EXTENSIONS OF SHEAVES OF ASSOCIATIVE
ALGEBRAS BY NONTRIVIAL KERNELS

JoHN W. GRAY

Introduction. Let X be a topological space, 4 a sheaf of associa-
tive algebras over X and A a sheaf of two-sided A-modules considered
as a sheaf of algebras with trivial multiplication. It was shown in [1]
that the group F'(4, A) of equivalence classes of algebra extensions of
A with A as kernel occurs naturally in an exact sequence

. — HY(X, A) — F(4, A) — Ext(4, A) — H¥X, A) — +++

where H*(X, A) denotes the Cech cohomology of X with coefficients in
A. In this paper the same question will be discussed for the case in
which A has a non-trivial multiplication. It will be shown that under
appropriate hypothese F'(A, A) occurs in a similar exact sequence, except
that in the other terms of the sequence, A must be replaced by the
“bicenter’” K, of A. A precise statement of the main result of this
paper is given in Theorem 2. The methods used here are an adaptation
of those used by S. MacLane in [2].

1. The extension problem. Let R be a sheaf of rings on a to-
pological space X. If C and D are sheaves of R-modules, then Homg
(C, D) will denote the sheaf of germs of R-homomorphisms of C into
D and Ext:(C, D) will denote the nth derived functor of Hom, (C, D).
If Ais a sheaf of associative R-algebras, then, as usual, A* will denote
the opposite of R-algebras and A° = A®;A* will denote the enveloping
sheaf of A. A is a sheaf of A°-modules, the operation of A° on A being
given by the formula (A& £*)(v) = Mrpe.

Now, let M, = Hom (A, AP Hom (A, A)

where @ denotes the direct sum. Then M., being the direct sum of
sheaves of rings, is itself a sheaf of rings and A can be considered as
a sheaf of left and right M’-modules as follows: Let ¢ = (o, 0,) € M.
Then the left action is given by o(a) = 6.(a) and the right action by
(a)o = g,(a). Let

M, = {0 € M,|a(ob) = (ag) b for all a, be A}.
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Then M, is a subsheaf of subrings of M;. M, will be called the sheaf
of germs of bimultiplications of A. Note that we cannot assert that A
is a sheaf of Mj;-modules since we do not know that (ca)r = o(ar). If
o and 7 satisfy this relation then they are called permutable bimultiplic-
ations. The natural ring homomorphisms A — Hom, (A, A) and A —
Hom (A, A) given respectively by left and right multiplication induce a
ring homomorphism z¢: A — M, whose image is a sheaf of two-sided
ideals. The kernel K, of ¢ will be called the bicenter of A and the
cokernel P, of p will be called the sheaf of germs of outer bimultip-
lications of A. P, is a sheaf of rings and K, is a sheaf of left and
right P,-modules. As above, K, is not a sheaf of P;-modules. Elements
¢ and T of P, such that (Ga)T = 6(aT) for all a ¢ K, will be called
permutable. Note that & and 7 are permutable if and only if represen-
tative elements ¢ and 7 in M, are also permutable.

An extension of a sheaf 4 of R-algebras by a sheaf A of R-algebras
is an exact sequence.

(1) 0-A—>T—"54-0

of sheaves of R-algebras and R-algebra homomorphisms. As in [1], we
shall say that such a sequence is locally trivial if there exists a covering
7z = {U,} of X such that the restriction of the sequence to each U,
splits as an exact sequence of sheaves of R-modules. Hence if (1) is
locally trivial then there exist R-module homomorphisms 7,:4|U, —>
'l U, with p j, = identity. Furthermore, since A is a sheaf of two-sided
ideals in I, the map p#: A—— M, extends to a map .. I'— M,.
Thus, we may define the composition

6, = (coker t)optroj,: 41U, — P,| U, .

Since (g — Ju) 1 4 | Uyg—— A| U,g, we see that 0 = 0, 0on Uy = U, N U,.
Hence {6,} determines an element 6 € Hom, (4, P,). We shall say that
this 4 is induced by the extension (1). Clearly ¢ is an algebra homo-
morphism whose image consists of permutable elements. Note that this
implies that K, is a sheaf of 4°modules via the operation of P, on K,.

