GROUP MEMBERSHIP IN RINGS AND SEMIGROUPS

GERALD LOSEY AND HANS SCHNEIDER

1. Introduction. Let R be a semigroup or associative ring. A group G in R is a subset of R which is a group under the multiplication on R. That is, G contains an idempotent e which acts as a multiplicative identity on G and if $\alpha \in G$ then there exists an element $\alpha' \in G$ such that $\alpha \alpha' = \alpha' \alpha = e$. An element α of R is said to be a group element in R if α belongs to some group in R.

The problem of deciding whether a given element of R is a group element has been investigated in various types of rings in [3], [4], [5], [6], [10], [11]. The purpose of the present paper is the generalization and extension of some results of Barnes and Schneider [3], Drazin [4] and Farahat and Mirsky [6].

Section 2 of this paper extends some results of [6] on the imbedding of the groups contained in a ring with identity in the group of units of the ring.

In §3 use is made of the concept of left π -regularity. McCoy [9] introduced the concept of π -regularity, the consequences of which have developed in [1], [2], and [8]. It imposes a finitness condition satisfied, for example, by rings with minimum condition, by nil rings, by the "divided" rings of [6] and by direct sums of such rings. This condition is found to be sufficient in many of the cases where [6] uses the condition that the ring be a direct sum of divided rings. Moreover, the condition of left π -regularity is applicable to the case of semigroups. Under this condition, it is shown that if S is an extension of a semigroup or ring R, $\alpha \in R$ and α is a group element in S, then α is a group element of R.

Section 4 deals with conditions under which some power of a given element of R is a group element.

Section 5 gives a necessary and sufficient condition for the same property in terms of annihilators.

In order to point up the comparative weakness of the condition of left π -regularity of a ring necessary and sufficient conditions are given in §6 that a left π -regular ring be a direct sum of divided rings.

2. Groups in rings with identity. Throughout this section R will denote a ring with an identity element 1 and U will denote the group of units of R.

Received August 1, 1960. The research of the second named author was supported by the United States Army under Contract No. DA-11-022-ORD-2059, Mathematics Research Center, United States Army, Madison, Wis.

LEMMA 2.1. (Farahat and Mirsky [6]) Let G be a group with idempotent e in R. Then the mapping $\eta: G \to U$ defined by $\eta(g) =$ g + (1 - e) is an isomorphism of G onto a subgroup G_1 of U. The idempotent e commutes with every element of G_1 and $G = eG_1$. Moreover, if $x \in G_1$ then x = ex + (1 - e).

Proof. Let $g \in G$ and let g' be its inverse in G. Then

$$\{g + (1 - e)\}\{g' + (1 - e)\} = gg' + (1 - e)^2 = e + (1 - e) = 1$$
,

whence $g + (1 - e) \in U$. The verification that η is an isomorphism is routine.

If $x \in G_1$ then x = g + (1 - e) for some $g \in G$. Hence ex = xe = g. It follows that x = ex + (1 - e) and that $G = eG_1$. Thus the lemma is proved.

Now let C(e) denote the set of all elements of U which commute with e. Then, clearly, eC(e) is a group with idempotent e in R. It follows from Lemma 2.1 that every group with idempotent e in R is contained eC(e), whence eC(e) is the unique maximal group with idempotent e in R. We set M(e) = eC(e). If we now apply the isomorphism η of Lemma 2.1 to M(e) we obtain a subgroup $M_1(e)$ of U. It also follows from Lemma 2.1 that $M_1(e) \subseteq C(e)$. We shall show that $M_1(e)$ is not only a subgroup of C(e), but is, in fact, a direct factor. This will follow from the more general Theorem 2.2.

If e_1, e_2, \dots, e_n are idempotents of R, let $C(e_1, e_2, \dots, e_n)$ denote the set of all elements of U which commute with each of e_1, e_2, \dots, e_n .

