ON SIMILARITY INVARIANTS OF CERTAIN OPERATORS IN L_v

G. K. KALISCH

The purpose of this paper is to extend the result of Corollary, Theorem 2 of the author's paper on Volterra operators (Annals of Math., 66, 1957, pp. 481-494 quoted as A; we shall use the definitions and notations of that paper) to the most general situation applicable: We are dealing with operators T_F where $F(x,y)=(y-x)^{m-1} aG(x,y)$ is a function defined on the triangle $0 \le x \le y \le 1$, where m is a positive integer, a a complex number of absolute value 1, G is a complex valued function which is continuously differentiable and G(x, x) is positive real. We recall that if $f \in L_p[0,1]$, then $(T_F)(f)(x) = \int_{-\infty}^{1} F(x,y)f(y)dy$ is again in $L_{p}[0,1]$. The only difference from A is the presence of the constant a which affects none of results except Theorem 2 and its Corollary. Theorems 1 and 2 of the present paper fill the gap. Theorem 3 shows that differentiability conditions imposed on F cannot be abandoned entirely—and also that the integral equation (1) of A cannot be solved unless K (which corresponds to our F) has at least first derivatives near y = x.

If c is constant and E is the function identically equal to 1, we define T_E^c as T_H which $H(x, y) = (y - x)^{c-1}/\Gamma(c)$ (fractional integration of order c).

THEOREM 1. Let c_1 and c_2 be complex numbers and let r_1 and r_2 be real numbers such that $r_i \geq 1$, then $c_1T_E^{r_1}$ is similar to $c_2T_E^{r_2}$ if and only if $c_1 = c_2$ and $r_1 = r_2$.

Proof. The first part of the Proof of Theorem 2 of A applies and implies that $r_1 = r_2$ (=r) and $|c_1| = |c_2|$. Thus suppose that $c_1T_E^r$ is similar to $c_2T_E^r$ or that cT_E^r is similar to

(1)
$$T_E^r = PcT_E^rP^{-1} \text{ for } |c| = 1$$

where P is a bounded linear transformation of $L_p[0,1]$ onto itself with the bounded linear inverse P^{-1} . If T is similar to $S = PTP^{-1}$, then f(T) is similar to

$$f(S) = Pf(T)P^{-1}$$

for polynomials and even analytic functions f. Let

Received February 29, 1960. The author was supported in part by the United States Air Force under Contract No. AF 49(638)-64 and by a grant from the National Science Foundation.

$$f(z) = \sum_{i=0}^{\infty} a_i z^{i+1}$$

Then

$$f(cT_{E}^{r}) = \sum_{i=0}^{\infty} a_{i}e^{i+1}T_{E}^{r(i+1)} = T_{g_{1}(y-x)}$$

where $g_1(t) = ct^{r-1}g(ct^r)$ where we have written t for y-x and where

$$g(z) = \sum_{i=0}^{\infty} b_i z^i$$

with $b_i = a_i/\Gamma(r(i+1))$. Equations (1) and (2) imply that $||f(T_E^r)|| \le ||P|| ||P^{-1}|| ||f(cT_E^r)||$. The definition of the norm of a linear transformation in a Banach space implies the following inequality:

$$||f(T_{E}^{r})|| = ||T_{t^{r-1}g(t^{r})}|| \ge \left| \int_{x}^{1} (y-x)^{r-1}g((y-x)^{r})k(y)dy \right| \right|_{p}$$

for all $k \in L_p[0,1]$ such that $||k||_p = 1$. On the other hand, Lemma 2 of A implies that

$$||T_{ct^{r-1}g(t^r)}|| \leq ||ct^{r-1}g(ct^r)||_1 = ||t^{r-1}g(ct^r)||_1$$
 .

