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GERALD LOSEY AND HANS SCHNEIDER

1. Introduction. Let R be a semigroup or associative ring. A
group G in R is a subset of R which is a group under the multiplication
on R. That is, G contains an idempotent e which acts as a multiplica-
tive identity on G and if a e G then there exists an element af e G such
that oca! = a!a ~ e. An element a of R is said to be a group element
in R if a belongs to some group in R.

The problem of deciding whether a given element of R is a group
element has been investigated in various types of rings in [3], [4], [5],
[6], [10], [11]. The purpose of the present paper is the generalization
and extension of some results of Barnes and Schneider [3], Drazin [4]
and Farahat and Mirsky [6].

Section 2 of this paper extends some results of [6] on the imbedding
of the groups contained in a ring with identity in the group of units of
the ring.

In § 3 use is made of the concept of left τr-regularity. McCoy [9]
introduced the concept of π -regularity, the consequences of which have
developed in [1], [2], and [8]. It imposes a finitness condition satisfied,
for example, by rings with minimum condition, by nil rings, by the
''divided'' rings of [6] and by direct sums of such rings. This condition
is found to be sufficient in many of the cases where [6] uses the condi-
tion that the ring be a direct sum of divided rings. Moreover, the
condition of left τr-regularity is applicable to the case of semigroups.
Under this condition, it is shown that if S is an extension of a semi-
group or ring R, ae R and a is a group element in S, then a is a group
element of R.

Section 4 deals with conditions under which some power of a given
element of R is a group element.

Section 5 gives a necessary and sufficient condition for the same
property in terms of annihilators.

In order to point up the comparative weakness of the condition of
left 7Γ-regularity of a ring necessary and sufficient conditions are given
in § 6 that a left π-regular ring be a direct sum of divided rings.

2 Groups in rings with identity• Throughout this section R will
denote a ring with an identity element 1 and U will denote the group
of units of R.

Received August 1, 1960. The research of the second named author was supported by
the United States Army under Contract No. DA-11-022-ORD-2059, Mathematics Research
Center, United States Army, Madison, Wis.

1089



1090 GERALD LOSEY AND HANS SCHNEIDER

LEMMA 2.1. (Farahat and Mirsky [6]) Let G be a group with
idempotent e in R. Then the mapping η: G—* U defined by τj{g) —
g + (1 — e) is an isomorphism of G onto a subgroup Gλ of U. The
idempotent e commutes with every element of G1 and G — eGλ. More-
over, if xeGx then x = ex + (1 — e).

Proof. Let g e G and let gr be its inverse in G. Then

{g + (1 - e)W + (1 - e)} = ggf + (1 - ef = e + (1 - β) - 1 ,

whence g + (1 — e) e U. The verification that ΎJ is an isomorphism is
routine.

If xeGi then x = g + (1 — e) for some g e G. Hence ex — xe — g.
It follows that x — ex + (1 — e) and that G — eGx. Thus the lemma is
proved.

Now let C(e) denote the set of all elements of U which commute
with e. Then, clearly, eC(e) is a group with idempotent e in R. It
follows from Lemma 2.1 that every group with idempotent e in R is
contained eC(e), whence eC(e) is the unique maximal group with idempo-
tent e in R. We set M(e) = eC(e). If we now apply the isomorphism
r] of Lemma 2.1 to M(e) we obtain a subgroup Mi(β) of ί7. It also
follows from Lemma 2.1 that M^e) <Ξ C(e). We shall show that Mλ(e) is
not only a subgroup of C(e), but is, in fact, a direct factor. This will
follow from the more general Theorem 2.2.

If e19 e29 , en are idempotents of R, let C(e19 e2, , en) denote the
set of all elements of U which commute with each of elt e2, , en.

THEOREM 2.2. If elf e2, , en are mutually orthogonal idempotents
in R and eλ + β2 + + en — 1 then

C(e19 e2, , en) = M1(e1) (g) Jlίi(β2) (g) 0 Mλ{en)

Proo/. Let C = C(eu e2y -- ,ew).