If 6 € Homg (4, P,) is an algebra homomorphism whose image con-
sists of permutable elements, then, with respect to the usual equivalence
relation, we wish to classify the extensions which induce € in the
manner described above.

2. The complexes. From [1], we recall that a sheaf B of R-
modules is said to be weakly R-projective if each stalk B, is an R,-
projective module and it is said to be R-coherent if there exists a
covering 7z = {U,} such that for each U, there are integers p and ¢
and R-homomorphisms so that the sequence
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R*|U,— R U,—> B|U,——0

is exact. Also, as in [1], C*(X, B) will denote the direct limit over
coverings 7 indexed by X of the Cech cohomology complexes C*(Z/, B).
If S(4) =R and S,(A4), » > 0 denotes the n-fold tensor product of 4
with itself, then we define

L*(B) = CY(X, Homy (Sy4), B)) .

ProprosiTiON 1. If X is paracompact Hausdorff and if A is weakly
R-projective and R-coherent, then, for each n = 0,

0 — L*™(K,) —> L*™(A) == L*"(M,) > L*™(P,) — 0

is an exact sequence of complexes, the mappings being those induced
by the exact sequence of sheaves

n

0 K, A5 M, P, 0

Proof. In [1] it was shown that if 4 is weakly R-projective and
R-coherent then so is S,(4) and hence the sheaves FEwt: (S,(4), B) =0
for ©+ >0, » =0 and for all B. Hence, for each n = 0, there is an
exact sequence of sheaves

0 —— Homy (S.(4), K,) — Hom (S,(4), A) — Homy (S.(4), M)
— Homy (S(4), P) — 0 .

If X is paracompact Hausdorff then C*(X, —) is an exact functor and
hence we get the indicated sequence of complexes.

We would like to consider each of the complexes L!’(—) in the
preceding proposition as a bicomplex in some manner which reflects a
given structure of K, as a sheaf of A°-modules and which coincides
with the usual structure of Homg (S.(4), —) as a complex. This is too
much to ask, but such a structure on L%’(A) can be approximated as
follows: Let 8 € Hom (4, P,) be an algebra homomorphism whose image
consists of permutable elements. If 6 is regarded as an element of
L**(P,), then by exactness there is an element ¢ € L°*(M,) such that
w.(0) = 6. Let o be represented by cocycle {o,} on some sufficiently
fine covering 2. Given this date, we can define a ‘‘coboundary”’
operator &, on L™"(A) by the following formula. Let ke L™"(A) be
represented by a cochain {k, ..., } on 7. Then
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We shall see that the restriction of 8, to L*/(K,) is in fact a good
coboundary operator.
In order to investigate the properties of &, and the relations be-

tween &, and the Cech coboundary operator 33, we must introduce some
more notation.

(2.1) To avoid constantly writing variables we make the following
convention: If r is a function of p variables and s is a function of ¢
variables, both with values in an algebra, then r-.s is the function of
» + ¢ variables defined by

'r's(x’l,.. ,)"p+q) = "”(7\1 ,,,,, 7\’p)'8(7\’p+1‘.u,k’p+q) .

(2.2) m will denote ambiguously the multiplication in all of the algebras
which appear here.

(2.3) Since 6 is an algebra homomorphism,
7.(04 0, — d,0m) = 0 Hence there exists an f e L**A) which is repre-
sented by a cochain {f,} on Z/ such that

WPoSf o= 0420y — G0m .

(2.4) Since 7,(50) =8m,(0) =0, there exists an ke L'(A) which is
represented by a cochain {k,s} on Z/ such that
#*hwﬁ = (ga)wﬁ .

