ON SIMILARITY INVARIANTS OF CERTAIN
OPERATORS IN L,

G. K. KALISCH

The purpose of this paper is to extend the result of Corollary,
Theorem 2 of the author’s paper on Volterra operators (Annals of Math.,
66, 1957, pp. 481-494 quoted as A; we shall use the definitions and
notations of that paper) to the most general situation applicable: We
are dealing with operators T, where F'(x,y) = (¥ — )™ aG(z,y) is a
function defined on the triangle 0 < 2 <y <1, where m is a positive
integer, @ a complex number of absolute value 1, G is a complex valued
function which is continuously differentiable and Cf(x, x) is positive real.

We recall that if fe L, [0, 1], then (T%)(f)(x) =S F(x,y)f(y)dy is again

in L, [0, 1]. The only difference from A is the prz:sence of the constant
a which affects none of results except Theorem 2 and its Corollary.
Theorems 1 and 2 of the present paper fill the gap. Theorem 3 shows
that differentiability conditions imposed on F cannot be abandoned
entirely—and also that the integral equation (1) of A cannot be solved
unless K (which corresponds to our F') has at least first derivatives near
Y = 2.

If ¢ is constant and E is the function identically equal to 1, we
define T as Ty, which H(x,y) = (y — x)°*/I'(¢) (fractional integration
of order c).

THEOREM 1. Let ¢, and c, be complex numbers and let r, and r,
be real numbers such that r, =1, then ¢, T is similar to ¢,T,* if and

only if ¢, = ¢, and r, = 7.

Proof. The first part of the Proof of Theorem 2 of A applies and

implies that », =7, (=7) and |¢,| =]¢,|. Thus suppose that ¢, T} is
similar to ¢,T% or that ¢Tj is similar to
(1) T: = PeTi P~ for |[c| =1

where P is a bounded linear transformation of L, [0, 1] onto itself with
the bounded linear inverse P-'. If T is similar to S = PTP~, then
f(T) is similar to

(2) f(S) = Pf(T)P

for polynomials and even analytic functions f. Let
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@) = Saz
=0
Then
FTp) = Sae =Ty = T,y ,

where ¢,(t) = ct"'g(ct”) where we have written ¢ for ¥y — « and where

6() = b’

with b, = a;/"(r(¢ + 1)). Equations (1) and (2) imply that || f(T3) ]| <
HPIHP || f(eTy)|l. The definition of the norm of a linear transforma-
tion in a Banach space implies the following inequality:

AT = 1| T 1 2 ||| 0 = 5-t0(w — oppay |

for all ke L,[0,1] such that [|k]|, =1. On the other hand, Lemma 2
of A implies that
| Torr—1gum || = |l et g(et") |l = [l T g (ct) |l

Thus if k(y) = 1, we obtain

L= H S:(y — oy g((y — 2))dy ||, = | F(TH) |
(3) < PP feThl

= I PP e g(et) |l = R .

We shall find a family of functions g, (and correspondingly f,) depending
on a positive parameter v such that if we use the notations L, and R,
for the corresponding left and right hand sides of (8), L, — o and R,— 0
as v — oo contradicting the inequality (3): this contradiction then proves
our theorem.

Let us first consider the case where the real part of ¢, Re(c), is less
than 0. Let g,(t) = exp (vt). Since T is generalized nilpotent for » = 1,
the corresponding function f,(T%) exists and (1) indeed implies (2) for
S=T:and T=c¢T;. Then

R, = ||tg,(ct) |l = || [ exp (vetr) | at
0
and R,— 0 as v — o. On the other hand
Ly = @) (exp (o1 — @) — 1Jo)ds — oo
0

as v— oo, If finally Re(c) =0 and ¢ #+ 1, then there exist a positive
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integer 7 such that Re(¢”) < 0. But then (1) implies that ¢"T7" is
similar to T7 = Pc¢"T»P~* which contradicts the preceding result and
the proof of the theorem is complete.

THEOREM 2. Let F(x,y) = (y — x)"'aG(x, y) satisfy, in addition
to the gemeral hypotheses stated above, one of the following:

(1) G is analytic in a suitable region and m is arbitrary;

(2) G(x,y) =Gy —x), GO)+0, GeC®and m is arbitrary;

(3) GeC*and m =1. Let A be a complex number. Then AI + T,
and Al + TF are similar to the unique operator AI + caTy and

Al+caT? respectively where ¢ = (SI(G(u, u)“mdu>m.
0

Here I is the identity operator and T, the adjoint of T, is defined
by

(TH(A)e) = | K o7 @)y

Proof. Note first that A implies that AI + T, is similar to
Al 4+ caTy and that AI + T is similar to AI 4+ caT;™ (see Cor. Theorem

2 of A). Observe next that TJf(x) = So fw)dy and

T (@) = WUrem) | @ — v fw) dy

and that if (S,._.f)(x) = f(1 — z) then S,_, is an isometry of L,[0, 1] onto
itself and S,_,T»St, = T#™. It remains to show uniqueness. Suppose
that A, + c,a,T;" is similar to A, + c,a,T;?. Then A, = A, (because
of the complete continuity of T%) and c¢,a,Ty" is similar to c,a,T4?* which
by Theorom 1 implies that ¢, = ¢,, @, = a,, m; = M,.