Thus if k(y) = 1, we obtain

$$\begin{array}{c} L = \left| \left| \int_{x}^{1} (y-x)^{r-1} g((y-x)^{r}) dy \right| \right|_{p} \leq \|f(T_{E}^{r})\| \\ \leq \|P\| \|P^{-1}\| \|f(cT_{E}^{r})\| \\ \leq \|P\| \|P^{-1}\| \|t^{r-1} g(ct^{r})\|_{1} = R. \end{array}$$

We shall find a family of functions g_v (and correspondingly f_v) depending on a positive parameter v such that if we use the notations L_v and R_v for the corresponding left and right hand sides of (3), $L_v \to \infty$ and $R_v \to 0$ as $v \to \infty$ contradicting the inequality (3): this contradiction then proves our theorem.

Let us first consider the case where the real part of c, Re(c), is less than 0. Let $g_v(t) = \exp(vt)$. Since T_E^r is generalized nilpotent for $r \ge 1$, the corresponding function $f_v(T_E^r)$ exists and (1) indeed implies (2) for $S = T_E^r$ and $T = cT_E^r$. Then

$$R_v = ||\, t^{r-1} g_v(ct^r)\,||_1 = \int_0^1 |\, t^{r-1} \exp\left(vct^r
ight)|\, dt$$

and $R_v \to 0$ as $v \to \infty$. On the other hand

$$L_v = (1/r^p) \int_0^1 (\exp(v(1-x)) - 1/v)^p dx \to \infty$$

as $v \to \infty$. If finally $Re(c) \ge 0$ and $c \ne 1$, then there exist a positive

integer n such that $Re(c^n) < 0$. But then (1) implies that $c^n T_E^{nr}$ is similar to $T_E^{nr} = Pc^n T_E^{nr} P^{-1}$ which contradicts the preceding result and the proof of the theorem is complete.

THEOREM 2. Let $F(x, y) = (y - x)^{m-1}aG(x, y)$ satisfy, in addition to the general hypotheses stated above, one of the following:

- (1) G is analytic in a suitable region and m is arbitrary;
- (2) G(x, y) = G(y x), $G(0) \neq 0$, $G \in C^2$ and m is arbitrary;
- (3) $G \in C^2$ and m = 1. Let A be a complex number. Then $AI + T_F$ and $AI + T_F^*$ are similar to the unique operator $AI + caT_E^m$ and $AI + c\bar{a}T_E^m$ respectively where $c = \left(\int_0^1 (G(u, u)^{1/m} du)^m\right)$.

Here I is the identity operator and T_{κ}^* , the adjoint of T_{κ} , is defined by

$$(T_{\kappa}^*)(f)(x) = \int_0^x \overline{K(y,x)} f(y) dy.$$

Proof. Note first that A implies that $AI + T_F$ is similar to $AI + caT_E^m$ and that $AI + T_F^*$ is similar to $AI + c\bar{a}T_E^{*m}$ (see Cor. Theorem 2 of A). Observe next that $T_E^*f(x) = \int_0^x f(y)dy$ and

$$T_E^{*m} f(x) = (1/\Gamma(m)) \int_0^x (x-y)^{m-1} f(y) \, dy$$

and that if $(S_{1-x}f)(x)=f(1-x)$ then S_{1-x} is an isometry of $L_p[0,1]$ onto itself and $S_{1-x}T_E^mS_{1-x}^{-1}=T_E^{*m}$. It remains to show uniqueness. Suppose that $A_1I+c_1a_1T_E^{m_1}$ is similar to $A_2I+c_2a_2T_E^{m_2}$. Then $A_1=A_2$ (because of the complete continuity of T_E) and $c_1a_1T_E^{m_1}$ is similar to $c_2a_2T_E^{m_2}$ which by Theorom 1 implies that $c_1=c_2$, $a_1=a_2$, $m_1=m_2$.