2.5) If ¢ e L**(M,) also satisfies 7, (¢') = 6, then =z, (¢’ — o) =0 and
hence there exists a & € L°'(A) which is represented by a cochain {7,}
on 7/ such that

Ui Oy =0, — G, .
Using these notations the following result in easily checked:
ProposITION 2. If ke L™"(A) is represented by {k.,...,} on Z,
then
(2.6) 8.8, Ka.....a,, = Say* Kay.....a, — Kay....ap," Fa

@7) 8,3 k),

..... @1

2.8) 8, ke,

COROLLARY. L'/ (K,) is a bicomplex with respect to the pair of
differential operators 8,8,. The total differential operator is given by
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§=(=1)M§+3,.

This differential operator depends only on 6.

Finally, we shall need to know something about the behavior of 5
on products of low dimensional cochains, where Cech cochains are
multiplied by multiplying the values (suitably restricted when necessary)
on corresponding elements of the nerve of a covering according to the
convention of 2.1. It is easy to verify the following statements by ex-
plicit calculation.

PropoSITION 3. If » e L"?(A) gnd s € L"(A) are represented on 7/
by {r.} and {s,} respectively, then &(r-s) € L'?*%(A4) and

(2.9) 5(r8)us = (07)ug* S + Ta* (88)as + (57)ag* (5)as -

If te L'”(A) and u e L*%(A) are represented on 7/ by {fus} and {u.g}
respectively then 8(¢-u) € L*?+9(A) and

(2-10) (S(t°u'))w37 = (St)wﬁv'uav + twv'(/gu)aﬁv + (gt)wsy'(gu)wﬂy — lap*Ugy
— tﬁy'ums .

Finally, if r € L™?(A) and s € L™%A) then 8, satisfies the good co-
boundary formula.

(2.11) 8(r-s) = (8,7)+s + (—1)*r:8,s .

3. The obstruction. We shall regard the complex L*/(K,) as
being filtered by the second degree and we define F*(L) = 3,,,L"(K,).
In analogy with the proceedings of [1], the classical results for exten-
sions of algebras suggest that each algebra homomorphism 6 € Hom (4,
P,) whose range consists of permutable elements determines an ‘‘obst-
ruction’ in H?®(F*(L)); this obstruction being zero if and only if there
exists an extension which induces ¢ in the manner described in §1. A

representative cocycle for such a cohomology class would be an element
Of L2.1(KA) @ LI,Z(KA) @ L0,3(KA).

Let o € L*'(A) satisfy 7,0 = 0 and let

feL*(A) and h e L'*(A) be defined as in 2.8 and 2.4. Then the
components of a representative cocycle of the ‘‘obstruction’’ to 6 are
defined as follows:

(i) Since ¢, (5h) = dp.h = 0, there exists an element a e L*(K,)
which is represented by a cochain {a.s} on Z/ such that

Aupy = (g\h)aﬁv

(ii) A standard elementary calculation shows that (5, f) = 0.
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Hence there exists an element ¢ € L°%K,) which is represented by a
cochain {c,} on % such that ¢, = 6, f,.

(iii) An equally elementary calculation shows that ;z*[?o‘ f—38.h —
h-h] = 0. Hence there exists an element b e L'*K,) which is repre-
sented by a cochain {b,s} on 2/ such that

bos = —(.)ap + Sohap + Mg hs

THEOREM 1. Let s = a@b@ec. Then s is a cocycle of F'(L) whose
cohomology class depends only on 6.

DEFINITION. The cohomology class of s will be denoted by Ob(6)
and will be called the obstruction to 6.

THEOREM 2. Let X be paracompact Hausdorff and let A be weakly
R-projective and R-coherent. Then Ob(0) =0 if and only if there is
an extension of A by A which induces 6. If OB(0) = 0, then the set
Fy(4, A) of equivalence classes of extensions which induce 0 s in one-
to-one correspondence with the set of elements of the group H*(F'K),
and hence the following two sequences are exact.

