
EXISTENCE OF A CLASS OF STEADY PLANE

GRAVITY FLOWS

D. S. CARTER

1. Introduction. A number of exact solutions representing free
boundary flows of an incompressible fluid under gravity appear in the
literature (see [1] and references given there). As pointed out in [1], how-
ever, these are obtained by ' 'inverse'' methods, and exact theoretical
treatment of problems in the large, having prescribed fixed boundaries
and singularities, appears to have been confined to the case of periodic
gravity waves.

In this paper we consider the family of steady plane irrotational
flows of an incompressible in viscid fluid in a uniform gravitational field,
with geometric configurations as illustrated in Figure 1. The fluid is

2=-D

supported by a semi-infinite horizontal plane, and is bounded on the right
by an infinite plane inclined at an angle a with the horizontal. The
flow is downward through an open slot in the horizontal plane into a jet
with a free boundary extending to infinity. This family includes the
case of the symmetric jet from a slot, obtained when a — π/2 by reflect-
ing the flow across the vertical boundary.

In addition to the angle a, the physical parameters entering the
problem include the constant specific force of gravity g, the slot width
D, the fluid velocity at the slot edge q, and the total flow rate A (cross-
sectional area of fluid entering the jet per unit time). Our principal
result, contained in Theorem 1, §3, and Theorem 4, §11, is that
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there is a similarity class of such flows for each choice of the dimension-
less pair a, gA/q\ such that 0 < a < π, gA/q3 > 0. (Questions of unique-
ness, continuity and monotonicity of the solutions will be discussed in
another communication, where it will be shown that each pair a, gA/q*
determines a unique similarity class).

A noteworthy property of the solutions is the convexity of the free
boundaries. It is implicit in the method of proof that the inclination of
each free boundary arc decreases monotonically from zero at the slot
edge to — π + a as an asymptotic limit.

The problem is formulated in § 2, and reduced in § 3 to a nonlinear
boundary value problem on the unit disk in an auxiliary complex plane
(ί-plane), involving the parameters β — 2(π — α)/π, λ = βgA/πq3, and the
function u = (wlq)llβ, where w is the conjugate flow velocity. To circum-
vent a singularity due to to the infinite nature of the free boundary, a
modified problem is introduced in § 4, with solutions corresponding to
flows as illustrated in Figure 2, where the free jet extends only a finite

distance before flowing into a straight channel. The existence of these
finite jet solutions (Theorem 2, § 4) is established in the next five sections
by a combination of fixed point and conformal mapping techniques. In
§ 10 the analytic continuation of finite jet solutions beyond the unit disk
is discussed, in preparation for the proof in § 11 that the infinite jet
solutions exist as limits of normal families of finite jet solutions.

2 Mathematical formulation* Position in the complex plane of
the flow is denoted by z = x + iy, the complex velocity potential by
W= U + iV, and the conjugate velocity by w = dWJdz. For brevity,
the line $m {e~iaz} = 0 is denoted by L. Then the mathematical con-
struction corresponding to the flow consists of

(a) a simply-connected domain in the z-plane, bounded on the right
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by L, and bounded below and on the left by a simple curve consisting
of a negative real segment — oo < % ^ — D and a free boundary arc
extending downward to y = — oo.

(b) a function W(z) which maps this domain conformally onto the
strip 0 < V < A so that the horizontal boundary and the free boundary
go into V — 0, and the inclined boundary L goes into V = A. The
derivative w = dW/dz is continuous on the closure of the flow domain,
has the positive value w(—D) = q at the slot edge, and satisfies the
condition of constant pressure

(1) \w\* = q*-2gy

on the free boundary.
The solutions established below have the additional property
(c) The inclination of the free boundary is strictly decreasing from

the value zero at the slot edge to the asymptotic limit —π + a near
y — — oo where the free boundary is asymptotic to L.

3* Reduction to a problem on the unit disk* Following a standard
hodograph method (outlined in [1]), the problem can be reduced to a
nonlinear boundary value problem on the unit disk in an auxiliary plane.
For purposes of the existence proof we reverse the usual derivation, and
start with a direct formulation of the reduced problem:

Let β and λ be real numbers such that 0 < /3 < 2, λ > 0. A func-
tion u(t) is a solution of the reduced problem corresponding to the pair
β, λ, provided u is

(A) continuous on the unit disk 111 ^ 1, with t = i and t — — i
excluded, and regular and univalent on the interior,

(B) real on the real diameter and pure imaginary on the imaginary
diameter,

(C) a solution of the following integral equation on the quarter-
circle t = eiσ, 0 ^ σ < ττ/2:

The modulus v(σ) = | u(eίσ) \ and principal argument φ(σ) = arg u{eiσ)

are related by

1 + λ I tan p sin [βφ(ρ)]dpY

(D) monotonic on the same quarter-circle in the sense that as σ
varies from 0 to π/2, φ is strictly increasing between the same limits,
and v{σ) is also strictly increasing.