THEOREM 3. The linear transformation $T_{\scriptscriptstyle E}+T_{\scriptscriptstyle E}^{\scriptscriptstyle 1+a}$ where 0< a< 1 of $L_{\scriptscriptstyle p}[0,1]$ into itself is not similar to any linear transformation $cT_{\scriptscriptstyle E}^{\scriptscriptstyle r}$ for complex c and real $r\geq 1$.

Proof. Preliminaries. 1. If two linear transformations S and T are similar, i.e., if there exists P such that $S = PTP^{-1}$, then there exists a constant K such that

$$(4) 1/K \leq ||T^n||/||S^n|| \leq K,$$

for all positive integers n. It suffices to take $K = ||P|| ||P^{-1}||$.

2. The following inequality is a consequence of the fact that if $0 \le F_1(x, y) \le F_2(x, y)$ then $||T_{F_1}|| \le ||T_{F_2}||$:

$$||(T_E + T_E^{1+a})^n|| \ge n ||T_E^{n+a}||$$

for all positive integers n.

3. Our next task is to find estimates for $||T_E^n||$. An estimate from above is the following:

(6)
$$||T_{E}^{n}|| \leq 1/(n\Gamma(n)p^{1/p})$$

for all positive integers n. An estimate from below is furnished by the following Proposition:

Given the real positive number e there exists a positive number K = K(e) and a positive integer N = N(e) such that for all integers $n \ge N$,

$$||T_E^n|| \geq K/(n^{1+e}\Gamma(n)).$$

Proof of (6). If $f \in L_n[0,1]$,

$$T_E^n f(x) = \int_x^1 [(y-x)^{n-1}/\Gamma(n)] f(y) dy$$
.

If (1/p) + (1/q) = 1, Hölder's inequality yields

$$\int_{x}^{1} (y-x)^{n-1} f(y) dy \le \left(\int_{x}^{1} (y-x)^{(n-1)q} dy \right)^{1/q} ||f||_{p}$$

$$= (1-x)^{((n-1)q+1)/q} ||f||_{p} / (((n-1)q+1)^{1/q})$$

so that

$$\begin{split} &||T_{E}^{n}f||_{p}^{p} \\ &= \int_{0}^{1} |(T_{E}^{n}f)(x)|^{p}dx \\ &= (1/\Gamma(n))^{p} \int_{0}^{1} \left| \int_{x}^{1} (y-x)^{n-1}f(y)dy \right|^{p}dx \\ &\leq (1/\Gamma(n))^{p}(1/((n-1)q+1)^{p/q}) \int_{0}^{1} (1-x)^{((n-1)p+(p/q))}dx \, ||f||_{p}^{p} \\ &= (1/\Gamma(n))^{p}(1/((n-1)q+1)^{p/q})(1/((n-1)p+(p/q)+1)) \, ||f||_{p}^{p} \end{split}$$

which implies that

$$||T_E^n|| \le (1/\Gamma(n))(1/((n-1)q+1)^{1/q})(1/((n-1)p+(p/q)+1)^{1/p})$$

which in turn implies (6).

Proof of (7). We first observe that elementary considerations concerning the gamma function imply that given c such that 0 < c < 1 and given a positive real number d there exists an integer N depending on c and d such that for all integers $n \ge N$

(8)
$$\Gamma(n+c) < (n+c)^{c+a}\Gamma(n).$$

Consider next the function $f(x) = r(1-x)^{-s} \in L_p[0,1]$ such that $||f||_p = 1$, i.e., $r^p = 1 - sp$ and 0 < s < 1/p. Then

$$T_E^n f(x) = r\Gamma(1-s)(1-x)^{n-s}/\Gamma(n+1-s)$$

and

$$||T_E^n|| \ge r\Gamma(1-s)/\Gamma(n+1-s)(p(n-s)+1)^{1/p}$$
.