(1) 0— H'{Hom,(S,(4), K,)] — Ext} (4, K,) — HYX, K,)

—— Fg(4, A) — Ext2 (4, K,) — H¥X, K,) —

(2) 0— H*Homyg (S.(4), K,)] — Fu(4, ) —>

HY(X, Hom, (4, K,)) —

Proof of Theorem 1. It is clear that Sa = 88h =0, and, by 2.6,
that d,¢ = 8,6,f = 0. Thus, to prove that s is a cocycle we must show
that b = S,a and that 8¢ = —8,b. To derive the first expression, we
have by definition that

(88)apy = — (08 )apy + (88,)usy + S(h+h)upy

The first term is zero and the second and third terms can be expanded
by 2.7 and 2.10 respectively. After obvious cancellations, this yields

(Sb)wﬂv = Ba(gh)wﬁv + (gh)wﬁv'hw/ + hav'(gh)wﬂv + (gh)wﬂv'(gh)wﬂv

Since Sh=a € L**(K,), on a sufficiently fine covering multiplication by
(?o\h),,ﬁy is zero and hence 8b = d,a. Similarly, since ¢ = §.f, 3¢ can be
expanded by the equation, 2.7, for commuting $ and 8,. The resulting
expression can be simplified by using equations 2.6 and 2.11 and the
definition of b in (ii). This yields easily that

(86)ap = 8ol(5F)ap — 8ohap — haghop]l = —8,bus -

Thus s is a cocycle.
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The definition of s depends on the choices of b, i, and f. We shall
show that changing any of these changes s by a coboundary and that
any cocycle cohomologous to s can be obtained by such a choice.

Suppose that ' satisfies p.h' = $o and f' satisfies ¢, f' = -0 — gom.
Then ' —h=he L'(K,) and f' — f = f e L**K,). If s’ denotes the
cocycle corresponding to g, h' and f’, then it is easy to see that

s —s=0+8 )+ (=8 +8)F=8h+ F).

Conversely, if A@f is any 2-cochain of F'(L), then h + 4 and f + f
are admissable liftings of §, and ¢-0 — gom respectively and this change
alters s by 8(h@f). Hence, in this manner we obtain all cocycles
cohomologous to s.

It remains to show that if 7,0’ = 6, then k' and f’ can be chosen
so that the corresponding cocycle s’ =a’ + b + ¢ =s. Since 7 (0':
—0) = 0, there is a ¢ € L**(A) such that p,06 =0 —o. Let b =h +
8¢ and f'=f + 8,6 + 6-6. Then it is immediate that A’ and f’ are
liftings of 8¢’ and ¢’-0’ — o’-m respectively and that a’ = W = a. The
difference 8, f' — 8,f can be expressed by 2.8. Using 2.6 and 2.11, it
is easily seen that this difference is zero and hence ¢’ =¢. The only
difficult point is to show that & = b. By definition

b = —8f + 8.k + W
Using the definitions of f’ and &’ and rearranging terms, we arrive at
the equality

baB’ - baB = [5;30‘_6,3 - /8\80-55,51 + [O—w'haﬁ + haﬁ'&a + /8\575‘}7/45 ‘l’ hmg‘/éﬁag]
4 [For 0Fup + 8FapTa + 05 ap+ 85 ap — 8(T +F)ap] -

The third bracket is zero by the formula 2.9 for the Cech coboundary
of a product and the first bracket equals —h,z:Gs — Gg-h,e by the rule
2.7 for interchanging 3, and 8. Hence the sum of the first two brac-
kets is zero and therefore b’ = b.

Proof of Theorem 2. Suppose 0 AT 254 0 is an
extension. By Proposition 3.1 of [1], the hypotheses imply that any
such extension is locally trivial considered as an extension of sheaves of
R-modules. Hence there exists a covering 2 = {U,} which carries R-
module homomorphisms j,-A4|U,—— I'| U, with p-j, = identity. If
0,:4|U,— M,|U, is defined by [g,\)](@) = j.(\)-¢ and (a)[g.\)] =
@+j.(\) then {g,} determines an element ¢ € L**(M,) which is a lifting
of the homomorphism 6 induced as in §1 by the given extension. If
we define h,s =j5 — j, and f, = JuJs — J.om, then the corresponding el-
ements h € L*'(4) and fe L"%A) satisfy p.h =8¢ and p.f = 0.0 —
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oom. Elementary calculations show that for this choice of A and f
we get that s =a b ¢ =0 and hence 0b(6) = 0.

