ON EQUIVALENCE OF GAUSSIAN MEASURES

DALE E. VARBERG

1. Introduction. When are two Gaussian processes equivalent
{mutually absolutely continuous with respect to each other)? More
precisely, given {S, B, m;}, i = 1,2, where S is a set of real valued
functions on some interval [a, b], B is a Borel field of subsets of S and
m; is a Gaussian probability measure on B, under what conditions is m,
equivalent to m,? This question has been investigated, by several authors.
In particular, we mention Jacob Feldman, who in a recent paper [5] has
shown that a certain dichotomy exists. If S is a linear space, then
either m,; and m, are equivalent or they are perpendicular (mutually
singular). Moreover, using some results of Segal [6], he has shown
that, if K is the linear span of S and the real constants, then m, and
m, are equivalent if and only if the m,-equivalence classes of K are the
same as the m,-equivalence classes of K and the identity correspondence
between the L,(m,) closure of K and the L,(m,) closure of K is a bounded
invertible operator 7T such that (T*T)"* — I is a Hilbert Schmidt opera-
tor.

We propose to look at this question from a somewhat different point
of view. It is well known that a Gaussian process and hence its prob-
ability measure is determined by a covariance function (s, t)*. It should
therefore be possible to answer the question posed above directly in
terms of conditions on the convariance functions of the two processes.
We are able to do this for a rather wide class of Gaussian Markov
processes (Theorem 1), and we conjecture that an answer of this type
is possible in general. The crucial condition appears to be that the first
derivatives of the two covariance functions have the same jump on the
diagonal s =¢. To set the stage for our main theorem, we make the
following definition.

DEFINITION 1. Let M = M|a, b] denote the class of all Gaussian
processes {x(t),a <t <b} with mean function identically zero and
covariance function 7(s, t) given by

5 = u(s)v(t) s=t
s, 4 = wt)vs) s= t} ’

where moreover,
(A) w(a) =0,
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! More correctly, it is determined by a covariance function r(s, t) and a mean function
m(t), (see [3], p. 72). We assume that the mean function is identically zero throughout
this paper.
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(B) w(t) >0 on [a,d],

(C) %" and v"” exist and are continuous on [a, b],

D) v(@E)u'(t) — u(t)y’'(t) > 0 on [a, b]°.

Almost all sample functions of such processes are continuous (see
[4], pp. 401, 402). We shall assume therefore that the space of sample
functions of processes belonging to the class Mla,b] is {C, B} where
C = Cla, b] is the set of all continuous real valued functions on [a, b]
and B is the Borel field of subsets of C generated by sets of the form
freCia, <2ty) b, k=1,2,.--,m, t, € [a,b]}.

THEOREM 1. Let {x(t),a <t < b} and {y(t),a =t < b} be two Gaussian
processes belonging to M[a, b] with probability measures m, and m,

determined by their respective covariance functions r(s,t) and O(s,t).
Let

_ (uls)u(t) st os, £) = 0(s)p(t) s=t

D= L) s>t oOp(s) s=t°

Then, necessary and sufficient conditions that m, be equivalent to m,
are that

(E) o)) — u@)' () = ¢(1)0'(t) — 6(t)¢'(¢) on [a,b],

(F) u(a) and 0(a) are either both zero or both non-zero.
Moreover, if these conditions are satisfied, the Radon-Nikodym derivative
of m, with respect to m, is given by

dmyjdm, = C,exp{[1/2]] Ca(@) + | FOLOIHENRO ]} ,
where

C - {{[915(06)12(6)]/[<15(b)v(06)]}”2 if O(a) = 0}
" {[uw(@)v@)]/[0@)p®)}  if 6(a) # 0]’
{0 if 0(a) = 0}

G, .
[¢(@)0(a) — w(@)v(@)]/[W(@)p(@)d(ayu(a)]  if 6(a) + 0

I

and
F@) = [v(@)'(t) — @)W (O))/[v(E)w'(t) — u@)v'(F)]°.

The ‘‘necessity’’ part of the proof depends on a theorem of Baxter
while the ‘‘sufficiency’’ will be made to depend on several lemmas.