( 1 ) We shall first show that if i Φ j then Mx(e^ and M^βj) commute
elementwise. Let x e M^βi) and ye Mλ{eά). Then x — e{x + (1 — e{) and
?/ = βjV + (1 — βj )- T h e r e f o r e

which, by symmetry, is also equal to yx.

( 2 ) Next, C = Mife) x Mχ(β2) x x Λfi(βw). For suppose a eC.
Then e ^ + (1 — e^ e Mx(e^, i = 1, , n. Now
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{etx + (1 - e,)} . . . {enx + (1 - en)}

= exx + + ew# = (βj. + + en)x = x .

( 3 ) We now prove that Mx(e%) Π Π i ^ ^ i ( e i ) = 1- For let x belong
to this intersection. Then

where a?,- e Ϊ7. Hence, from the commutativity of the edXj + (1 — e, ) and
the fact that e^βjXj + (1 — e3)} = ei9 it follows that

e{χ — χe{ — et x e{ x x ^ = e{ ,

and so

x = e ^ + (1 — βi) = βi + (1 — eO = 1 .

From (1), (2) and (3) it follows that C is the direct product of the Mλ(e^.

COROLLARY 2.3. C(e) = Mx(e) (g) Mλ(l - e) ^ Λf(e) (g) M(l - e).

Proof. It is merely necessary to notice that C(e) — C(e, 1 — β).

3* Group elements in extensions of ττ>regular semigroups and rings
In this section R will generally denote a semigroup; results in which R
must be assumed to be a ring will be so indicated.

Let R be a semigroup and a e R. We say that a is left ττ-regular
([8], [2]) if there exists an element x in R and a positive integer n such
that xan+1 = an. The semigroup R is said to be left 7Γ-regular if every
element of R is left π-regular. Similar definitions are made for right
π-regularity. Evidently, if a is both left and right π-regular then there
exist x and y in R and a positive integer n for which xan^ = an — an+1y.

Left π-regularity is a finiteness condition in the following sense:
The element a is left π-regular if and only if the descending sequence
of left ideals Ra Ξ2 Ra2 Ξ> Ro? ΞΞ> terminates in a finite number of
steps. More precisely, xan+1 = an implies that Ran+1 = Ran, and conversely,
ifo:^1 = Ran implies that xan+2 = αw + 1 for some a? e R, and, if i? has an
identity, implies xan+1 — an.

Left π-regularity does not imply right π-regularity and, of course,
conversely. In the case of semigroups this is shown by the following
example. Let σ and τ be two infinite cardinals with τ g σ, and let E
be a set of cardinal σ. Let B be the semigroup of all one-to-one map-
pings of E into itself for which the completement of aE in Έ is of
cardinal τ. It is easy to see that for each a e B there is an x e B such
that xa is the identity map on aE and so xa2 = a, whence B is left
π-regular. But for all integers n and all y e B, an+1yE is properly
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contained in anE and, hence, no element of B is right π-regular. (In
the case that σ — τ — ̂ 0 , the semigoup B is called the semigroup of
Baer and Levi.)

THEOREM 3.1. Suppose R is a semigroup and S is an extension of
R. If ae R is left π-regular and a is a group element in S, then a
is also a group element in R.

Proof. Suppose a is a group element in S. Then there exists a',
e e S such that

ae — ea = a , a'e — ea! — a! , aa! — a! a = e .

Since ae R is left π-regular there exists an element x e R and a positive
integer n for which an — xan+1. Hence e = anafn — xan+1a'n = xae —
xa e R. Moreover, a' = ea! — xaaf — xe e R. Consequently, a is a group
element in R and the theorem is proved.

We note that it follows from this theorem that if S is any
extension of the semigroup B of our example and a e B, then a is not
a group element in S. For if a were a group element in S it would
also be a group element in B and hence right π-regular in B.

An element a of a semigroup R is called cancellable (often called
regular) if a is both right and left cancellable, viz: ax — ay implies
x — y and xa — ya implies x — y. In a ring an element is cancellable
if and only if it is not a proper divisor of zero.

COROLLARY 3.2. Let R be a semigroup and let T be an extension
of R. Suppose

( i ) Every element of R is cancellable in T,
(ii) For each ae R, xe T there exist af e R, x' e T such that ax' =

xa',
(iii) Every element of R is left π-regular in R.

