GENERALIZED TWISTED FIELDS
A.A. ALBERT

1. Introduction. Consider a finite field  If V is any automor-
phism of ® we define &, to be the fixed field of K under V. Let S
and T be any automorphism of £ and define F to be the fixed field

(1) %zgq:(gs)rz(@r)s;

under both S and 7. Then % is the field of ¢ = p* elements, where p
is the characteristic of &, and & is a field of degree n over ¥. We
shall assume that

(2) n>2, q>2.

Then the period of a primitive element of & is ¢® — 1 and there always
exist elements ¢ in & such that ¢ # k%' for any element & of & Indeed
we could always select ¢ to be a primitive element of K.

Define a product (x, ¥) on the additive abelian group &, in terms
of the product xy of the field &, by

(3) (w,y) = vA, = yB, = 2y — c(xT)(¥S) ,
for ¢ in & Then
(4) Ay = R’y - TRG(’IJS) ’ B:o = R:c - SRc(zT) ’

where the transformation R, = R[y] is defined for all y in & by the
product xy = xR, of & Then the condition that (z,y) # 0 for all
xy # 0 is equivalent to the property that

5 LY
(5) cin yS

for any nonzero x and y of & But the definition of a generating auto-
morphism U of & over § by xU = x? implies that

(6) S="U#, T=U".

We shall assume that S+ I, T + I, so that

(7) 0<B<n, O0<y<m.

Then xy[(xS)(yT)]* = 227", where

(8) 1—¢*=(@—10 1—¢q¢ =(—1), z=2a%".
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Thus the condition that ¢ # k%! is sufficient to insure the property that
(x, y) #= 0 whenever xy = 0.

For every c¢ satisfying (5) we can define a division ring ® =
DR, S, T, c), with unity quantity f=e —ec¢, where e is the unity
quantity of ®. It is the same additive group as K and we define the
product x-y of D by

(9) ©4,-yB, = (,y) .

These rings may be seen to generalize the twisted fields defined in an
earlier paper.!

We shall show that © is isomorphic to & if and only if S=T.
Indeed we shall derive the following result.

THEOREM 1. Let S=1, T+ 1, S+ T. Then the right nucleus of
DR, S, T, ¢) is f& and the left nucleus of DR, S, T, c) is fR. If &
18 the set of all elements g of & such that gS = gT then gA, = gB, and
LA, = 8B, is the middle nucleus of .

The result above implies that f¥ is the center of DR, S, T, ¢).
Since it is known® that isotopic rings have isomorphic right (left and
middle) nuclei, our results imply that the (generalized) twisted fields
DK, S, T, c) are new whenever the group generated by either S or T
is not the group generated by S and 7. In this case our new twisted
fields define new finite non-Desarguesian projective planes.®

2. The fundamental equation. Consider the equation
(9) AATA, =A,,

for z,y and z in 8. Assume that the degree of & over &, is m, where
we shall now assume that

(10) m>2.

L For earlier definitions of twisted fields see the case ¢ = —1 in On nonassociative
division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309 and the general case in
Finite noncommutative division algebras, Proc. Amer. Math. Soc. 9 (1958), 928-932. In
those papers we defined a product [x,y] = 2(yT) — cy(xT) so that (x,y)=[x,yT"!]=
2y — e(yS)«T) is the product (3) with S = T-1,

2 This result was originally given for loops by R. H. Bruck. It is easy to show that,
if ® and D, are isotopic rings with isotopy defined by the relation QRxp:RJ‘f’QR,, then
the mapping # — (zx)P-! induces an isomorphism of the right nucleus ® onto that of Do,
and the mapping ¢ — (xz)P-! induces an isomorphism of the middle nucleus of ® onto
that of D,.

8 Two finite projective planes M(D) and M(Do) coordinatized by division rings D and
Do respectively are known to be isomorphic if and only if ® and D, are isotopic. See the
author’s Finite division algebras and finite planes, Proceedings of Symposia in Applied
Mathematics; vol. 10, pp. 53-70.
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Then the norm in & over &, of any element k of & is

(11) (k) = k(kT) - -(ET™),

and v(k) is in &,, that is,

(12) (k) = [v(k)]T

for every k of & Thus

(13) I-(TR)"=I—-R,,=R,,

where

(14) d=e¢e—yvic)=dT.

Now

(15) A, =I1—TR,, B,=1—-SR,,
and we obtain

(16) All + TR, + (TR, + +++ + (TR)™ '] = R, ,
so that

an) I+ TR, + (TR} + --- + (TR)"" = A;'R, .

Our definition (4) implies that

(18) RA, = AR,, R,B, = B,R,

for every « and y of K, providing that

19) a=aT, b=15S.