2 Conditions (A), (B) and (D) insure that r(s,t) is a covariance function. Covariance
functions which factor this way are sometimes called triangular covariance functions. Gaus-
sian processes determined by triangular covariance functions may be shown to be Markov
processes.

8 The corresponding theorem for the Wiener process on [0, 1], (i.e., for the case r(s, t) =
min (s, t)), was obtained by a somewhat different method in the author’s doctoral disserta-
ton written under the direction of Professor R. H. Cameron (see [8]).
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After proving the theorem, we give several examples, one of which
(Example 3) implies a result previously obtained by Charlotte T. Striebel
in connection with Ornstien Uhlenbeck processes.

2. Baxter’s theorem and a corollary.

BaxTER’S THEOREM. Let {x(t), a <t < B} be a Gaussian process with
mean function identically zero and continuous covariance function r(s, t),
r having uniformly bounded second derivatives for s # t. Let

fr(t) — lim_ﬂ T(t, t) _ ’I"(S, t) _ hm+ ’i"(t, t) _ ”'(S, t) .
st t— s st t—s

Then with probability one,

(2.0) lim S5 [a(t,) — a(t, ) = | /)

n— o0

where t, = a + k(8 —a)27", £=0,1,2, --.,27%,

COROLLARY. Let {x(t),a <t < b} and {y(t),a <t < b} be Gaussian
processes with mean functions identically zero and covariance functions
r(s, t) and o(s,t) determining probability measures m, and m, respec-
tively. Suppose that r and o satisfy the conditions of the above theorem.
Then, if m, is equivalent to m,, it follows that f.(t) = ft) for all
t e [a,b].

Proof of corollary. Let S denote the common space of sample
functions of the two processes and let

2N B
Ny = {x e S: lim S fa(t,) — oty ) = S fr(u)du}
where t, =a + k(B —a)2™", k£=0,1,2,---,2", Bela,b]. By Baxter’s
theorem m,{Ng} =1 = m,{Nf}. Now let J denote the Radon-Nikodym
derivative of m, with respect m,. Then if ¥ denotes the set character-
istic function of N3, we have

mo{Ng} = E*{y(y)} = E"{x(x)J (@)} = 1°.

Hence m {Nj} = m,{Nj} =1, i.e., for each B € [a, b], N; and Nj are sets
B B
of m, measure one. It follows that | f,(u)du = g fo(u)du for each

a

B € la,b] and, since f, and f, are continuous, f.B8) = f«(B) for each
B € [a, b].
This result gives the ‘‘necessity’’ almost immediately (see § 5). The
4 This actually is a slight generalization of the theorem of Baxter (see [1]), the gener-

alization being that we state the result (2.0) for the interval [a,8] rather than [0, 1].
5 E'r denotes expected value on the Gaussian process with covariance function 7.
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‘‘sufficiency’’ is apparently harder to demonstrate. To facilitate matters
we introduce some notation and prove four lemmas.

3. Notation. The following notation will be used throughout the
rest of this paper.

(s, t) = {u(s)v(t) s = t}
u(t)v(s) s=t
[0 st

oo 0 = {e(t)qs(s) sz t}

r is the covariance function of the process {x(f), a =t < b},
0 is the covariance function of the process {y(t), & <t < b},

w(s) = v(s)u'(s) — u(s)v'(s) ,
(s) = P(s)d'(s) — 0(s)p'(s) ,
S(s) = [v(s)p'(s) — d(s)v'(s)])/w(s) ,
m=2",
te=a+kb—a)m, £k=0,1,2, -, m; n>0,

for any function g, g, = g(,), unless otherwise indicated,

Wy = VyrUyy — Up—1Vs , D = P — Opiby
Ty = ’I'(tj, tk) y Py = p(tj’ tk) ’
R is the maxm matrix with elements r,; 5,k =1,2, -+, m,
P is the mam matrix with elements po,; j,k=1,2, --+, m,

|R| and | P| are the determinants of R and P respectively,

(wh ny tty xm) ’
(1;y2)°"yym)y
(D1 — Do, Pz — D1y P — D) -

l

"el@l 81

4, Some lemmas.