Then T contains an identity and R is a group.
Note that if R is a ring and iϋ* is the set of non-zero elements of

R, then if i?* satisfies (i), (ii) and (iii), the conclusion of the corollary
tells us that R is a division ring.

Proof. By a slight modification of an argument of Jacobson [7],
p. 118, we may form a semigroup of fractions x\a, xe T, ae R. If we
denote this semigroup of fractions by S, we may imbed T, and conse-
quently Ry in S by the mapping x —> xaja. The element a/a is an
identity for Sand, of course, also for T. Every element of R is inverti-
ble in S with respect to 1, namely its inverse is a I a2. In view of (iii)
it follows that 1 e R, and thus to T, and that each element of R has
an inverse in R, whence R is a group.
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We note that if R is assumed to be in the center of T then condi-
tion (ii) is automatically satisfied with a = a' and x — x'.

COROLLARY 3.3. Let R be a ring, finitely generated as a module
over its center C. Suppose

( i ) Every non-zero element of R is cancellable, that is, R has no
proper zero divisors,

(ii) Every element of C is left π-regular in C,
then R is a division ring.

Proof. By Corollary 3.2, C is a field. Thus R is a finite dimensional
algebra over C. But, by (i), this algebra has no zero divisors and a
finite dimension algebra without zero divisors is a division ring.

4 Powering elements into group elements. Under certain conditions
an element a of a semigroup R may not be a group element itself
although some power of it may be. An example of this is the case when
R contains a zero element and a is a nilpotent element of R.

THEOREM 4.1. Let R be a semigroup and S an extension of R such
that for each xe S there is a positive integer m — m(x) for which xm e R.
Suppose ae R and a is both left and right π-regular in S.1 Then an

is a group element in R for some n and conversely.

Proof. Since a is both left and r ight 7r-regular, find xfyeS and

a positive integer n such t h a t xan+1 = an = an+ιy. If p ^ m then it

follows t h a t xap+1 = ap = ap+1y. Find m(x) and m(y) such t h a t xm{x),

ym{y) e R and set p = m(x)m(y)n. Then xv, if e R and xap+1 = ap = ap+1y.
Note that

xap = x2ap+1 = ap+1y2 = apy

and so we may set β = x2pap = α V p and β = #pα:p = tfp2Λ Then β,
e e R and

/9αp = x2pa2p = ί c 2 * - 1 ^ * ^ * - 1 = α ? 2 * - 1 ^ - 1 = . . . = χpap = β .

Similarly α73/^ = e. Also

eα p = xpa2p = xp-1xap>rlap'1 — xp-1a2p~1 = — α2) .

By another similar argument ape = α:23. Further,

e/9 = xpa2py2* =

1 Drazin [4] calls an element which is both left and right π-regular a pseudo-invertible
element.
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and βe = β. Thus, in order to show that ap is a group element, it is
now sufficient to show that e is idempotent. But e2 = xqa2pyp = αp2/p = e.

Conversely, if an is a group element in R and /3 is the group in-
verse of an, then βa2n = cr = α:2Λ/9. Hence, α is both left and right
π-regular in R, and therefore in S.

COROLLARY 4.2. If R is a semigroup, ae R and a is both left and
right π-regular, then an is a group element in R for some n and con-
versely. More precisely, an is a group element if and only if

n+1 = an =xan+1 = an =

for some x,y e R.

Proof. Take S = R is the preceding theorem.

This result appears in a somewhat different guise in a paper by
M. P. Drazin, [4].

COROLLARY 4.3. Let R be a semigroup and an a group element
with identity e in R. Ifea — a then a is a group element in R, and
conversely.

Proof. Let an be a group element with identity β and inverse β.
Then an+1 is also a group element with the same identity and so a =
ea = βan a = βan+1 a product of group elements with idempotent e and
thus a group element itself.

Conversely, if a is a group element with identity / and an is a group
element with identy e, then e — f since an is also a group element with
identity /.

5 Annihilator conditions that a given element be a group element*
In a ring R we define the left and right annihilators of an element

a in the usual manner:

Aj(0, a) = {z e R: za = 0} and Ar(0, α) = {z e R: az = 0} .

