) dim ) = e

Proof. Suppose n < m and that T(X)=10. Let x,---,x, be the
column #n-vectors of X. Then we have
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(2'8) Unxj_xj—H:Oy _7.:1,2,"',7}?/—1,
Uxn=20.

For r=1,2,--+,n — 1 consider the (r — 7 + 1) coordinate of (2.8)
for =1, ..., and we conclude that

Lpt11 = Lpg = *** = Ly 41 = Cppq &

Next consider the (» — j + 1) coordinate of (2.8) for j =1, -+, m
to obtain

0 = xnz = xn—1,8= e e — xl,n+l .

Similarly we see that the remaining elements of X are zero. Hence
we find that the jth column of the » x m matrix X is the transpose
of the n-vector

[ij Cjr1y ***y Cyy 0; "'!0]

for j=1,2,---,n. The other m — n columns are zero.
In case n = m, it is easy to check that the jth row of X is the
m-~vector

[cjy Cjt1y ***y Cy O; "';0]

for y=1,2, .-, m. The other n — m rows are zero.
This establishes (2.6). To prove (2.7) let T%(X) = 0 and x,, &,, +*+, %,
be the column n-vectors of X. Let us consider the following cases:

(i) m=mn.
We have
Uz,=0, U, =2U0,x,
and
Ui, — 2U,2;4, + %54, =0,7=1,2, ¢, m — 2,

Solving these equations recursively we find that the Ist, 2nd and
jth rows of X are respectively

[%11, @1zy ** ) Brn2 Trn15 Tinl s
[%a1, @aay * ¢ * 5 o nmsy To s, O]
and
(= D@y 51 @ogy =2y Bony, 0, ++, 0]
— (7 — 2[®15, Brgras =0 %y Biny 0, -4+, 0],

for 7=3,4, --.,n.
The number of arbitrary parameters in X is 2n — 1.
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(ii) n<m.
Here we have the following equations:
(2'9) U?zxj - 2Unx1+l + Xype = 0’ j = 19 27 s, M — 2
vz,.,— 20,2, =0
Uiz, =0

and by solving recursively again we find that the 1st, 2nd and jth rows
of X are respectively the m-vectors

(@1, o0y By g1y Tymy Nyog, 0, <+, 0],
[@o, « 2, Xy py, (0 — 1)2,5,0,0, -+, 0]
and
[(G — D2oyosy »+ oy (1 — Dby, (0 — § + 12,5, 0, -+, 0]
— (= 21y o0y 810y 0,0, 0+, 0]

for 5 =38,4,---,n.
In case m > m, by similar computation we find that the 1st, 2nd
and jth rows of X are respectively

[@y * 20y rm—2y Trm—ry Tim]
[x217 sy Lom—29 Lom—1y xzm]

and

(G — D[syesy ***, Tomss Tamy 0, ==+, 0]
—U- 2)[%4; oo Xy 0,0, 000 0]

for j =3,4,-+-,m + 1. The remaining » — m — 1 rows are zero.
From case (ii), we observe that the number of parameters in X is
2 min (m, n).
We now state and prove the following

LEMMA 2. Let A be an n-square matrix with the single eigenvalue
N and let (x — \)™ be an elementary divisor of A of multiplicity r,,

t=1,cc0,0,0 > -+ >mn, Then the most general matrizx X satisfy-
wng (1.11) has

(2.10) i [r§(2ni — 1)+ 4ri1§, 'rjej]
i J=ik

i=1

arbitrary parameters.
Moreover iof X is symmetric it contains
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1 P
(2.11) =2

[r‘ﬁ (2n, — 1) 4+ r; + 47, f‘.. Tﬂ%]
=i+
parameters.

Proof. Without any loss of generality we can assume that

2.12) A=3ST,

=1 j=1
where >'U, indicates the direct sum of U, with itself r;, times. We
partition X conformally with A in (2.12) and observe that the equation

U%Xij - 2Uin'jU§ + Xw( U9)2 =

determines the structure of any block X, in the partitioning of X.

From case (i) of Lemma 1, we conclude that any block X, cor-
responding to equal U,’s contains 2n, — 1 arbitrary parameters and there
are r; such blocks. Also from case (ii) any block in X that corresponds
to U; and U,, 1 < j, contains 2n, arbitrary parameters. Hence the total
number of parameters in X is given by (2.10).

In order to find the number of parameters in a symmetric X we
first consider a diagonal block. Its structure has been discussed in
Lemma 1, case (i). We observe that if this matrix is symmetric, the
number of parameters in it reduces from 2n, — 1 to n,.

Then we consider two symmetrically placed off-diagonal blocks X,
and X, of orders n, x n; and n,; x n; respectively. If X is to be sym-
metric then by equating the terms of X;; and X,; which are symmetrically
placed about the main diagonal of X, the number of arbitrary parameters
in X;, and X,; reduces from 2(2n,) to 2n,. If X;; and X,, are of order
n; X n,; then the number of parameters reduces from 2(2n, — 1) to 2n, — 1.