THEOREM 2.2. If e_1, e_2, \dots, e_n are mutually orthogonal idempotents in R and $e_1 + e_2 + \dots + e_n = 1$ then

$$C(e_1, e_2, \cdots, e_n) = M_1(e_1) \otimes M_1(e_2) \otimes \cdots \otimes M_1(e_n)$$

 $\cong M(e_1) \otimes M(e_2) \otimes \cdots \otimes M(e_n) .$

Proof. Let $C = C(e_1, e_2, \dots, e_n)$.

(1) We shall first show that if $i \neq j$ then $M_1(e_i)$ and $M_1(e_j)$ commute elementwise. Let $x \in M_1(e_i)$ and $y \in M_1(e_j)$. Then $x = e_i x + (1 - e_i)$ and $y = e_j y + (1 - e_j)$. Therefore

$$xy = e_i x(1-e_j) + (1-e_i)e_j y = e_i x + e_j y$$

which, by symmetry, is also equal to yx.

(2) Next, $C = M_1(e_1) \times M_1(e_2) \times \cdots \times M_1(e_n)$. For suppose $x \in C$. Then $e_i x + (1 - e_i) \in M_1(e_i)$, $i = 1, \dots, n$. Now

$$\{e_i x + (1 - e_i)\} \cdots \{e_n x + (1 - e_n)\}$$

= $e_1 x + \cdots + e_n x = (e_1 + \cdots + e_n)x = x$.

(3) We now prove that $M_{_1}(e_i)\cap \prod_{j
eq i}M_{_1}(e_j)=1.$ For let x belong to this intersection. Then

$$x = e_i x + (1-e_i) = \prod\limits_{j \neq i} \left\{ e_j x_j + (1-e_j)
ight\}$$
 ,

where $x_j \in U$. Hence, from the commutativity of the $e_j x_j + (1 - e_j)$ and the fact that $e_i \{e_j x_j + (1 - e_j)\} = e_i$, it follows that

$$e_i x = x e_i = e_i imes e_i imes \cdots imes e_i = e_i$$
 ,

and so

$$x = e_i x + (1 - e_i) = e_i + (1 - e_i) = 1$$
 .

From (1), (2) and (3) it follows that C is the direct product of the $M_1(e_i)$.

COROLLARY 2.3. $C(e) = M_1(e) \otimes M_1(1-e) \cong M(e) \otimes M(1-e)$.

Proof. It is merely necessary to notice that C(e) = C(e, 1 - e).

3. Group elements in extensions of π -regular semigroups and rings. In this section R will generally denote a semigroup; results in which R must be assumed to be a ring will be so indicated.

Let R be a semigroup and $\alpha \in R$. We say that α is left π -regular ([8], [2]) if there exists an element x in R and a positive integer n such that $x\alpha^{n+1} = \alpha^n$. The semigroup R is said to be left π -regular if every element of R is left π -regular. Similar definitions are made for right π -regularity. Evidently, if α is both left and right π -regular then there exist x and y in R and a positive integer n for which $x\alpha^{n+1} = \alpha^n = \alpha^{n+1}y$.

Left π -regularity is a finiteness condition in the following sense: The element α is left π -regular if and only if the descending sequence of left ideals $R\alpha \supseteq R\alpha^2 \supseteq R\alpha^3 \supseteq \cdots$ terminates in a finite number of steps. More precisely, $x\alpha^{n+1} = \alpha^n$ implies that $R\alpha^{n+1} = R\alpha^n$, and conversely, $R\alpha^{n+1} = R\alpha^n$ implies that $x\alpha^{n+2} = \alpha^{n+1}$ for some $x \in R$, and, if R has an identity, implies $x\alpha^{n+1} = \alpha^n$.