LemMMA 1. Under (A), (B) and (D) of Definition 1,
(@) u() >0, 6(t) >0 for t e (a,b],

(b) @, >0, &, >0 for k=1,2,+--,m; n>0,
(¢) R and P exist.

Proof. d[dtlu(t)[v(t)] = w(t)/v*(t) > 0 by (B) and (D). Hence u(t)/v(t)
increases as ¢ increases and so w(t) > v(t)u(a)/v(a), t e (a,bd], and 0 <
[upvs] — [Ugp-a/Ves] = Di/[Vve—n], £ =1,2, .+, m, giving the first parts
of (a) and (b). One may actually compute R, the result being
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] -1 0
Uy 0, W,
1 UD; — UV, 1
W, Wy, W,
0 1 UDy — UV,
4.0) R*= W, W, .
m
_ 1 /v'mrl
L @m wmvm

We remark for later reference that | R| may also be computed explicitly.
4.1) | R| = uy,W; + + » @py, -

Completely analogous results hold for 6(t), w,, P, and | P|.

LEMMA 2. Under (A)-(D) of Definition 1,
(a) 2™, 2", are bounded uniformly (in k and n) away from 0,
(b) if w(t) = w(t), then lim|®, — D, |2 = 0 uniformly (in k).

Proof. A simple algebraic manipulation followed by use of the mean
value the theorem for derivatives gives

2", = w(ty—y) + 2770 — a][v(ts- )" (Xi) — w(te-)v" (X))

where t,_, < Xy, Xu < t,. That 2%, is uniformly bounded away from
0 now follows from the fact that w is (uniformly) continuous and positive
on [a,b] and hence bounded away from 0 and from the fact that the
second term in the expression for 2", becomes uniformly small as »
gets large. A similar argument is pertinent for 2"®, giving us part (a).

A somewhat more lengthy algebraic exercise together with applica-
tion of Taylor’s formula (two terms plus remainder) gives

2@, — W]
= 2M{[0(ty-1) — w(te- )b — a]27" + [@'(te—r) — w'(te-)]b — 2777}
+ [(6 — @) [2Hp(tx- 0" (Xiw) — 0" (te-1)] — O(ts-)[P"(Xs) — ¢ (1))
— V(o)W (X)) — u"'(te-1)] — ute)[v" (X)) — ¥" (]} -

Since w(t) = w(t) (and hence ®'(t) = w(t)) and since ", ¢", w”’ and v" are
(uniformly) continuous on [a, b], it follows that (b) holds.

LEMMA 3. If Conditions (A)~(F) of Definition 1 and Theorem 1
hold, then
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@) lm[|R|/|P[]] =G,

(b) lim xf{—u% - 0];5 } = C,#* (a) for almost all x (m, sense),
e 1Us 1P1

(see Theorem 1 for the definitions of C, and C,).

Proof. Using formula (4.1) for | R| and its analog for | P| we have
W[| R[] P|] = n[u,[60,] + In[vn/dn] + kEml:Z In[w|oy] .

Now
| [,/ | = | Imib, — Indy | = | W), — @y |/ X,

where min (@, @,) < X; < max (@, @W,). But by Lemma 2, | %, — @&, | =
0o(27") uniformly in k& while X,2" is bounded away from 0 uniformly in
Ik and n. It follows that

lim S W[, /d] = O .
n—oo k=2

Hence

lim inf| B[] P[] = lim Infu,/6,] + infv(0)/¢(®)] .

This gives part (a) immediately in cas~ 6(a) + 0. If 6(a) = 0 (and hence
u(a) = 0) we use the fact that w(f) = w(t) to write

{2} w022

so that

[ dluts)o)] = | [ L)) -

By the mean value theorem for integrals and the fact that u(a) =6(a) =0,
we have

4.2) u(t)[v(t) = [p(X)O()][v(X)P(t)] for some X, a < X < t.

Rewriting and letting ¢ — 0, we see that lim,_, [u(¢)/0(t)] = ¢(a)/v(a), the
needed result.