To interpret the reduced problem we have

THEOREM 1. Let a, g, q, A be strictly positive numbers, where a<π.
Let u(t) be a solution of the reduced problem corresponding to the pair
β = 2(π - a)lπ, λ = 6gA/πq\ Let
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(3)
(4) w(t) = quβ(t)

(5) z{t) =

Then the constant of integration can be chosen so that z(t) maps the
first quadrant of the unit disk onto a flow domain as described above.
The positive real radius goes into the horizontal part of the flow
boundary, the positive imaginary radius goes into L, and the circum-
ference goes into the free boundary. The function W, "transplanted"
to the flow plane by the mapping z(t)f is the complex potential for a
flow of the required type with the given flow parameters; and the
function w, similarly transplanted, is the conjugate velocity.

The proof is contained in the following five propositions:

1. The function w(t) maps the first quadrant of the unit disk into
the sector 0 ^ arg w ^ π — a so that w{l) = q, the real radius goes into
arg w = 0, and the imaginary radius goes into arg w = π — a. The
circumference goes into a monotonic arc in the sense that argw(eίσ) is
strictly increasing between the limits 0, π — a, and | w(eiσ) | is strictly
increasing. Moreover w has an expansion of the form tβ Σ~=o Q<2nt2n with
real coefficients, and with a0 > 0, convergent for | ί | < 1.

Proof. Conditions (C) and (D) on u imply ^(1) = v(0)eίφ{0) == 1. Since
u is univalent, symmetric about the real and imaginary axes in the sense
of (B), and positive at t = 1, the real and imaginary parts of u agree
in sign with those of t. Therefore the Maclauren expansion of u has
the form t(bQ + b2t

2 + •), in odd powers of t with real coefficients, and
with b0 > 0. The proposition follows with the help of condition (D),
since w = quβ, β = 2(π — a)jπ.

2. The constant of integration can be chosen so that z(t) has an
expansion of the form t~β(c0 + cλt

2 + ) with real coefficients and with
c0 < 0, convergent for | ί | < 1. Thus z(t) maps the positive real radius
onto a real segment extending to x = — oo, and the positive imaginary
radius goes onto a segment of L extending to y — + oo.

Proof. From equations (3) and (4) we obtain

dz\dt - (llw)(dWldt) = 2A(1 - ί»)/[t(l + t*)πw] .

In view of 1, therefore, dz\dt has an expansion ί~1~β[cίo + d2t
2 + •] with

real coefficients and d0 > 0. The proposition follows on taking the term-
by-term integral z = t~β[-dolβ + d2f/(2 - β) + •].

Henceforth the integration constant is determined as in 2, and the
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branch of the logarithm in equation (3) is chosen so that

3 The function W(t) maps the first quadrant onto the strip 0 <£
V ^ A, so that the real radius and circumference go into V — 0 and

the imaginary radius into V = A.

4. The free boundary equation (1) is satisfied on the curve z(eiσ),
0 ^ a < 7Γ/2.

Proof. Equations (2) and (4) imply

I w(elσ) |3 = q*{l + X Γtan p sin [arg w(eip)]dρ\ .
I Jo J

Setting X=6gA/πqz, differentiating, and dividing by 3 | w | gives | w \ d \ w
[2gA tan σ^m{w}jπ \ w \2]dσ. Here

a n d in v i e w of (3), d W — (2A/π) t a n σdσ. H e n c e \w\d\w\ — — g^m{dz} —
—gdy. Integrating gives (1), since | w(ϊ) \ = q.

5. The function z(t) maps the first quadrant onto a flow domain as
described above.

Proof. First, the free boundary arc z{eiσ) extends to y— — oo.
This follows from (1) provided w(eiσ) is unbounded. From the last para-
graph we have | w \ d \ w \ = [2g^m{w}l\ w \2}dW. In view of 1, $m{w} is
positive and bounded away from zero near σ = π/2. Therefore | w |4

exceeds a positive constant times W, which is unbounded.
Secondly, the free boundary is convex in the sense that its inclination

arg {dzjd W) ~ — arg w(eίσ) is decreasing between the limits 0, a — π, in
accordance with 1.

Now let U denote the image under z(t) of a curve U = Re{ W(t)} —
constant, directed from the positive imaginary radius to the circumference
near t = i. From (5) we have d(e~ioύz) — {i\eiot"w)dV on U. Here V is
decreasing, and in view of 1 Re{eiaw] < 0, $>m{eί(*w} > 0, so that Re{e~ίaz}
is decreasing and ^m{e~ioύz} is increasing on U. According to 2 the
initial point of U is on L. The other endpoint is on the free boundary;
and it follows in view of the convexity that the entire free boundary
curve is in the half-plane %sm{e~ί(*z} > 0, on the left of L. Moreover U
does not cross either L or the free boundary. Finally, the length of U,

S \w\~ιdV, vanishes as U-* +oo (i.e., as the curve U— constant "ap-
ό

proaches" t = i); for we have observed that \w(eiσ)\ is unbounded near
<J = π/2, so that | w I"1 vanishes near t = i.
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Together with 2, these results show that z(t) maps the real radius
and circumference onto the left boundary of a flow domain as described
in § 2, condition (α), that the imaginary radius goes into the entire line
L, and that the free boundary is asymptotic to L. To show that the
interior of the first quadrant goes into the domain between these two
boundaries, consider the image Uf of a second curve U = constant join-
ing the real and imaginary radii near t = 0. From the expansion of z(t)
in 2 we see that U' joins the negative real axis with L, without cross-
ing either. By a familiar application of the argument principle it follows
that z(t) is univalent and takes its values in the required domain.