In particular, R,A, = A,R,, and so (9) is equivalent to

(20) AJI+ (TR) + (TR) + +-- + (TR)™"'|A, = AR, .

It is well known that distinct automorphisms of any field & are
linearly independent in the field of right multiplications of &. Thus
we can equate the coefficients of the distinct powers of 7T in the equa-
tion (20). The right member of (20) is R,; — TR,.sy and so does not
contain the term in 7™ ' when m > 2. It follows that

(21)  RJ(TR)" R, — (TR)"*TR,)R,s
— TR..s[(TR)" 7R, — (TE)" (TR)R,s] =0 .

This equation is equivalent to

(22) xT™y —yS) = «ST™*(y — yS),
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and so to the relation
(23) [(x — 2STHT™|(y —yS)=0.
By symmetry we have the following result.
LEMMA 1. Let T have period m > 2. Then the equation A,A;'A,=A,
holds for some x,y,z in & only if y=yS or & =xST". If S has

period m, > 2 the equation B,B;'B, = B, holds for some 2,y,z in &
only if x =aT or y=yST™.

3. The nuclei. The ring ® = (R, S, T, ¢) has its product defined by

(24) xy = xR =yLy,
where
(25) R},ﬁ;e = A7'A,, Ly, = BB, .

When S= T our formula (3) becomes (z, y) =xy — c[(xy)S] = xy(I—SR,).
But then the ring 9,, defined by the product (x, %), is isotopic to the
field 8. Since D = (K, S, S, ¢) is isotopic to D, it is isotopic to &, and
it is well known that ® is then also isomorphic to £. Assume hence-
forth that

(26) S+T.
The right nucleus of D is the set %, of all elements z, in & such that
@7) (@-y)2 = 2:(y-2),
for every x and y of & Suppose that b = bS so that
(28) Ay, =R, — TR,45y = (I — TR)R,, A;'A, =R, .

By (18) we know that R,B, = B,R,, and so R,(B;'B,) = (B;'B,)R, for-
every x of & By (25) this implies that the transformation

(29) R, = A;'A, = R,
commutes with every L. However, (27) is equivalent to
(30) LL")R(C) = R@L©

ZP Zp x .

Thus bB, = b(I — SR,) =b(e —¢) = bf is in N,. We have proved that.
the right nucleus of D = D(RK, S, T, ¢) contains the field fR;, a subring-
of D isomorphic to K.

The left nucleus N, of D consists of all z, such that

(31) (zay)-x = 22 (y+2)
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for all x and y of & This equation is equivalent to

(32) L;f\)RJ(CC) — R;C’L(C)

EPN

for every z of & If «a =aT then B,=(I— SR,)R,, B'B,= R, =
L;,, commutes with every A, and every R)?, and we see that the left
nucleus of D(RK, S, T, ¢) contains the field f R, isomorphic to &;.

The middle nucleus of ;D = D(K, S, T, ¢) is the set N, of all 2z, of
& such that

(33) (x-2,)y = x'(z,u'y)
for every 2 and y of 8. This equation is equivalent to
(34) RPRyY = R},

where z = z,. However, we can observe that the assumption that
(35) RPR® = R,

for some » in &, implies that (f+2)-y = f-v = v = 2.y, Hence (34) holds
for every y in & if and only if

(36) AA7'A, = A, ,

for every y of &, where v is in & and

(37) 9B, =2=z2,.

If ¢S =gT then A, = R, — TR, ,s, = R, — TR.(;r, = R, — R,TR, = R,A,.
Then (36) becomes

(38) R,A, = R(R, — TR.,s)) = R;y — TR, ysory = 4,, .

Hence gB, = g(I — SR,) = g — (9S)c =g — (9T)c = gA,, and N, contains
the field of all elements ¢gB, for ¢S = gT.

We are now able to derive the converse of these results. We first
observe that (27) is equivalent to

(39) RYR? = R/, ,
for every y of &, where z =2,. This equation is equivalent to
(40) AATA, = A,

where z = wB,. If the period of T is m > 2 we use Lemma 1 to see
that, if we take y # yST', then u = uS, 2 = uB, = fu. The stated
choice of y is always possible since we assuming that S = T and so
some element of & is not left fixed by ST-'. Thus N = fR,. Similar-
ly, is the period of S is not two then N, = f&,. Assume that one of
S and T has period two.
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The automorphisms S and 7T cannot both have period two. For the
group G of automorphisms of & is a cyclic group and has a unique sub-
group $ of order two. This group contains I and only one other
automorphism. If S and T both had period two we would have S= T
and so m = n = 2, contrary to hypothesis. Thus we may assume that
one of S and T has period two. There is clearly no loss of generality
if we assume that T has period two, so that the period of S is at least
three. By the argument already given we have N, = f®,. We are
then led to study (40) as holding for all elements y of &, where 2z, =
uB,. Now

@) A =I—TR, A(I+TR)=R, d=¢—c(cT)=dT.
But then (40) becomes
(42) [Rll - TR(:(:IIS)](I + TRG)[Ru - TRc(uS)] = R’vd - TRcd(vS) .