Left π -regularity does not imply right π -regularity and, of course, conversely. In the case of semigroups this is shown by the following example. Let σ and τ be two infinite cardinals with $\tau \leq \sigma$, and let Ebe a set of cardinal σ . Let B be the semigroup of all one-to-one mappings of E into itself for which the completement of αE in E is of cardinal τ . It is easy to see that for each $\alpha \in B$ there is an $x \in B$ such that $x\alpha$ is the identity map on αE and so $x\alpha^2 = \alpha$, whence B is left π -regular. But for all integers n and all $y \in B$, $\alpha^{n+1}yE$ is properly contained in $\alpha^n E$ and, hence, no element of B is right π -regular. (In the case that $\sigma = \tau = \aleph_0$, the semigoup B is called the semigroup of Baer and Levi.)

THEOREM 3.1. Suppose R is a semigroup and S is an extension of R. If $\alpha \in R$ is left π -regular and α is a group element in S, then α is also a group element in R.

Proof. Suppose α is a group element in S. Then there exists α' , $e \in S$ such that

$$lpha e = e lpha = lpha$$
 , $lpha' e = e lpha' = lpha'$, $lpha lpha' = lpha' lpha = e$.

Since $\alpha \in R$ is left π -regular there exists an element $x \in R$ and a positive integer n for which $\alpha^n = x\alpha^{n+1}$. Hence $e = \alpha^n \alpha'^n = x\alpha^{n+1}\alpha'^n = x\alpha e = x\alpha \in R$. Moreover, $\alpha' = e\alpha' = x\alpha\alpha' = xe \in R$. Consequently, α is a group element in R and the theorem is proved.

We note that it follows from this theorem that if S is any extension of the semigroup B of our example and $\alpha \in B$, then α is not a group element in S. For if α were a group element in S it would also be a group element in B and hence right π -regular in B.

An element α of a semigroup R is called *cancellable* (often called regular) if α is both right and left cancellable, viz: $\alpha x = \alpha y$ implies x = y and $x\alpha = y\alpha$ implies x = y. In a ring an element is cancellable if and only if it is not a proper divisor of zero.

COROLLARY 3.2. Let R be a semigroup and let T be an extension of R. Suppose

(i) Every element of R is cancellable in T,

(ii) For each $\alpha \in R$, $x \in T$ there exist $\alpha' \in R$, $x' \in T$ such that $\alpha x' = x\alpha'$,

(iii) Every element of R is left π -regular in R.

Then T contains an identity and R is a group.

Note that if R is a ring and R^* is the set of non-zero elements of R, then if R^* satisfies (i), (ii) and (iii), the conclusion of the corollary tells us that R is a division ring.

Proof. By a slight modification of an argument of Jacobson [7], p. 118, we may form a semigroup of fractions x/α , $x \in T$, $\alpha \in R$. If we denote this semigroup of fractions by S, we may imbed T, and consequently R, in S by the mapping $x \to x\alpha/\alpha$. The element α/α is an identity for S and, of course, also for T. Every element of R is invertible in S with respect to 1, namely its inverse is α/α^2 . In view of (iii) it follows that $1 \in R$, and thus to T, and that each element of R has an inverse in R, whence R is a group.

1092

We note that if R is assumed to be in the center of T then condition (ii) is automatically satisfied with $\alpha = \alpha'$ and x = x'.

COROLLARY 3.3. Let R be a ring, finitely generated as a module over its center C. Suppose

(i) Every non-zero element of R is cancellable, that is, R has no proper zero divisors,

(ii) Every element of C is left π -regular in C, then R is a division ring.

Proof. By Corollary 3.2, C is a field. Thus R is a finite dimensional algebra over C. But, by (i), this algebra has no zero divisors and a finite dimension algebra without zero divisors is a division ring.

4. Powering elements into group elements. Under certain conditions an element α of a semigroup R may not be a group element itself although some power of it may be. An example of this is the case when R contains a zero element and α is a nilpotent element of R.

THEOREM 4.1. Let R be a semigroup and S an extension of R such that for each $x \in S$ there is a positive integer m = m(x) for which $x^m \in R$. Suppose $\alpha \in R$ and α is both left and right π -regular in S.¹ Then α^n is a group element in R for some n and conversely.