Theorem 1 now follows, since composition of W(t) with the inverse
of z(t) is the complex potential of a flow with conjugate velocity w =
dWIdz.

4. The finite jet approximation. To avoid the singularity in the
integral equation (2) due to the unbounded factor tan p, we will replace
tan σ by the bounded function

(6) hy(σ) = 2 sin 2σ/(2 cos 2σ + γ2 + γ~2) , 0 < γ < 1

which approximates tan σ when γ is near 1. More precisely, we will
consider the ' 'finite jet problem'' obtained by modifying the boundary
value problem of § 3 as follows: First, u is required to be continuous
for all 11 | <Ξ 1, and secondly, equation (2) is replaced by

l/3β

An appropriate modification of Theorem 1, in which W(t) is replaced by
Wy(t) = (A/π) log [t\t2 + γ2)-1^2 + γ-2)"1], shows that solutions of this
problem provide flows as illustrated in Figure 2. In the next five sections
we will prove

THEOREM 2. The finite jet problem has a solution for each triple
β, γ, λ, such that 0 < / 3 < 2 , 0 < γ < l , and λ > 0.

5 The operator Γ Let Φ be the family of all continuous real-
valued functions <p(σ) on the interval [0, ττ/2], which are nondecreasing
between the limits <p(0) = 0, <p(π/2) = π/2, and such that φ(σ) ^ σ. Now
we define an operator T on Φ which serves to reduce the finite jet
approximation to a fixed point problem:

First, with each φ e Φ we associate the complex-valued function
vei<p, where v(σ) is determined by φ through equation (7). Now the
integrand in (7) vanishes wherever φ(p) — 0, but is strictly positive as
soon as φ(p) becomes positive. Hence v = 1 where φ = 0, and v is
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strictly increasing thereafter. Moreover v is bounded independently of
ψ by the number

(8 ) M = 11 + λl hy(p)dp\ .

Combining this with the requirement φ(σ) ^ a, we have

LEMMA 1. For each φ e Φ the function veiψ maps [0, ττ/2] onto a
simple Jordan arc CΣ in the u-plane, in the intersection of the first
quadrant with the annulus 1 <Ξ | u | g M. d intersects the real and
imaginary axes only in its endpoints u = 1, iv(πl2). Moreover this
mapping is a homeomorphism of \σQ, π/2] onto CIt' where σQ —
sup {σ: <p(σ) — 0}.

Next we adjoin to Cj its reflections about the real and imaginary
axes and through the origin. This provides a simple closed Jordan curve
C, which encloses a simply-connected domain D, symmetric about both
axes and containing the origin. Let ύ(t) be the function which is con-
tinuous for 111 <^ 1 and which maps \t | < 1 conformally onto D so that
ϋ(0) — 0 and the derivative ύ'(0) is positive. Let v(σ) — \ ύ(eίσ) | and
φ(σ) — arg u(eί<τ) for 0 ^ a g π/2. The operator T is defined by Tφ = φ.

Leaving aside for the moment the question of whether T does in
fact map Φ into itself, we have

LEMMA 2. Suppose that T has a "fixed point" φ which is also a
strictly increasing member of Φ. Then the corresponding function
u — u(t) is a solution of the finite jet approximation.

Proof. We are to show that if φ is strictly increasing and φ — φ,
then u = u satisfies conditions (A) through (D) of § 3, as modified in § 4.
Conditions (A) and (B), as well as the continuity of u for all 11 \ <S 1
follow from the definition of u together with the symmetry of D. The
restriction of u to 11 \ = 1 is a homeomorphism of the unit circumference
onto C, and consequently v(σ)eiφ{σ) is a homeomorphism of [0, π/2] onto
Cj. Since ψ is strictly increasing it follows from Lemma 1 that v(σ)eiφ{σ)

is a similar homeomorphism. Moreover there is only one value of φ for
each point on CIy and, since φ — φ, the homeomorphisms are identical.
Therefore v — v — \u(eίσ)\ satisfies (7). Condition (D) is satisfied since
φ and v are both strictly increasing; and the proof is complete.

It should be noticed that the strictly increasing property of φ plays
an essential role in the proof, beyond the relatively unimportant fact
that it is needed for condition (D). If φ were constant on some interval,
we could not conclude that v — v there, and equation (7) would not follow.

Now the family Φ is clearly a closed, bounded, convex subset of the
Banach space of continuous functions on [0, π/2] with the "uniform norm"
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\\φ\\ = sup {| φ(σ) | : 0 ^ o ^ ττ/2}. In the next three sections it is shown
that T is a continuous transformation of Φ into itself whose range has
compact closure (i.e., T is a "completely continuous operator"). In
accordance with a theorem of Schauder [2], it follows that T has a fixed
point. To complete the proof of Theorem 2, it is shown in § 9 that
every fixed point is strictly increasing.