THEOREM 3. The linear transformation T, + Ti*® where 0 < a <1
of L,[0, 1] into itself is mot similar to any linear transformation ¢Ty
for complex ¢ and real r = 1.

Proof. Preliminaries. 1. If two linear transformations S and T
are similar, i.e., if there exists P such that S = PTP™, then there
exists a constant K such that

(4) UK=|IT*lNS*I= K,
for all positive integers n. It suffices to take K = || P||||P7||.

2. The following inequality is a consequence of the fact that if
0 = Fi(x, y) < Fiy(x,y) then || Ty || = || T4, |I:
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(5) I(Tz + T 1l = |l Tl

for all positive integers n.

3. Our next task is to find estimates for || T2|]. An estimate from
above is the following:

(6) I T3l = 1/(nl(n)p"'*)

for all positive integers m. An estimate from below is furnished by the
following Proposition:

Given the real positive number e there exists a positive number
K = K(e) and a positive integer N = N(e) such that for all integers
n = N,

(7) 17211 = Kl I ) -
Proof of 6). If fe L,[0,1],
2@ = | [0 — =Tl @iy .
If (1/p) + (1/q) = 1, Holder’s inequality yields

[Lw—arvaay = ([ @—a=ay) 171,
= (L= ) e £ (0 — D + 1))
so that
17211
= [ 172 1)@) P

= wrey ||| - orraay| as

= T @) — g + 1| (1 = o) eDeromdg] 1]
= /r () 1A/((n — g + 1)*)(1/(n — Dp + (p/9) + ) |1l
which implies that
I Tzl = AT @)A/((n — Dg + 1)")A/((n — Dp + (p/g) + 1)7)
which in turn implies (6).

Proof of (7). We first observe that elementary considerations con-
cerning the gamma function imply that given ¢ such that 0 < ¢ <1 and
given a positive real number d there exists an integer N depending on
¢ and d such that for all integers n = N
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(8) [(n+¢) < (n + )+l (n) .

Consider next the function f(x) = r(1 — x)~* € L, [0, 1] such that || |, =
l,i.e., r =1 —sp and 0 < s < 1/p. Then

Taf(@x)y=rI'A—s)A —x)"*['(n +1—5s)
and

T2l =z r(A — s)/"(n+1— s)(pn — s) + 1)V7,

We now choose s (and hence 7) such that for the positive real number
e of (7), 0 <(1/p) —s <e and then we choose d such that 0 < d <
e + s — (1/p) and finally by virture of (8) we obtain N as a function of
e such that for all integers n = N, I'n + 1 —s) < (n + 1 — 8)'**["(n)
whence

NT3ll =1 — 9)/(n + 1 — sy (n)(p(n — s) + 1)"7

which upon choosing K = K(e) properly implies (7).
After these preliminaries, we turn to the proof of the theorem. We
distinguish several cases. Let T = T, + T3*

Case 1. |c| = 1. Consider
B = 1T Tl = | TE NI/(n ]l Ta* 1))

where we have used (5) and the fact that r» = 1. Take now positive
real numbers e¢ and d such that @ + e +d < 1. Then there exists by
(7) a positive constant K and an integer N such that for all integers
n=N
(9) by = (0 + a)*I'(n + a)[(W’I(n)p'?K)

= (n + )ttt L (n) /(W' (n)p''?K)
where we have made use of (8) and (6). The last inequality implies

that h, — 0 which in conjunction with (4) implies the truth of our theorem
in the case under consideration.

Case 2. r < 1. Using the notations and making similar choices as
under Case 1, (9) becomes

h, = |c|®n + a)tererir(n)[(wrl(ra)p ?K)

which, since |¢[*["(n)/"(rn) is bounded (in fact converges to 0) for » > 1
as n — oo, again proves the truth of the theorem in the present case.

Case 8. r=1, |¢|> 1. This time we consider the quotient
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o = 11T 1} To)" |
(10) < SO T (el T2

= (W r(m)/(| e ["Kp'?)) ;:', I + a(n — 1) + 1)),

which is valid for sufficiently large n; again we used (6) and (7).

In order to complete the proof of our theorem, we need the follow-
ing fact:

Given any positive real number ¢ and given the positive real number
a < 1, there exists an integer N = N(e; @) such that for all integers <
and n such that 0 <1 <n <N

(11) @)+ a(n — 43) + 1) < 26,

Proof. The case 1 =0 results from elementary considerations
about the gamma function. If ¢ =1, we find N, so that (11) is valid
for =0 and » = N,. We then find N, so that (8) is true for some arbi-
trary but fixed d, for c=a and for n = N,. Then I'(n)['(n+(n—1)a+1) <
I/ (n 4+ na + 1))/(n + na + 1)°+* which for » = max (N,, N,, e%) = N,
implies (11) for 2+ =2 and % = N,. The remaining cases are settled by
induction (except ¢ = % which is obvious); note that we never have to
go above N, at any point. This completes the proof of (11).

The proof is now completed by substituting (11) into (10):

k, = 2n°(1 4 e)"/| ¢ ["Kp'*

where e, is the constant e of (11). Thus %k, — 0 upon proper choice of
¢, and our theorem is again true in view of (4). This completes the
proof of Theorem 3.
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