Part (b) is immediate in case 6(a) and u(a) are not zero. If f(a) =
u(a) = 0, then z(a) = 0 with m, (and m,) measure one. Hence it will
be sufficient to show that [1l/u,v,] — [1/6.¢,] is bounded. But [1/u,v,] —
[1/6.¢.] = {[¢/u,] — [v:/0.]}/[viéh] which will be bounded if [¢i/u,] — [v,/6,]
is bounded. Now
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P(t) _ v() | _ [$)0() — u®)v(®)|

ut) o) u(t)d(t)
_ 1¢@®)0@) — [$A( X)) (O)]/[v(X)$(D)] |
w(t)o()

where a < X < ¢, (by 4.2),
| (O)v*(X) — (X)v*(D) |
u(t)v(X)g(t)
[0 O =F@ 1) ) VO P = $1C))
t—a t—a t—a

H(X)p()u(t) [u@)[v(®)] — [u(@)/v(@)]
t—a
|20 O + 2@ XS + 20 (X)) T~ 4|
B X)X X))

where ¢ < X; <t, X< X, <t a< X;< X, a< X, <t. This last]ex-
pression is clearly uniformly bounded for t e (a, b].
The first three lemmas allow us to prove the following key result.

LEmMMA 4. If (A)-(F) of Definition 1 and Theorem 1 hold, then

lim (R — P)F = Cat(@) + | A0 -

n—>co

Proof. We may verify using formula (4.0) for R~ and its analog
for P~ that

Z(R™— P = x; _ X + < {(vk—lxk — Vlly-1)’ _ (Pr—1%s, — (nblcxk:—l)2:}
Uy, 0.9, k=2 Vi1 Vi Wy, PPy

= Ju(x) + Ku(x) + Lu(2)

where

L@y =atf-L ~ LA

uY, 0y

m

K, (x) = S, — Wil pr—i2r — P 1[* /[ Pr—1Pr Wy

k=2

L(x) = ’:sz)k{ T Vi1 — Vp Vil bprs — ¢,cx,c_l]2} )

Vio1VPr 1P Dy W

We note first that J,(x) — Cx*(a) as n — o by Lemma 3 part (b). We
show next that K,(x) -0 as n— . Let ¢ > 0 be given and choose
N so large that n = N implies that m*|d, — W, | < ¢, (see Lemma 2).
Let 7 = minycrem nso [M*Pr—1Pr@®:W;]. Then for » > N,
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[Knl =

SEACEL N ST L R

L
E=2 My 16 @y Wy, by — Ty by — ty

< (610 S{ ot () + gta) L =2l ', o,y
where t,_, < X, < t,. Thus
(43) K, | = [e(b — o)fem] 5 [o(t)# (X — te-i]
+ (26/)| SN E)E — )|

+ (26/7)| Sttt (K)(E: — t)

+ (ef7) max (1) 3 [w(t) — a(te- )P -

The first three terms are small since the sums involved are Riemann
sums. Futhermore the sum in the fourth term approaches a limit by
Baxter’s theorem. The result now follows.

Lastly, we consider L,(x).

L,(x)

— i PPl Ve — ViBea]” — Vi1 Vil Pei®h — Pii ]’
k=2 V-1V Pr—1P Wy,

_ & PuVi—s — PraiVs L[ PraVpili — Th1ViPs

B "=1{ Wy, }{ Vi1 VsPr—1Pr }

_ V(e — Pr—1) — Pul(Vs — Viy) i T
’“;{vk(uk — Up—r) — UV, — Vy—1) }{¢kvk ¢k—1'0k—1}

— i{ VpPr, — ¢kv;c + [vk¢”(X1k) — ¢k'v"(X2k)][(b - a’)/zm] }{ X, _ iy }
=2 Loy, — ugp + [0 (Xor) — 0" (X0 — a)/2m] ) \pv,  yoiis

(by Taylor’s formula)

_ & o) () — )V (Er) P(ty) _ 2(le)
B ’02;5{ V() (te) — u(t)v'(tx) * BkM/m} { () v(ty) ¢(tk—1)”(tk—1)}

(where B,, is bounded independently of & and m)
- Sif(t)d{x2(t)/[¢(t)v(t)]} as 7 — oo .

For later re .ence we note that the last expression for L,(x) may be
rewritten using partial summation giving

_ () _ o)
@ L@ = {7 + 0m) — S5 @) + 0m)

_ mi\‘l ‘©?(t)

& Rl - ) IO
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5. Proof of Theorem 1.