6 Proof that T maps Φ into itself

LEMMA 3. Let f(t) be regular on the unit disk, continuous on
the closure, real on the real diameter, and pure imaginary on the
imaginary diameter. Suppose further that f vanishes only at t — 0,
that /'(0) is positive, and that F(σ) = \f{eiσ)\ is of bounded variation.
Then for 0 < 11 \ < 1,

arg {f(t)jt} = k(t, p)d log F(p)
JO

where the kernel k(t, p) = π" 1 log | (e2ίp — t2)l(e~2ip — t2) \ is negative for
0 < arg t < π/2.

Proof. Let g(t) = log [/(ί)/ί], where the branch of the logarithm
is chosen so that g(0) = log/'(0) in real. Applying Poisson's formula we
have

Re{g(t)} = JBβj(2τr)-1Γ [(βίp + ί)/(eίp - t)] log ^(^d/?

since Re{g(eiσ)} = logίV). Since the integral is regular for 11 \ < 1, it
differs from #(£) by an imaginary constant, which is zero since both
functions are real at t = 0. Integration by parts gives

arg {f(t)/t} = %m{g(t)} = πA* log | e» - t \ d log F{p) .
J

This can be reduced to the required formula by means of the symmetry
conditions F{σ) = F( — σ) = F(π — σ). The proof is completed by observ-
ing that I e2ip - t21 ^ | e~2ίp - t2 \ when eίp and t are both in the first
quadrant, so that k(t, p) ^ 0 there.

Returning to the operator T, it follows from the definition of u
that u(eίσ) = v(σ)βίζ'(σ) is a homeomorphism of [0, ττ/2] onto CΓ, and in the
same direction as v{σ)eiφ{σ). Hence φ, like φ, is nondecreasing between
the limits 0, π/2, and v is increasing. Taking f(t) = u(t) in Lemma 3,
so that F(σ) = v (σ), it follows that arg {u(reίσ)} - σ ^ 0 for 0 < r < 1,
0 ^ tf ^ π/2. In the limit r = 1 this gives <p(tf) ^ σ. Thus Tφ = Φ
belongs to 0.
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7. Continuity of T. The proof of continuity is based on the follow-
ing theorem of Radό [3]1:

THEOREM 3. Let D he a domain containing the origin and hounded
by a closed Jordan curve C. Let u(t) map \ 11 < 1 conformally onto D,
subject to the conditions u(0) = 0, u'{ϋ) > 0. If {Dn} is a sequence of
such regions "approaching" D, then the corresponding sequence of
functions {un} approaches u uniformly on \t\ ^ 1 if and only if the
Frechet distance between the boundaries Cn and C approaches zero.
(The Frechet distance is the inίimum, over all homeomorphisms between
the curves, of the maximum distance between corresponding points.)

Now let φ and ψ be any two members of Φ, and let v, CI} C, and
v, CΣ,C be the functions and curves involved in the construction of Tφ
and Tφ, respectively. We will show that the Frechet distance between
C and C is not greater than k |1 ψ —- ψ \ |, where the number k is in-
dependent of φ and φ. Then it follows from Theorem 3 and the fact
that C is bounded away from the origin (i.e., \u\ ^ 1 on C) that T is
continuous.

Suppose that || φ — φ \\ > 0; and let [0, σ0], [0, σ0] be the maximal
intervals on which φ, φ vanish, respectively. Let [0, σj be the maximal
interval on which ψ ^ 2 || φ — φ ||. Clearly π/2 Ξ> σ1 > max {σ0, σQ}. Now
consider the correspondence σ —> σ* defined by

(σ0 + (σ - σQ)(σ1 ~ σQ)l(σx - σ0) for σ^σ ^ axσ* — \
[a for a Ξ> σ1

This is a homeomorphism of [σ0, ττ/2] onto [σ0, ττ/2]; and in view of Lemma
1 the correspndence v(σ)eiφ{σ) —> v(σ*)eiφ{σ*] is a homeomorphism of CΣ onto
C7. The distance between corresponding points does not exceed

I v(σ)eiφ{σ) - ι;((7*)e^(σ*) | + | v{σ*)eiφ{σ*] - v (σ*yφ{σ*] \

^ I v(σ) - v{σ*) I + M \ φ(σ) - φ(σ*) \ + \ v(σ*) - v(σ*) \

+ M\φ(σ*)-φ(σ*)\

where M is the upper bound on v in (8). The first two terms vanish
except when σ, σ* 6 [0, σ j . If K is a Lipschitz constant such that

_ ywβ \^κ\x-y\ίoτl^x^y^ M3β, it follows that

I v(σ) - v(σ*) I S K λ hy(ρ) sin [βφ(ρ)dρ S KM3ββ 2\\φ-φ\

Moreover M | φ(σ) — φ(σ*) \ g 4Af || φ — φ ||,

I v(σ*) - v(σ*) I g K\[σ hy(p) \ sin βφ(p) - sin βφ{p) \ dp
Jσ

1 See also the discussion in the opening paragraphs of [4].
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and M\φ(σ*) — φ(σ*)\ ^ M \\φ — φ ||. Hence the Frechet distance be-
tween Cj and Cj is not greater than (3βKM3β + 5M) \\φ — φ\\; and in
view of the symmetry, this is also an upper bound on the Frechet dis-
tance between C and C.