So that we may state our next results for semigroups as well as rings
we shall generalize the concept of an annihilator. In a semigroup R we
shall set

At(x, a) = {z e JB: zα: = #α} ,

Ar(x, a) — {ze R: az = <xx} .

Several consequences of these definitions are easily proved (though we
shall makes no use of these properties). The sets A(x, a) are equivalence
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classes modulo the equivalence relation z =ιx defined by za = xa, and
similarly for the sets Ar(x, a). An element aeR is cancellable if and
only if Aτ(x, a) — Ar(x, a) = {x} for all xe R. If R is a ring, then
At(x, a) = x + Az(0, a) and Ar(x, a) = x + A r(0, a). Finally, (and this we
shall need) it is evident t h a t

At(x, a) g Aι(xf a1) s Aτ(x, a3) E

and that AZO, an) = Az(x, α:n+1) implies that A ^ , tfπ) = A ^ , am) for all
m^n, and similarly for the sets Ar($, a), Ar(x, a2), etc.

In analogy with the phrase left π-regular we introduce the following
terminology: An element a of a semigroup R is called left A-regular
in iϋ if there exists a positive integer n for which *m%+1 = zan+1 implies
that xan — zan for all x and z in i?. Thus α: in R is let A-regular if
and only if the ascending chains Az(x9 a) E Aτ(x, a2) E terminate in
finitely many steps for all a? e i?.

It is easy to see that a left π-regular element of a semigroup R is
right A-regular, and a right ^-regular element is left A-regular. In
this connection, a slight generalization of a theorem Azumaya [2] proved
for rings is of interest.

THEOREM 5.1. Let R be a semigroup and a a left π-regular element
of R. If a is left A-regular then a is right π-regular, and conversely.

Proof. Suppose a is left A-regular in R. Then we may choose a
positive integer n such that zan+1 = 2'α:w+1implies zan = z'an for all z,
z' e R and xan+L = an for some xe R. We wish to prove that an+ιy — an

for some y e R. It is clearly sufficient to prove that amxman = an for
m — 0,1,2, •••. Since the case m = 0 is trivial, we proceed by induction.
Thus, assume that amxman — an. Then

whence am+1xmHan = a?α α:n = an.
That the converse is true has already been remarked before the

statement of the theorem.
The second theorem of this section relates the integers n which

occur in the definitions of π-regularity and A-regularity. Let n be a
positive integer and let z and a be elements of the semigroup R. We
shall say that condition A(z, a, n) holds if both At(z9 an+1) = Az(z, an) and
Ar(z, an+1) = Ar(z, an). Thus an element a is both right and left A-regular
if there exists a positive integer n such that A{z, a, n) holds for all z,
and conversely. If R is a ring and A(z, a, n) is satisfied for some z e R
then A(z, a, n) is satisfied for all ze R.

THEOREM 5.2. Let R be a semigroup and let a be an element of R
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which is both left and right π-regular in R. The following results
hold:

( i ) If an is a group element in R then A(z, a, n) holds for all
zeR.

(ii) // A(a, a, n) holds then anΛ1 is a group element in R.
(iii) If R has identity 1 and A(l, a, n) holds then an is a group

element.

We remark that under the hypotheses of the theorem, an is a group
element for some n and a is both left and right A-regular.

Proof. ( i ) If a% is a group element, then it follows from Corollary
4.2 that xan+1 = an = an+1y for some x,y e R. Suppose that u is any ele-
ment of Aτ(z, an+1) where z e R. Then zan — zan+1y = uan+ιy — uan, whence

u e At(z, a%) which implies Aτ{z, an+1) = At(z, an). The proof of Ar(z,an+1) ==

Ar(z, an) is similar.

(ii) Suppose that A(a,a,n) holds. Since a is let π-regluar there
exists a positive integer m and an x e R such that xam+1 = am. We shall
show that xan+2 — an+1. If m < n + 1, we obtain this equality by
multiplying the previous equality by an~m+1. If m = n + 1 there is
nothing to prove. If m > n + 1 then xtfa™-1 = aam~λ and A(a, a, n)
implies that

xau^2 = xa2an = aan = an+ι .