This yields the equations

(43) ylu — e(eT)(wS)] — WST)e(cT)l(w — uS) = vd ,
(44) yT(w — uS) — yS[u — (uS)e(cT)] = — d(»S) .
Hence

d(yS)uS — (eS)eST)(uS?*] — yS*T(eS)eST)(uS — uS*d = vS(dS)d
= (dS)yS[u — wS)c(cT)] — yT(w — uS)dS) .

Since this holds for all ¥ we have the transformation equation
(45) SR[d(uS) — d(cS)(cST)uS?*] — S*TR[d(cS)(cST)(uS — uS?)]
= SR[dSu — (dS)(uS)c(cT)] — TR[(v — uS)dS].

Since S?# 1 and T = S, S*T we know that the coefficient of ST is
zero. Thus (v — uS)dS = 0 and w = uS as desired. This shows that
N, = f Rs.

The middle nucleus condition (36) implies that gS = g7 if T does
not have period two. When 7T does have period two but S does not
have period two the analogous property

(46) Ly, = LPLY
is equivalent to
47 B,B;'B, = B, ,

and we see again that ¢S = gT. This completes our proof of the theorem
stated in the introduction.
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4. Commutativity. It is known* that © = (&, S, S ¢) is com-
mutative if and only if ¢ = — 1. There remains the case where

(48) S+#I, T+1 ST+1 S+T.

Any DR, S, T, ¢) is commutative if and only if R} = L for every
x of 8 Assume first that & + &,. There is clearly no loss of generality
if we assume that there is an element b in & and not in &,, since the
roles of S and T can be interchanged when (R, S, T, ¢) is commuta-
tive. Thus we have b =bS #bT. By (28) we know that 4, = A.R,
and so we have R{? = R,. Then LY = B;'B, = R,, where y = (bf)A;".
It follows that

(49) Bg = Ry - SRc(yT) - BeRb = (I e S.RC)Rb .

Then R, =R,, y=0b, ¢(yT) = ¢(bT) = ¢b, and b = bT contrary to hypo-
thesis.

We have shown that if (R, S, T, ¢) is commutative the automor-
phisms S and T have the same fixed fields, that is, b = bS if and only
if b6 =0T, b is in §. Thus S and T both generate the cyclic automor-
phism group & of order n of & over ¥, and S is a power of 7. Since
T-*= T"* + S there exists an integer » such that

(50) 0<r<n—1,8S=1T".

We now use the fact that R = L for every x of K to see that
A7'A, = B;'B, for every x of R, where y = 2B,A;". Also (TR,)" =
(SR,)* = R,,, and our condition becomes
(51) [+ TR, + (TR.}' + +++ + (TR)* ][R, — TR..s]

=[I+ SR, + (SR,)’ + -+ + (SR)"][R, — SRoyn] »

where we have used the fact that d =e¢ — v(¢) =dT =dS. Compute
the constant term to obtain the equation

(52) R, — (TR)"R.s = B, — (SE.)uR,z .

This is equivalent to the relation x — [v(c)](xS) =y — [v(c)lyT for every
x of K, where y = xB,A;'. Thus (52) is equivalent to

(53) I_' SRv(c) =BeAe_][I - TRv(c)] .

We also compute the term in 77 in (51). Since r <n — 1 the left
member of this term is (TR) R, — (TR, R,, which is equal to
R'R,(R, — R,5), where g = (¢T)(cT)*+++(cT)*. The right member is
the term in S, and this is SR(R, — R,;). Hence (x — xzS)g =y — yT,
a result equivalent to

4 See footnote 1.
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(54) I—-S)R,=BA;I-T).

Since the transformations I — T and I — TR,, commute we may use
(53) to obtain

(55) (I—8)RI - TRyol =[I— SRyol(I—T).

By (48) we may equate coefficients of I, S, T and ST, respectively. The
constant term yields g =e. The term in S then yields v(¢) = ¢ which is
impossible when S and T generate the same group and ® = ¥R, S, T, ¢)
is a division algebra.

We have proved the following result.

THEOREM 2. Let © = D], S, T, c) be a division algebra defined
for S+1I, T+1, S+ T. Then D is commutative if and only if
ST=1and ¢ = — 1.
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