Necessity. Here we assume that m, is equivalent to m,. Now by
the corollary to Baxter’s theorem, f,(t) = f.(f). An easy calculation
shows that f.(t) = v(®)u'(t) — w(@)v'(t) and f.(t) = (£)0'(t) — O(t)p'(t) so
that Condition (E) holds. To see Condition (F), we note that x(a) =0
with m, measure 0 or 1 according as 6(a) # 0 or d(a) = 0. Similarly
2(a) = 0 with m, measure 0 or 1 according as u(a) = 0 or u(a) = 0. But
since m, is equivalent to m,, null sets with respect to the two measures
must correspond. Hence F holds.

Sufficiency. We assume that Conditions (E) and (F) of the theorem
are satisfied. Define two functions F,, and F, on Cla, b] by
1 if sup [y(t) | = M

F,(y) = { ast=d .
0 otherwise

m b
. {1 if sup |u(t) | = Mand S[u(t) — v(t)I = | w(t)dt + 1}
oY) = 1<ksm =2 a .
0 otherwise

Let H, , be a function of m real variables @ = (u,, %, - -, «,,) such that

_ Lt sup |u,| = M and fj,[u,c — U, = Sbw(t)dt + 1‘[
Hy o(w) = 1<k<m K2 a [
0 otherwise |

and note that H, .(¥) = Fy.(y). By Baxter’s theorem and using the
continuity of y and the fact that f,(¢) = f(t) = w(t), we have that for
almost all y € C (in the sense of both measures m, and m,) lim, ... Fiy .(¥) =
Fy(y) and lim,_. F,(y) = 1. Hence for any step function p on [a, b],

E{Fu) exo | w0an(t)} = Fflim| Frw) exo Suttiot) — pit. 1|}
= B*{lim [Hy.(5) exp 7' 7)1}
= 11312 E°{H, ,.(7) exp (¥ 4p)} (by bounded convergence)
= lim [(22)" | P(1*|”_H (@) exp [ 3p — (27 P~7)dw

= lim {[| P|/ | R{J[@)" | [} | H n(3)

x exp {@dp + (L2)[@ (R — PY)a — @ R-aljdu
= lim [| R|/| P|"* lim E"{H, (%) exp [Z"4p + (1/2)F'(R™ — PY)z]}

= C, lim E"{F, .(z) exp [&'4p + (1/2)F' (R~ — P7)3]},
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the last equality following from Lemma 3, part (a). Now the expectant
will be bounded (independently of » and ) provided Z’' 4p+(1/2)Z'(R*— P&
is so bounded on the subset 4, of C where F), is different from O.
But on A4, 4p < M S| p(t,) — p(t.—.) | which is bounded (independently
of n and x). Furthermore, Z'(R™ — P& = J, () + K,(®) + L,(x). J,(x) is
bounded on A, as may be seen from the proof of Lemma 3, part (b),
while K,(x) and L,(x) may been to be bounded on A, by examination
of formulas (4.3) and (4.4) respectively. This allows us to take the limit
inside the expected value from which we obtain (see Lemma 4)

(4.5)
B Fu) exo | wt)ap(t)}

= CE{Fu@ exp| | s()dpt) + 1/2(Caa) + | Fod @000 |}

Now letting M — «, we obtain by monotone convergence
(4.6)

b
E"{expg y(t)dp(t)}

= c.Br{exp | | adn®) + @2Co@) + [ FO2ONBOUOD ]} .

Now consider the stochastic process {z2(t), a <t < b} with space of
sample functions {C, B} whose Radon-Nikodym derivative with respect

to {x(t),a =t < b} is C,exp [1/2][02962(&) + Sbf (t)d{xz(t)/[¢(t)v(t)]}]- Then
for all measurable (B) functions F, ’

@1 EFE) = CE{F@ exp1/2]] Cat@) + | fOale@aenoD ]} -

Hence in particular, formula (4.6) holds for the process {z(t), a < t < b}.
But this means that {2(¢t),a <t < b} and {y(¢), @ <t < b} have the same
multidimensional moment generating functions and since they determine
the measures of all the measurable subsets of C (i.e., all sets in B),
the processes z(t) and y(t) are identical. Since (4.7) holds for the former,
it also holds for the latter. This shows that m, is absolutely continuous
with respect to m,. By symmetry, m, is also absolutely continuous with
respect to m,. This completes the proof.