8 Complete continuity* To establish the complete continuity of
T we will show that its range is an equicontinuous family, and hence
has compact closure. The chief tool is2.

LEMMA 4. Let \ t | < 1 be mapped conformally onto a simply con-
nected domain D of finite area A. Let t0 be a point on \t\ = 1, and
kr be that part of the circle \ t — t01 = r which is contained in \ t \ < 1.
Then for every r, 0 < r < 1, there is an s, r 5g s rg r1/2, such that the
image of ks is a crosscut of D of length ls ^ (—2πA/log r)1 / 2.

Now let D be the domain in the %-plane corresponding to φ e Φ.
The function φ = arg u{eiσ), which is equal to Tφ on [0, π/2], is actually
defined and monotonic for all real σ. To obtain a modulus of continuity
for φ, let δ0 = e~{πM)2'2 where M is given by (8), and let σ, σ\ S be any
three numbers such that 0 < | σ — σ'\ fg δ ^ δ0. Then the points eiσ, ei(T>

are inside the circle of radius r = δ about t0 = eίσ'. Applying Lemma 4,
let eίτ and eu' be the endpoints of an arc ks. Since ψ is monotonic we
have I φ(σ) — Φ{or) \ ̂  | φ(τ) — φ(τr) \. Now D is contained in the disk
I u I ^ M, so the length of ks is ls ^ (-2τr2M2/log δ) = 2 (log δ0/log δ) ^ 2.
Since the boundary of D is outside the unit circle, it follows that
I Φ(τ) — Φ(τ') I — I arg ύ(eίτ) — arg u{eiτ>) \ is not greater than the angle
subtended at the origin by a chord of the unit circle of length ls. There-
fore the principal value of 2 arcsin (Iogδ0/logδ) is a modulus of conti-
nuity of φ for δ g δ0, which is independent of φ.

The proof that T has a fixed point is now complete.

9 Strictly increasing nature of the fixed points • For the proof
that every fixed point of T is a strictly increasing function it is con-
venient to change variables from t to ξ by the transformation

( 9 ) f(ί) = Λlog £*! , B>0.
' W 2 (t2 + 7W + y~2)

Taking the principal branch of the logarithm, we see that ζ(t) maps the
first quadrant of the unit disk onto the strip 0 ^ $m{£} g λπ/2 so that
the real radius, the circumference, and the imaginary segment t — iτ,
7 < τ < 1, go into the real axis, and the rest of the imaginary radius
goes into the line %m{ζ} = λπ/2. At the same time we change variables

2 The statement of Lemma 4 follows Warschawski [5], who gives a proof and refers
to J. Wolff [6]. The essential idea is given earlier by Courant [7].
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from σ to ξ(eiσ), so that φ, v, and v become functions of ζ, defined on
the real segment α ^ ^ δ corresponding to 0 ^ σ ^ ττ/2. The location
of this segment can be chosen at will by adjusting the value of B in

(9).
With these changes the relation (7) between φ and v becomes

[
1

1/3!3

since Xhy(σ) = dζ(eί(Γ)ldσ; and the relation v{σ) = | u(eiσ) | becomes v(ζ) =

\ύ(ξ)\, a^ζ^b.
Let φ{ζ) correspond in this way to a fixed point of T. In accordance

with Lemma 1 and the construction of u, both veiφ and veiφ are homeo-
morphisms of [a, b] onto d; where v and v are both strictly increasing.
Since C7 intersects the real and imaginary axes only in its endpoints we
have

1. φ(ζ) is strictly increasing at the endpoints α, 6.
Now let i f be the open real set consisting of all ζ e [a,b] such that

φ is constant on some neighborhood of ζ; and let ^7~ be the complement
of ?f relative to [α, 6].

2 For all ζ e J7 v(ζ) = v(ζ).

Proof. We will show that v(ζ) Φ v(ζ) implies ζ e <if. If v(ζ) > v(ζ),
there is a ξΊ < ? such that v(ξΊ) = v (?) and a ?2 > ξ such that v(?) = v(ζ2).
Since there is at most one point on d for each value of | u | , we have
v(ζύe**ζl) = v(?)e^(^ and v(?)e<ίP(^ = ^ a ) β < ί P ( f t ) . Hence φ{ζλ) = ?>(?,), so
that <?> is constant on the interval (ξlf ξ2), and ξ" e ^ . Similarly, i;(?) < i;(?)
implies ξ e 9?,.

3. The function ίί(ξ") is regular on the real set ^ . Moreover the
logarithmic derivative v!\u = v'/v is strictly increasing on each open
interval contained in if.