Proof. Since α is both left and right π -regular, find $x, y \in S$ and a positive integer n such that $x\alpha^{n+1} = \alpha^n = \alpha^{n+1}y$. If $p \ge m$ then it follows that $x\alpha^{p+1} = \alpha^p = \alpha^{p+1}y$. Find m(x) and m(y) such that $x^{m(x)}$, $y^{m(y)} \in R$ and set p = m(x)m(y)n. Then $x^p, y^p \in R$ and $x\alpha^{p+1} = \alpha^p = \alpha^{p+1}y$. Note that

$$xlpha^p=x^2lpha^{p+1}=lpha^{p+1}y^2=lpha^p y$$

and so we may set $\beta = x^{2p}\alpha^p = \alpha^p y^{2p}$ and $e = x^p \alpha^p = \alpha^p y^p$. Then β , $e \in R$ and

$$\beta \alpha^{p} = x^{2p} \alpha^{2p} = x^{2p-1} x \alpha^{p+1} \alpha^{p-1} = x^{2p-1} \alpha^{2p-1} = \cdots = x^{p} \alpha^{p} = e$$

Similarly $\alpha^p \beta = e$. Also

$$e\alpha^{p} = x^{p}\alpha^{2p} = x^{p-1}x\alpha^{p+1}\alpha^{p-1} = x^{p-1}\alpha^{2p-1} = \cdots = \alpha^{p}$$

By another similar argument $\alpha^{p}e = \alpha^{p}$. Further,

$$e\beta = x^p \alpha^{2p} y^{2p} = x^p \alpha^p y^p = x^{2p} \alpha^p = \beta$$

¹ Drazin [4] calls an element which is both left and right π -regular a pseudo-invertible element.

and $\beta e = \beta$. Thus, in order to show that α^p is a group element, it is now sufficient to show that e is idempotent. But $e^2 = x^q \alpha^{2p} y^p = \alpha^p y^p = e$.

Conversely, if α^n is a group element in R and β is the group inverse of α^n , then $\beta \alpha^{2n} = \alpha^n = \alpha^{2n}\beta$. Hence, α is both left and right π -regular in R, and therefore in S.

COROLLARY 4.2. If R is a semigroup, $\alpha \in R$ and α is both left and right π -regular, then α^n is a group element in R for some n and conversely. More precisely, α^n is a group element if and only if

$$x\alpha^{n+1} = \alpha^n = \alpha^{n+1}y$$

for some $x, y \in R$.

Proof. Take S = R is the preceding theorem.

This result appears in a somewhat different guise in a paper by M. P. Drazin, [4].

COROLLARY 4.3. Let R be a semigroup and α^n a group element with identity e in R. If $e\alpha = \alpha$ then α is a group element in R, and conversely.

Proof. Let α^n be a group element with identity e and inverse β . Then α^{n+1} is also a group element with the same identity and so $\alpha = e\alpha = \beta \alpha^n \cdot \alpha = \beta \alpha^{n+1}$ a product of group elements with idempotent e and thus a group element itself.

Conversely, if α is a group element with identity f and α^n is a group element with identy e, then e = f since α^n is also a group element with identity f.

5. Annihilator conditions that a given element be a group element.

In a ring R we define the left and right annihilators of an element α in the usual manner:

 $A_{i}(0, \alpha) = \{z \in R : z\alpha = 0\}$ and $A_{i}(0, \alpha) = \{z \in R : \alpha z = 0\}$.