5. Examples. The best known process in the class M[0, T'] is the
Wiener process (Brownian motion process) with probability measure m,,,
determined by the covariance function

o’s s < t‘[

, a*>0.
@t s=t)

We(s,t) = d®>min (s, t) =
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Theorem 1 shows immediately that two such processes determined by
covariance functions w,, and w,, are equivalent if and only if ¢, =g,
(see [2] for a discussion of what is essentially this problem). We can
actually say much more. In fact, we can easily characterize all processes
in the class M[0, T'] which are equivalent to the Wiener process deter-
mined by w.(s, t)®. Let ¢ be any function which is positive and has a
continuous second derivative on [0, 7] and define 6 by 6(s) =

02¢(s)gs[1/¢2(t)]dt. Then those processes (and only those) in the class
0
M0, T'] with covariance functions of the type

B Jﬁ(s)gb(t) s=t
C0ds) szt

are equivalent to the process in M[0, T'| determined by w,(s,t). We
give two examples.

0(s, t)

ExAMPLE 1. Let {y(t),0 <t < T < 1} be the process belonging to
M0, T] with probability measure m, determined by the covariance
function

js(l—t) s=t)7

PEBD=1a—s s=t

This process is equivalent to the Wiener process {x(¢),0 <t < T} with
covariance function w,(s, t) = min (s, t). Moreover,
dmeldm,, = (1 — T)*exp{—z(T)/[21L — T)} .

ExAaMPLE 2. Let {y(t), 0 =<t < 1} be the process belonging to M[0,1]
‘with probability measure m,, determined by the covariance function

sin 1'As cos VM1 — t) s<t|
1\ cos V' -
t — - —_ ); 124 .
O:(s, %) sin '\t cos VA1 — s) ~ < @)
1V xcos VA s=t

This process is equivalent to the Wiener process {z(¢),0 <t <1} with
-covariance function w,(s,t) = min (s, t). Moreover,

_ 1
dm, [dm,, = (cos VVN)" exp [(x/Z)S o (t)dt] .
0
6 We reason as follows. For (s, t) = ws(s, t), w(s) = ¢%.. Hence w(s) must equal o2,
i.e., d/ds[e(s)/p(s)] = o2/p2(s). This together with 6(0) = 0 implies that 6(s) = 62¢(S)$z[1/¢2(t)]dt.

7 This process has been studied by various authors, among them Doob [4].
8 For 2 =0, pa(s, t) = lim pa(s, t) = min (s, t).
A—0
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For our last example we consider the class of (Ornstien Uhlenbeck)
processes in M|a, b] determined by covariance functions of the type
_ [0 s =t
b)) szt

where 6(t) = o exp (B8t), ¢(t) = exp(—pBt), (6*>0,8>0). If Ula,b]
denotes the class of such processes, we have the following result.

o p(s,t) = 0" exp [—B[s — t]]

ExAMPLE 3. Let {x({),0 =<t =< T} and {y(t),0 =<t =< T} be two
processes belonging to U[0, T'] with covariance functions 0oy, 3040, 1
respectively determining two probability measures m, g and m, s on
{C, B}. Then m, g, is equivalent to m, s if and only if a8, = ¢iB..
Moreover if this condition is satisfied and if we let K = 2628, = 20?3,,
then

dMq, g,
dmg, g,

= (Bi/Bo)"

T 9
0

x exp{(—1/2K)[ (8 — BI@0) + X(T) — KT) + (8t ~ 6| w'yae [}

6. Conjecture. Consider two general Gaussian processes determined
by covariance functions (s, t) and o(s, t) respectively. Under regularity
and boundary conditions of the type (A)-(D) of Definition 1, a necessary
and sufficient condition that the two processes be equivalent is that

F(t) = fi(D), (see §2).
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9 This result is due to Charlotte T. Striebel, the formula above being displayed near
the top of page 566 in [7].