The proof depends on the following result, which is essentially a
corollary of a Lavrentieff-Serrin comparison theorem [8]:

LEMMA 5. Let Rλ and R2 be two closed simply-connected regions
such that Rx contains R2. Suppose that there are continuous functions
A(ζ) and f*(ζ) which map the strip 0 ^ $m{ζ} ^ Q onto Rλ and R2,
respectively, and which are conformal on the interior of the strip. Let
the image of $m{ζ} = Q under f2 be a subarc of the corresponding image
under fλ\ and let the images of %srn{ξ} = 0 have a common point /i(ξΊ) =
fϊiζ*)- If /i has a continuous nonvanishing derivative f[ on a semi-
neighborhood I ζ — ζx I < p, ^sm{ζ} ̂  0, of ζx and f2 has a continuous
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nonvanishing derivative f2' on a similar semi-neighborhood of ζ2, then
|/i;(ξΊ)| ^ \fi(ζi)\ Equality holds only if Rx and R2 are identical.

To prove 3, we note first that on any open interval {a, β) contained
in ^ e~iφ{oύ)u(ζ) = v(ξ) is real. Hence, by the reflection principle, u is
regular there. Moreover its derivative does not vanish since u is uni-
valent.

Let ζ19 ζ2 be points in (α, β) such that ξ1 < ζ2; and let fλ{ζ) = ύ(ξ),
f*(ζ) = /*#(?), where μ = u{ζ^)lu(ζ2) < 1. Since φ = arg u is increasing on
[α, b\,f1 and f2 map 0 ̂  Sm{?} = λπ/2 onto starlike regions Rlf R2 of the
first quadrant such that Rτ contains R2. Moreover fλ maps 3faΐ{f} =
λττ/2 (corresponding to the imaginary segment 0 < t\i < γ in the ί-plane)
onto an imaginary segment 0 < u\i < k, and the corresponding image
under f2 is the subsegment 0 < u\i < μk. Applying Lemma 5 we
obtain |#'(£Ί)| < \μύ'(ξ2)\. Proposition 3 follows since u = eίςί>(αJ)/?, fi' =
eiφ{a)v' on (α, /5), where vf > 0.

4 For all ζ e ^ , v(f) < v(f). Moreover, if (a, β) is any maximal
open interval contained in if, l im^^ vf(ζ)lv(ζ) < v'(a)lv(a).

Proof. If (α:, ̂ 8) is a maximal open interval contained in ^ , then
its endpoints belong to _̂ Γ In view of 2 and 3, log v is a strictly ^concave''
function on (a, β), varying between the limits log^(α:), \ogv(β). According
to (7), on the other hand, log v(ξ) varies linearly there since φ is constant;
and the proposition follows.

Now we restrict our attention to a fixed maximal open interval
(a, β) of ^ , and adjust the parameter B in (9) so that a = 0. Let Δ
denote a neighborhood | ξ\ < R of the origin, cut along the real segment
— R < ξ < 0. In view of 1, a is greater than α, and we can choose
R > 0 so that the segment — R < ζ < 0 is contained in [α, 6], the seg-
ment 0 < ξ < R is contained in (a, β), and R < λπ/2. Finally we set
9(ζ) = logβ(C), where %m{g(ζ)} - ?>(0) for 0 rg ? ^ β.

5. For all ξ e Δ we have

(ii) g(ζ) = PGO - ^r-1!0 log (r - τ)dφ(τ)
JR-R

where p(ξ) is a convergent power series in ξ, and the branch of the
logarithm is such that log (ξ — τ) is real for ζ — τ > 0.

Proof. Since g{ζ) — ΐ<p(0) is real for 0 S ζ ^ R, the analytic continu-
ation of g across this segment is given by g(ξ) = 2iφ(0) + #(ζ), so that
g is continuous on the cut disk Δ. The discontinuity across the cut is
g<S) - ff(ζ) = 2i[9>(0) - φ(ξ)] for arg ? = -π, arg ζ - π.

Now the integral in (11) is defined and regular except on the cut,
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so this equation serves to define p(ζ) at least for — π < argf < π. Let

ξ = ξ + iy, V < °> a n d consider the difference p(ζ) — p(ζ) = g(ξ) — g(ζ) +

TΓ-Γ \og[(ζ-τ)l(ζ-τ)]dφ(τ). Here log [(ζ - r)/(ζ - τ)] = 2i arg (? - τ)
J-R

is bounded, and as η—> 0 it approaches — 2τri for £ < τ and 0 for ξ > τ.
Therefore p(f) — p(ζ) is bounded and

(12) lim [p(ξ + irj) - p{ξ - iη)] = 2i[<p(0) - ?>(£)] - 2i\°dφ(τ) = 0 .

To show that p is regular for all | ξ\ <.R, let A be the circular arc
I ζ I = R, $m{ζ} ^ ε, where 0 < ε < R, and let B be the segment Stn{f} = ε
joining the endpoints of A. Let Γ be the contour A + B, and Γ be its
reflection across the real axis. Now take ξλ inside either Γ or Γ, and
consider the sum of the integrals of p(ξ)l(ζ — ξΊ) around Γ and Γ. The
total contribution of the horizontal segments is

P(g + ie) - P(ξ - ^ε)](g - ζλ) - iε[p(g + is) + p(ξ - fe)j ^

(I + ίε - fOί? - ie - fi)

In view of (11) and (12) this vanishes as ε —> 0, so that 2πip(ξ1) =

\ P(ζ){ζ — ζd^dζ- Thus p(f) is regular and has a convergent Maclauren

series for | ξ" | < R. Finally, (11) holds on the cut, since g(ζ) — p(ζ) is

continuous on each side and the unbounded part of the integrand,

log I ζ — 11, converges monotonically as $m{f} vanishes.