The existence of an element y e R satisfying an+2y — an+1 is proved
similarly. It now follows from Corollary 4.2 that an+1 is a group element.

(iii) The proof is similar to the proof of (ii). This time it follows
from xam+1 = \am when m n that xan+1 = xaan — lan — an by virture
of A(l, a, n). Hence an is a group element.

6, A criterion that a ring be semi'divided A ring is said to be
divided if it has an identity and every element is invertible or nilpotent.
A ring is semi-divided if it is the direct sum of (possibly infinitely many)
divided rings. The terminology is that of [6], In this section we shall
give necessary and sufficient conditions that a left π-regular ring be
semi-divided.

LEMMA 6.1. Let R be a semigroup both left and right π-regular.
Then every non-nil (left) ideal of R contains a non-zero idempotent.

Proof. Let I be a non-nil left ideal of R and a a non-nilpotent
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element of /. an is a group element with respect to the non-zero idem-
potent e for some n. Let β be the inverse of an. Then e — βan e I.

If e and / are idempotents then we say that e dominates fϊίef —
fe = f. An idempotent e Φ 0 is primitive if it dominates only 0 and
itself. For rings this is equivalent to saying that e is primitive if it is
not the sum of two non-zero orthogonal idempotents.

THEOREM 6.2. Let R be a ring satisfying the following conditions',
( i ) R is left and right π-regular;
(ii) Every primitive idempotent of R is in the center of R)
(iii) Every non-zero idempotent of R dominates a primitive idem-

potent;
(iv) If x e R then xe = 0 for all but finitely many primitive

idempotents e.
Then R is the direct sum of a semi-divided ring and a nil ring, and
conversely. If, in addition, R satisfies the condition:

(v) Every element of R has a left or right identity,
then R is semi-divided, and conversely.

Proof. Let e be a primitive idempotent. Then Re = eR, since e
is in the center of R, and e is the identity of Re. Since e is primitive
e is unique non-zero idempotent of Re. If a e Re is not nilpotent then
an is invertible in Re. But ea = a and so, by 4.3, a is invertible in Re.
Hence Re is a divided ring.

Let {βj be the set of all primitive idempotents of R. eβj = 0 if
βi Φ eό. The sum ΣRe{ is direct; for if x e Re^ Π Σ ^ ^te; then x = xe3- =
Σ&jχieiej = 0 Thus Rx = ΣRβi is semi-divided.

Let R2 be the set of all xe R for which ase* = 0 for all primitive
idempotents e{. R2is an ideal of R. If R2 contains a non-zero idempotent
then, by condition (iii) R2 contains a primitive idempotent e. But then
we would have e = e2 = 0. Hence, by 6.1, JB2 must be nil.

The sum i^ + iϋ2 is direct; for if x Φ 0 is an element of Rλ then
xe{ Φ 0 for at least one e{. Hence, Rλ Π R2 — 0. We now wish to show
that R = Rλ + R2. lΐ x e R then xe{ Φ 0 for only finitely many primitive
eim Hence, x' = x — I 7 ^ is well defined. Moreover, x'e{ = a;̂  — xel = 0
and so x' e R2. Therefore, a? = lΌs^ + x' e Rλ + R2. Hence, R is the
direct sum of a semi-divided ring and a nil ring.

The converse is directly verified.
Now suppose in addition to (i)-(iv) R also satisfies (v). Let x e R2.

Then x has a (say left) identity e = ex + e2, e1eRι,e2eR2, and

x = ex — eλx + e2x — e2x ,

since eλx — 0. But then as = efx for all m ^ 0. Since R2 is nil, βj1 = 0
for some m and so x = 0. Thus iϋ2 = 0 and i2 = i?x, a semi-divided ring.
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Again, the converse is easily verified.
That condition (iv) is actually necessary may be seen from the fol-

lowing example. Let S be the strong direct sum of countably many
copies of Z±, the ring of integers mod 4. Let R be the subring of S
generated by the weak direct sum and the element (2,2, * ,2, •••).
Then R satisfies (i)-(iii) and is not the direct sum of a semi-divided
ring and nil ring.

In conclusion, the authors wish to express their gratitude to M. P.
Drazin for several pertinent criticisms.
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