We are now in a position to sum the number of parameters in X
if it is symmetric and satisfies (1.11). There are 7; blocks in the main
diagonal, each of order n,,2 =1, -+, p. The number of parameters in
each of these blocks is m;. There are r,(r, — 1)/2 other square blocks
of order n;. Each of them contains (2n; — 1) parameters. Thus

5 S — 1) + )

is the number of parameters in all those blocks of X which are square.
Since any block of order n;, x m; where n; > n, contains 2n, parameters,
and since we are considering X to be symmetric, we conclude that the
total number of arbitrary parameters in X is given by (2.11).

We can similarly prove the following

LEMMA 3. Let A be the matrixz given wn Lemma 2. Then the most
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general matrixz X satisfying (1.8) has

i <T§ni + 27, i ”'JnJ)
i=1

J=i+1

arbitrary parameters.
Moreover if X is symmetric, it contains
by

i=1

[ﬁ("‘t + Dn; + 27, Epl ”'Jnj]

1
2 Prrat]
parameters.

We now state and prove the following

THEOREM 1. Let A be an n-square matrixz with distinct eigenvalues
My o ooy Ny and let (1 — )05, § =1, o0, My, € > <+« > ey, be the elementary
divisors of A corresponding to \,, where each (x — ;)5 has been repeated
ry; times. Then (1.4), (1.5), (1.6) and (1.7) hold.

Proof. It was pointed out earlier that if Y = (Y,,), 7r,s=1, -, D
is the partitioning of Y conformal with the partitioning of J in (2.2),
then all the off-diagonal blocks are zero. Hence we have simply to find
the number of parameters in Y, 1 =1, ---, p.

As proved in Lemma 2, the number of parameters in Y;; is

% 74
5[ ey — 1) + 47, 3% ruew |
J=1 k=j+1

Summing the above with respect to ¢ we obtain the formula (1.6). In
case Y is symmetric, the number of parameters in Y,; is

%4 i
LS| = D 4+ + 4 3 raea ]
= k=741

Summing the above on % we obtain (1.7).
Similarly, we can make use of Lemma 3 in proving (1.4) and (1.5).
We now prove

THEOREM 2. Let A be as given in Theorem 1. Then the maximum
number of linearly independent skew-symmetric matrices satisfying

(1.8) or (1.11) s

%m—mm~p+n.

Proof. In order to prove our result for dim ¥(717), let m; = ST
and consider



ON A COMMUTATOR RESULT OF TAUSSKY AND ZASSENHAUS 1345

n

§ 4
mi; — m; — Z [T%j(zeij —1) =7y + 47"wk2| lrikeik]
'\

g g

— 2

= > [Tz’ﬂ%y + 2785 > Tl — ”'wew]
= k5741

— Z [’)"?1(26“ —-1)— Ty T+ 47'ij > "'ilseils]
= K=J+1

= E; [ng(eu — 1) — 7ryyes; — 1) + 2r;(e;5 — Z)k;j‘.ﬂ”'mem] .

Now, it is clear that 7i,(e;; — 1) = 7;(e;; — 1). The last term in the
above expression will be negative only when e;; = 1. But we know that
€y > € > +o+ > €, 50 that ¢; will be 1 only for j = n,. In that case
SV ., does not appear, and we have

74 74
23| riey =D =y + 4y 3] v | = Smi—m)
2= USRSt 2

This holds for 1 =1, .-+, p
To determine a bound on ¥(7T'), consider

N,

3 "4
mi — m; — jZ [Tij(rij — De;; + 27'zij‘H_l7'ikem:|

7y 7
=3 [T?Jeij(eij — 1) + 2ry(e; — 1) 3 ”'imeik]
= E=J+1

= 0, since ¢;; = 1.
Thus we have

’ﬂi ni
1 > [fr“(r“ — De,; + 21y, >, fri,cei,c] < l(m% — my;) .
2 =1 k=J+1 2

It may be observed that the wupper bound is attained for
7y = My, €, = 1 and the remaining e’s and 7’s all zero.
We have thus proved that

mmmgé

i M:

and

Il Ms

mmm§% (mi — my)

where m,; is the multiplicity of the eigenvalue \; of A.
Now we have to maximize >}?_, (m? — m,;) under the condition that
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m, + +++ + m, = n, the order of A. Note that
mi — my = (my — 1)" + (my — 1)

and each m, — 1 = 0. Hence, we have

S -1 =[Sm-1]=m—p.

iz =1

Thus the maximum value of both dim v(7%) and dim ¥(T) is
Lln =) + (n — D]
The bounds are achieved when m, =+ =m, ;=1 and m,=n—p+1.
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