6 The fixed point φ is strictly increasing.

Proof. We will use the representation (11) for g = log u to obtain

(13) lim v\ζ)jv{ξ) ^ v'(0)lv(0) .

This contradicts 4 if the open set ^ contains an open interval. There-
fore ^ is void and φ is strictly increasing.

For 0 < ξ < R we have g\ζ) - v'(ζ)lv(ζ) = p'(?) - TΓ^Γ (? - τ ) - 1 ^ ^ ) .

Here βf' is positive, so the last term, being negative, converges monoto-

nically to a finite limit. Hence

(14) lim v'(ζ)lv(ξ) = pf(0) + π

For arg ζ = π, — iϋ < f < 0, we have
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The last term is

π~ι\° log 11 - ζjτ \ dφ{τ) + i[<p(0) - φ(ζ)] .

Taking real parts and using the inequality log x ^ x — 1 we obtain

log v(0) - log v(ζ) ^ p(0) - p(ζ) - π-1^ (ζ/τ)dφ(τ) + π-^{ζlτ)d<p{τ). In
J -R )ζ

view of 2 and 4, #(0) = v(0) and v(ζ) ^ v(ξ), so that

[\ogv(0)-logv(ξ)\l(-ζ)

g [p(0) -

Taking the limit ζ —•0_ and combining with (14) gives (13).
The proof of Theorem 2 is now complete.

1(X Analytic continuation of finite jet solutions«. To obtain the
infinite free boundary solutions as limits of finite jet solutions we require

LEMMA 6. For each pair λ, β such that λ > 0, 0 < β < 2, there
is a domain Δ in the t-plane containing the closed unit disk except
for t = ± 1 , ±i, such that for all 0 < γ < 1 the finite jet solutions can
be continued analytically onto Δ, where they form a locally uniformly
bounded family of regular functions.

The fact that analytic continuation beyond the unit disk is possible
follows from the work of Lewy [9]. To establish the required uniform
estimates we will give a separate proof, based on the differential equa-
tion

(15) dvjdt - /(ί, v) = tξ'(t)[(ulv)β - (vluyyiββv^-1]

where ξ(t) is given by (9). This is obtained from the boundary condition
(7) by setting t = eίσ', v(t) = v{σ), differentiating, and observing that
Xhy(σ) = ieiσζ\eiσ) and eiβφ = {ujvf. The method3 is to show that equa-
tion (15) has a solution v which is regular on a domain of the form
t = reiσ, R(σ) < r < 1, 0 < σ < π/2, continuous and nonvanishing on the
closure of this domain, and equal to v(σ) for t = eiσ. Then φ — — i log u\v
is regular on the same domain, continuous on the closure, and equal to
φ(σ) for t = eiσ. Since both v and φ are equal on the circumference,
they can be continued across this circular arc by reflection; and the
required analytic continuation of u in the first quadrant is given by

u = vetφ for t = reiσ, 1 < r < l/iϋ(σ). The continuation in the other
quadrants is given by the symmetry of u. Lemma 6 is valid provided

3 Suggested by the work of Vitousek [10], and illustrated for a closely related case in
[11].
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R{o), together with local bounds on \u\, can be chosen independently
of 7. To this end we have

l The solutions u(t) satisfy 11 | ^ | u(t) | ^ [1 — λ log cos #]1 / 3 β on
each sector | ί | <Ξ 1, 0 ^ arg t ^ θ < π/2.

Proof. The first inequality follows by applying the maximum princi-
ple to tfuit), which is regular for \t\ < 1 and whose maximum absolute
value for I ί I = 1 is 1/1 u(l) | = 1.

Since u maps 11 \ < 1 onto a starlike domain we have (see [12],
Ch. V) Re{tu'lu] = d log \u | /9 log 11 | ^ 0 for 11 \ < 1, so that | u | is in-
creasing on each radius. Since | u(eiσ) | is also increasing for 0 ^ σ fg ττ/2,
it follows that | u(t) | ^ v(#) on the sector in question. Estimating v(θ)
with the help of (6) and (7) yields the second inequality, since 0 ^ hy(σ) <g
tan σ.

The next proposition follows easily with the help of 1:

2. For 0 < θ < τr/2, let 4, be the domain \ < \ t \ < 1, 0 < arg t < θ,
and let Dθ be the annulus ± ̂ \v\ ^i + [1 - λlogcos<9]1/3/3. Then the
function f(t, v) of equation (15) is regular in both arguments on the
product region ΔQ x Dθ, and continuous on the closure Jθ x Dθ. More-
over there are numbers Mθ and Lθ, independent of γ, such that for
t e Jθ and v9vxe Dθ9 \f(t,v)\ ^ Mθ and | fit, v) - f(t, vλ) \ ^L^v-v^.