Conversely, if Ob(H) = (0, then on some sufficiently fine covering %/,
we may choose {f,} € C"(?/ Hom, (S,(4), A)) and {h,g} € Cyu, Homy (4, A))
so that 3,f, =0, (8 h)egy = 0 and (Sf)mﬁ = 8;hug + huplepg. As in [1],
we define I to be the sheaf which is the quotient of U.(A@ 4)|U, by
the relation

(@ + hag), M ~ (@, V) for (@,\) € A 4| U,y -
Multiplication in /" is given by the formula
(@, Na (@', M)y = (a0" + g, (M)’ + ag, (V) + fo.(0 X)), AN), .

It is easy to show that this multiplication is associative: since &,f = 0
and that it agrees with the equivalence relation since S f =06h + h-h.

It follows then, exactly as in MacLane [2] that the set of equivalence
classes of extensions which realize a given 6 with Ob(6) = 0 is in one-to-
one correspondence with the set of elements of the group H*(F*(L)).
The exact sequences are derived exactly as in [1] from the exact
sequences of complexes

0 F'L F°L Eso 0
and 0 F’L F'L E%* 0.

4. Examples. (1) If K, =0 then all obstructions are zero and
all terms involving K, in the exact sequence containing Fy(4, A) are
zero. Hence there is a unique extension of 4 by A which induces a
given 4 ¢ Hom, (4, P,). As in MacLane [2], this extension can be de-
scribed as the ‘‘graph” of 6; i.e., the pull-back of the pair of maps 0:
Ad— P, w: M,— P,.

(2) If K,= A, then the map p#: A—— M, is the zero map and
hence M, = P,. Consequently, if 6 € Hom, (4, P,) is given, then ¢ may
be chosen equal to 6 and so 8¢ and ¢-0 — gom are both zero. Therefore,
any cocycle fPh € L**(A)P L' (4) is a lifting of these two terms. It
follows that 0b(0) = 0 and that Fy(4, A) = H*(F'L). Thus the results
of [1] are a special case of the results of this paper.

(8) We wish to discuss more thoroughly a remark in §3.3 of [1].
Let X be paracompact Hausdorff and let 4 be a weakly R-projective
and R-coherent sheaf of R-algebras. Suppose that A is a sheaf of R-
algebras and that

0 A r A 0

is an exact sequence of K-modules. Let 7/ = {U,} be a sufficiently fine
covering of X and let {j.} € C'(zr, Homy (4,I")) determine the locally
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trivial structure of 7" and let h,, = (§ Nae.  An algebra homomorphism
0 € Hom,, (4, P,) whose image consists of permutable elements will be
called compatible with the locally trivial structure of I" if there exists
a lifting o € L"*(M,) of 6 which is represented by a cochain {s,} on 7
such that p.h = So. Furthermore, an element f € L°*A) will be called
a multiplication compatible with 6 and & if p.f = 0.0 — gom, B =
Ssh + h+h and §.f = 0. The set of equivalence classes with respect to
the usual equivalence relation of such multiplications will be denoted by
Fy (4, 4). We wish to calculate F, ,(A, A).

Proceeding as in §2, let f € L"*(A) be a cochain such that p,f =
0.0 — oom. Corresponding to f@h there is an obstruction cocycle
s(h) =c@PbP0. The only relevant changes of s(h) are given by varying
f by an element f e L**(K,). Such a change alters s by a coboundary
in F?L. Hence we obtain the result:

THEOREM. Corresponding to 6 and h, there is an obstruction
cohomology class Ob(0, k) e H F*L) which 1is zero 1f and only if there
exists a multiplication compatible with 6 and h. If Ob(0,h) =0 then
F, (4, A) is im one-to-one correspondence with the elements of the
group H[Homy (S, (1), K,)].
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