We now choose s (and hence r) such that for the positive real number e of (7), 0 < (1/p) - s < e and then we choose d such that 0 < d < e + s - (1/p) and finally by virture of (8) we obtain N as a function of e such that for all integers $n \ge N$, $\Gamma(n+1-s) < (n+1-s)^{1-s+d}\Gamma(n)$ whence

$$||T_n^n|| \ge r\Gamma(1-s)/(n+1-s)^{1-s+d}\Gamma(n)(p(n-s)+1)^{1/p}$$

which upon choosing K = K(e) properly implies (7).

After these preliminaries, we turn to the proof of the theorem. We distinguish several cases. Let $T=T_{\scriptscriptstyle E}+T_{\scriptscriptstyle E}^{\scriptscriptstyle 1+a}$.

Case 1. $|c| \leq 1$. Consider

$$h_n = ||(cT_E^r)^n||/||T^n|| \le ||T_E^n||/(n||T_E^{n+a}||)$$

where we have used (5) and the fact that $r \ge 1$. Take now positive real numbers e and d such that a + e + d < 1. Then there exists by (7) a positive constant K and an integer N such that for all integers $n \ge N$

(9)
$$h_n \leq (n+a)^{1+e} \Gamma(n+a) / (n^2 \Gamma(n) p^{1/p} K)$$
$$\leq (n+a)^{1+e+a+a} \Gamma(n) / (n^2 \Gamma(n) p^{1/p} K)$$

where we have made use of (8) and (6). The last inequality implies that $h_n \to 0$ which in conjunction with (4) implies the truth of our theorem in the case under consideration.

Case 2. r < 1. Using the notations and making similar choices as under Case 1, (9) becomes

$$h_n \leq |c|^n (n+a)^{1+e+a+d} \Gamma(n) / (n^2 r \Gamma(rn) p^{1/p} K)$$

which, since $|c|^n\Gamma(n)/\Gamma(rn)$ is bounded (in fact converges to 0) for r>1 as $n\to\infty$, again proves the truth of the theorem in the present case.

Case 3. r=1, |c|>1. This time we consider the quotient

$$\begin{array}{ll} k_n = \mid\mid T^n \mid\mid\mid\mid\mid (c\,T_E)^n \mid\mid \\ \\ \leq \sum\limits_{i=0}^n \binom{n}{i}\mid\mid T_E^{n+a(n-i)}\mid\mid\mid\mid(\mid c\mid^n\mid\mid T_E^n\mid\mid) \\ \\ \leq \left((n^{1+e}\Gamma(n)/(\mid c\mid^n Kp^{1/p})\right)\sum\limits_{i=0}^n \binom{n}{i}/(\Gamma(n+a(n-i)+1)) \;, \end{array}$$

which is valid for sufficiently large n; again we used (6) and (7).

In order to complete the proof of our theorem, we need the following fact:

Given any positive real number e and given the positive real number a < 1, there exists an integer N = N(e; a) such that for all integers i and n such that $0 \le i \le n \le N$

(11)
$$\Gamma(n)/\Gamma(n+a(n-i)+1) \leq 2e^{n-i}.$$

Proof. The case i=0 results from elementary considerations about the gamma function. If i=1, we find N_1 so that (11) is valid for i=0 and $n\geq N_1$. We then find N_2 so that (8) is true for some arbitrary but fixed d, for c=a and for $n\geq N_2$. Then $\Gamma(n)/\Gamma(n+(n-1)a+1)\leq (\Gamma(n)/\Gamma(n+na+1))/(n+na+1)^{a+a}$ which for $n\geq \max(N_1,N_2,e^{-1/a})=N_3$ implies (11) for i=2 and $n\geq N_3$. The remaining cases are settled by induction (except i=n which is obvious); note that we never have to go above N_3 at any point. This completes the proof of (11).

The proof is now completed by substituting (11) into (10):

$$k_n \le 2n^{1+c}(1+e_1)^n/|c|^nKp^{1/p}$$

where e_1 is the constant e of (11). Thus $k_n \to 0$ upon proper choice of e_1 and our theorem is again true in view of (4). This completes the proof of Theorem 3.

University of Minnesota