So that we may state our next results for semigroups as well as rings we shall generalize the concept of an annihilator. In a semigroup R we shall set

$$A_{i}(x, \alpha) = \{z \in R: z\alpha = x\alpha\},\$$
$$A_{i}(x, \alpha) = \{z \in R: \alpha z = \alpha x\}.$$

Several consequences of these definitions are easily proved (though we shall makes no use of these properties). The sets $A(x, \alpha)$ are equivalence

1094

classes modulo the equivalence relation $z \equiv_i x$ defined by $z\alpha = x\alpha$, and similarly for the sets $A_r(x, \alpha)$. An element $\alpha \in R$ is cancellable if and only if $A_i(x, \alpha) = A_r(x, \alpha) = \{x\}$ for all $x \in R$. If R is a ring, then $A_i(x, \alpha) = x + A_i(0, \alpha)$ and $A_r(x, \alpha) = x + A_r(0, \alpha)$. Finally, (and this we shall need) it is evident that

$$A_{l}(x, \alpha) \subseteq A_{l}(x, \alpha^{2}) \subseteq A_{l}(x, \alpha^{3}) \subseteq \cdots$$

and that $A_i(x, \alpha^n) = A_i(x, \alpha^{n+1})$ implies that $A_i(x, \alpha^n) = A_i(x, \alpha^m)$ for all $m \ge n$, and similarly for the sets $A_r(x, \alpha)$, $A_r(x, \alpha^2)$, etc.

In analogy with the phrase left π -regular we introduce the following terminology: An element α of a semigroup R is called *left A-regular* in R if there exists a positive integer n for which $x\alpha^{n+1} = z\alpha^{n+1}$ implies that $x\alpha^n = z\alpha^n$ for all x and z in R. Thus α in R is let A-regular if and only if the ascending chains $A_i(x, \alpha) \subseteq A_i(x, \alpha^2) \subseteq \cdots$ terminate in finitely many steps for all $x \in R$.

It is easy to see that a left π -regular element of a semigroup R is right A-regular, and a right π -regular element is left A-regular. In this connection, a slight generalization of a theorem Azumaya [2] proved for rings is of interest.

THEOREM 5.1. Let R be a semigroup and α a left π -regular element of R. If α is left A-regular then α is right π -regular, and conversely.

Proof. Suppose α is left A-regular in R. Then we may choose a positive integer n such that $z\alpha^{n+1} = z'\alpha^{n+1}$ implies $z\alpha^n = z'\alpha^n$ for all z, $z' \in R$ and $x\alpha^{n+1} = \alpha^n$ for some $x \in R$. We wish to prove that $\alpha^{n+1}y = \alpha^n$ for some $y \in R$. It is clearly sufficient to prove that $\alpha^m x^m \alpha^n = \alpha^n$ for $m = 0, 1, 2, \cdots$. Since the case m = 0 is trivial, we proceed by induction. Thus, assume that $\alpha^m x^m \alpha^n = \alpha^n$. Then

$$lpha^{m+1} x^{m+1} lpha^{n+1} = lpha^{m+1} x^m lpha^n = lpha^{n+1} = x lpha cdot lpha^{n+1}$$

whence $\alpha^{m+1}x^{m+1}\alpha^n = x\alpha \cdot \alpha^n = \alpha^n$.

That the converse is true has already been remarked before the statement of the theorem.

The second theorem of this section relates the integers n which occur in the definitions of π -regularity and A-regularity. Let n be a positive integer and let z and α be elements of the semigroup R. We shall say that condition $A(z, \alpha, n)$ holds if both $A_i(z, \alpha^{n+1}) = A_i(z, \alpha^n)$ and $A_r(z, \alpha^{n+1}) = A_r(z, \alpha^n)$. Thus an element α is both right and left A-regular if there exists a positive integer n such that $A(z, \alpha, n)$ holds for all z, and conversely. If R is a ring and $A(z, \alpha, n)$ is satisfied for some $z \in R$ then $A(z, \alpha, n)$ is satisfied for all $z \in R$.

THEOREM 5.2. Let R be a semigroup and let α be an element of R

which is both left and right π -regular in R. The following results hold:

(i) If α^n is a group element in R then $A(z, \alpha, n)$ holds for all $z \in R$.

(ii) If $A(\alpha, \alpha, n)$ holds then α^{n+1} is a group element in R.

(iii) If R has identity 1 and $A(1, \alpha, n)$ holds then α^n is a group element.