To construct the required solution of (15) near t0 — eiθ, let Kθ be the
intersection of Iθ with the disk 11 — ί01 ^ min {l/2Afe, l/2Le, 1/2}, and let
V be the family of functions v (t) which map Kθ continuously into Dθ and
are regular on the interior of Kθ. Then V is a complete space with
respect to the uniform metric. Now consider the operator J on V defined

by Jv = v{θ) + \ /(s, v(s))ds9 where the path of integration is in Kθ. It

follows from 1, 2, and the definition of Kθ, that J maps V into itself
and is a contraction operator. Therefore J has a unique fixed point v09

which is a solution of (15) and equal to v(θ) = | u(ί0) I at t0. Since (15)
was chosen so that | u(t) \ is a solution on the arc | ί | = 1, it follows
from the contraction property of J that vt0 = | w | there. Also because
of the contraction property, solutions corresponding to two different
values of θ are equal on the intersection of the corresponding regions
Kθ. This provides a solution v on the region t = reί<Γ, R{σ) < r ^ 1,
0 < (J < π/2, with #(σ) = 1 - min {l/2Mσ, l/2Lσ, 1/2], such that | v(reiσ) \ g
1/2 + [1 — λ log cos tf]1/3β and | u \ ̂  1/2. Lemma 6 follows in view of the
remarks preceding 1.

l l Existence of infinite jet solutions*

THEOREM 4. For every pair λ, β such that λ > 0, 0 < β < 2, the
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infinite free boundary problem described m §3 has a solution.

Proof. It follows from Lemma 6, in accordance with MonteΓs
Theorem, that the family of all finite jet solutions for given λ, β, is
normal on a domain Δ containing the closed unit disk, with t = ± 1 , ±ί
excluded. Hence there is a sequence {un} of such functions for which
the corresponding sequence {λj approaches 1, and which converges uni-
formly on every closed subset of A. We will show that the limit, u, of
this sequence satisfies conditions (A) through (D) of § 3.

First, u is clearly regular, not only for 11 | < 1, but also for 11 | = 1,
t φ ± 1 , ±i. To show that u is continuous for \t\ ^ 1, t Φ ±i, it is
sufficient, in view of symmetry, to establish continuity in the first quadrant
at ί = 1, where ^(1) = lim^(l) = 1. According to Proposition 1 of § 9
and the last paragraph of § 6, each un satisfies r g | un(reiσ) \ g
[1 — λ log cos σf'dβ and 0 ^ arg un(reiσ) ^ σ in the first quadrant. There-
fore u satisfies the same estimates, and the continuity follows. Since
each un is univalent for 11 | < 1, u is either univalent or constant (see
[12], Ch. IV); and the latter case is ruled out because u(ί) = 1 and
^(0) = \\mun(Q) = 0. Thus u satisfies condition (A).

Next, u satisfies condition (B) along with each un; and condition (C)
follows from equation (7) for the un, since hΎn(σ) approaches tan σ.

Now <p(σ), like each <pn(σ) = arg^w(eίσ), is increasing, and ^(0) = 0.
Since u is regular for t = eiσ, 0 < σ < ττ/2, φ is either strictly increasing
or identically zero. In the latter case (2) implies v(σ) = 1, so that u = 1,
which contradicts univalence. Therefore φ and v are both strictly in-
creasing, and v is unbounded near a — π/2.

It remains to show that φ approaches π/2 near σ = π/2. Applying

S π/2
fc(t, p)d log vf{ρ). Choosing

0

an arbitrary number τ, 0<τ<τr/2, we have d \ogvf (ρ) = [XhΎnv~3βsinβφ]dp^
Xv~sβ(τ)hyndp for p ^ τ, and d log vf(p) ^ λ tan pdp for all p. When t
is in the first quadrant, where k{t, p) is negative, it follows that

0 ^ arg \un(t)lt) ^ (λ/3/8)Γfc(ί, p) tan pdp + [λ/3/5^(τ)]Γ/2fe(ί, p)hy (ρ)dρ .
Jo Jo n

The last integral can be evaluated by applying Lemma 3 to f(t) =

t/(l+7T), which satisfies d log | f(eip) \ = hy(ρ)dρ; so that Γ'Vί, ρ)hy(ρ)dρ =
Jo

—arg (1 + γ2£2). Taking the limit ί —> βίcΓ, τ < σ < r/2, and then ^ -• oo,

gives 0 ^ ^(σ) - σ ^ (λ/3/3)Γfc(eί<r, /t>) tan pdp - [Xββv\τ)\ arg (1 + e2ίσ).
Jo

In the limit σ —• π/2 the first integral vanishes, since k{%, p) —
7Γ-1 log I (e2ίp + l)/(e"2ίp + 1) | = 0, so that 0 ^ φ(π/2) - π\2 ^ -π\l6βv\τ).
Since v is unbounded we have finally <p(7r/2) = τr/2; and the proof is
complete,
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