We remark that under the hypotheses of the theorem, α^n is a group element for some n and α is both left and right A-regular.

Proof. (i) If α^n is a group element, then it follows from Corollary 4.2 that $x\alpha^{n+1} = \alpha^n = \alpha^{n+1}y$ for some $x, y \in R$. Suppose that u is any element of $A_i(z, \alpha^{n+1})$ where $z \in R$. Then $z\alpha^n = z\alpha^{n+1}y = u\alpha^{n+1}y = u\alpha^n$, whence $u \in A_i(z, \alpha^n)$ which implies $A_i(z, \alpha^{n+1}) = A_i(z, \alpha^n)$. The proof of $A_r(z, \alpha^{n+1}) = A_r(z, \alpha^n)$ is similar.

(ii) Suppose that $A(\alpha, \alpha, n)$ holds. Since α is let π -regluar there exists a positive integer m and an $x \in R$ such that $x\alpha^{m+1} = \alpha^m$. We shall show that $x\alpha^{n+2} = \alpha^{n+1}$. If m < n + 1, we obtain this equality by multiplying the previous equality by α^{n-m+1} . If m = n + 1 there is nothing to prove. If m > n + 1 then $x\alpha^2\alpha^{m-1} = \alpha\alpha^{m-1}$ and $A(\alpha, \alpha, n)$ implies that

$$xlpha^{u_{+2}}=xlpha^2lpha^n=lphalpha^n=lpha^{n+1}$$
 .

The existence of an element $y \in R$ satisfying $\alpha^{n+2}y = \alpha^{n+1}$ is proved similarly. It now follows from Corollary 4.2 that α^{n+1} is a group element.

(iii) The proof is similar to the proof of (ii). This time it follows from $x\alpha^{m+1} = 1\alpha^m$ when m n that $x\alpha^{n+1} = x\alpha\alpha^n = 1\alpha^n = \alpha^n$ by virture of $A(1, \alpha, n)$. Hence α^n is a group element.

6. A criterion that a ring be semi-divided. A ring is said to be *divided* if it has an identity and every element is invertible or nilpotent. A ring is *semi-divided* if it is the direct sum of (possibly infinitely many) divided rings. The terminology is that of [6]. In this section we shall give necessary and sufficient conditions that a left π -regular ring be semi-divided.

LEMMA 6.1. Let R be a semigroup both left and right π -regular. Then every non-nil (left) ideal of R contains a non-zero idempotent.

Proof. Let I be a non-nil left ideal of R and α a non-nilpotent

1096

element of *I*. α^n is a group element with respect to the non-zero idempotent *e* for some *n*. Let β be the inverse of α^n . Then $e = \beta \alpha^n \in I$.

If e and f are idempotents then we say that e dominates f if ef = fe = f. An idempotent $e \neq 0$ is primitive if it dominates only 0 and itself. For rings this is equivalent to saying that e is primitive if it is not the sum of two non-zero orthogonal idempotents.

THEOREM 6.2. Let R be a ring satisfying the following conditions: (i) R is left and right π -regular:

(ii) Every primitive idempotent of R is in the center of R;

(iii) Every non-zero idempotent of R dominates a primitive idempotent;

(iv) If $x \in R$ then xe = 0 for all but finitely many primitive idempotents e.

Then R is the direct sum of a semi-divided ring and a nil ring, and conversely. If, in addition, R satisfies the condition:

(v) Every element of R has a left or right identity, then R is semi-divided, and conversely.

Proof. Let e be a primitive idempotent. Then Re = eR, since e is in the center of R, and e is the identity of Re. Since e is primitive e is unique non-zero idempotent of Re. If $\alpha \in Re$ is not nilpotent then α^n is invertible in Re. But $e\alpha = \alpha$ and so, by 4.3, α is invertible in Re. Hence Re is a divided ring.

Let $\{e_i\}$ be the set of all primitive idempotents of R. $e_i e_j = 0$ if $e_i \neq e_j$. The sum ΣRe_i is direct; for if $x \in Re_j \cap \sum_{i \neq j} Re_i$ then $x = xe_j = \sum_{i \neq j} x_i e_i e_j = 0$. Thus $R_1 = \Sigma Re_i$ is semi-divided.

Let R_2 be the set of all $x \in R$ for which $xe_i = 0$ for all primitive idempotents e_i . R_2 is an ideal of R. If R_2 contains a non-zero idempotent then, by condition (iii) R_2 contains a primitive idempotent e. But then we would have $e = e^2 = 0$. Hence, by 6.1, R_2 must be nil.

The sum $R_1 + R_2$ is direct; for if $x \neq 0$ is an element of R_1 then $xe_i \neq 0$ for at least one e_i . Hence, $R_1 \cap R_2 = 0$. We now wish to show that $R = R_1 + R_2$. If $x \in R$ then $xe_i \neq 0$ for only finitely many primitive e_i . Hence, $x' = x - \Sigma xe_i$ is well defined. Moreover, $x'e_i = xe_i - xe_i^2 = 0$ and so $x' \in R_2$. Therefore, $x = \Sigma xe_i + x' \in R_1 + R_2$. Hence, R is the direct sum of a semi-divided ring and a nil ring.

The converse is directly verified.

Now suppose in addition to (i)-(iv) R also satisfies (v). Let $x \in R_2$. Then x has a (say left) identity $e = e_1 + e_2$, $e_1 \in R_1$, $e_2 \in R_2$, and

$$x=ex=e_{\scriptscriptstyle 1}x+e_{\scriptscriptstyle 2}x=e_{\scriptscriptstyle 2}x$$
 ,

since $e_1x = 0$. But then $x = e_2^m x$ for all $m \ge 0$. Since R_2 is nil, $e_2^m = 0$ for some m and so x = 0. Thus $R_2 = 0$ and $R = R_1$, a semi-divided ring.

Again, the converse is easily verified.

That condition (iv) is actually necessary may be seen from the following example. Let S be the strong direct sum of countably many copies of Z_4 , the ring of integers mod 4. Let R be the subring of S generated by the weak direct sum and the element $(2, 2, \dots, 2, \dots)$. Then R satisfies (i)-(iii) and is not the direct sum of a semi-divided ring and nil ring.

In conclusion, the authors wish to express their gratitude to M. P. Drazin for several pertinent criticisms.

BIBLIOGRAPHY

1. R. Arens and I. Kaplansky, *Topological representations of algebras*, Trans. Amer. Math. Soc., **63** (1948), 457-481.

2. G. Azumaya, Strongly π-regular rings, J. Fac. Sci. Hokkaido University, 13 (1954), 34-39.

3. W. E. Barnes and H. Schneider, The group membership of a polynomial in an element algebraic over a field, Arch. Math., $\mathbf{8}$ (1957), 166-168.

4. M. P. Drazin, *Psuedo-inverses in associative rings and semigroups*, Amer. Math. Monthly, **65** (1958), 506-514.

5. H. K. Farahat and L. Mirsky, A condition for diagonability of matrices, Amer. Math. Monthly, **63** (1956), 410-412.

6. H. K. Farahat and L. Mirsky, Group membership in rings of various types, Math. Zeitschr., **70** (1958), 231-244.

7. N. Jacobson, The theory of rings, Math. Survey II, (1943), American Math. Soc.

8. I. Kaplansky, Topological representations of rings II, Trans. Amer. Math. Soc., 68 (1950), 62-75.

9. N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc., 45 (1939), 175-178.

10. A. Ranum, The group membership of singular matrices, Amer. J. Math., **31** (1909), 18-41.

11. A. Ranum, The groups belonging to a linear associative algebra, Amer. J. Math., **49** (1927), 285-308.

UNIVERSITY OF WISCONSIN AND

MATHEMATICS RESEARCH CENTER,

U. S. ARMY, MADISON, WISCONSIN