THE SEMICONTINUITY OF THE MOST GENERAL
INTEGRAL OF THE CALCULUS OF VARIATIONS
IN NON-PARAMETRIC FORM.*

LIONELLO LOMBARDI

Summary. The positive quasi-regularity of integrals depending upon
any number of surfaces in non-parametric form, each with any number
of dimensions, is defined. Positive quasi regularity is proved to be
sufficient for lower semicontinuity.

1. Let D(t =1,2,+--,m) be a closed bounded set of the n-dimen-
sional euclidean space of the variable vector z; = {23}(4 = 1,2, ---, n),
bounded by surfaces which are absolutely continuous in the sense of
Tonelli [60, 62, 63], without multiple points, and let D be the cartesian
product [I1.D;. Lety = {y}(: = 1,2, ---, m) denote a vertical m-vector, and
let p denote @ maxn matrix, whose row-vectors are p;, = {pi}(j=1,2, - --,
n). Let x be the m-.m matrix whose row-vectors are x; and ¢[z, v, p]
a real function, defined for x; ¢ D; (¢t =1,2, ---, m) and for any y and
p, which is continuous with all its partial derivatives of the types

0plx, ¥, pl o°plx, ¥, p]
op: op:op:

(r=1,:c,m;s,t=1,.--2).

Let ¢ = m be a positive integer and let U, denote a set of distinct
positive integers out of the first m; let { be an index ranging over U,,
and let p(8) be a mapping of U, into the set of the first n integers.
It will be assumed throughout that, for every ¢, every U, and every
(&), all the partial derivatives

0"¢lx, y, pl

(11) ﬁax?g)apg@)

exist and are continuous for every x e D and for every y and p.

Let y(x) = {yi(x)} ¢ =1, 2, -+, m) denote a vector-valued function of
the matrix x, such that each component y,(x;) depends only upon the
row vector x;. We assume that each y,(x;) is absolutely continuous, in

the sense of Tonelli [63]; we shall call Variety V the set of m surfaces
represented by y(x).
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We shall say that V is of class 1 if all the first partial derivatives
of all the y,(x;) exist and are continuous; we shall say the V is of class
2 if the same is also true for all the partial derivatives of the second

order.
Let

P{-(ac)zﬁ%%)_. (G=1,2+m; j=1,2 +.,m),

and

dx

Ii
1

[Ldx, = I1.I1,dx: .

The m-n integral’
1, = | gle, y(@), p@)ds

is called vartiety integral in non-parametric form; all the varieties V
where I exists and is finite are called ordinary.

REMARK 1.1. Varieties V of class 1 and 2 are ordinary for any

function ¢z, ¥, p].
Let p = {p;} = {p!} denote another variable in the space of the matrix

P, ¥ = {¥:} another variable in the space of the vector ¥, V = y(z) = {7.(»))}
another variety V; let

0y(x;) .

i ;) = - ’
pix)) o0

the distance o(V, V) between V and V is defined by the formula
o(V, V) =sup,, ;| yx) — 7=) | .

Continuity and semicontinuity of the real function I, will be considered

throughout with respect to this m-uniform metric.
In one of our previous papers [33] the following theorem was

proved:

CONTINUITY THEOREM 1.2. Necessary and sufficient conditions for
the continuity of I, at every V 1s that the function ¢z, y, p] 1s U-
near with respect to each one of the vectors p,.

REMARK 1.3. As a consequence of Theorem 1.2, the most general

function ¢[z, y, p], such that S o[z, y(x), p(x)] dx is continuous at every
D

1 For the relation between this integral and non local field theories see bibliography
(1,6,27,28,29,40,41, 42, 46, 47, 48, 58].
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V, may be written in the form
(1.2) S S S {Ag e, v) T 959},
¢=1UTgq p (7

where we assume by convention that, if 7 is a variable integer ranging
over a set S and {«,} is a sequence of numbers, then

II @, = 0, whenever S is empty .
n€ES

Let L[z, y, », §] denote a polynomial in the indeterminates
(1.3) [ — p9]

of degree not exceeding 1 in any of the vectors [p; — »;], whose coef-

ficients Wy, (2, ¥, p) are functions of (», ¥, p) which are continuous
together with all their derivatives of the form

(1.4) 0" Wy, (2, Y, D)
Lo

¢eu,

Liz, y, p, ] may be written in the form

(15) i 2 zﬂ; {WUq_“(x, Y, p)g]e:IU [ﬁlé(g) . p?(gj]} .

=17,

Let us define the generalized Weierstrass function Ez,y, p, D] of
L, with respect to L|x,y, p, p], by the formula

(1.6) E(x,y, p, P) = ¢lz, y, ] — Llz, y, p, D] .

The integral I, = qu[x, Y(x), p(x)ldx is said to be positively quasi-
regular with respect to L (abbreviation: LPQR) if both the relations

(1-7) El[wv yy p: p] = 0
(1'8) EL[w’ y: py ﬁ] _—>_— O

hold for every # e D and for every v, p, .

REMARK 1.4. Notice that if I, is LPQR, then the element of
degree 0 of the polynomial L[z,y,p, p] must be ¢[x,y, p], and the
vector consisting of the coefficients of the elements of degree 1 is the
gradient of [z, y, p] with respect to p: therefore, if m =1, i.e., if I, is
a usual multiple integral [60, 62], the fact that I, is LPQR completely
determines the function L[z, y, p, p]. This does not happen if m > 1,
as was shown by an appropriate example [30], referring to Fubini-Tonelli
integrals, i.e., to the case (m =2, n = 1).

We say that I, is positively quasi-regular (abbreviation PQR) if
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there exists at least one function L[z, y, p, P] such that I, is LPQR.

REMARK 1.5. Let us say that I, is negatively quasi-regular with

respect to L (abbreviation: LNQR) if S — ¢lz, y(x), p(x)]dx is LPQR. Then
D

it is easy to prove that, if I, is both L,PQR and L,NQR, then
Lz, y, p, p] = Ly, y, p, P], and ¢[x, y, p] is a polynomial of degree not
exceeding 1 in each p,; i.e., by Theorem 1.2, I, is continuous. Theorem
1.2 also implies that every continuous I, is both LPQR and LNQR for
some L[xy Y, D, ﬁ]'

REMARK 1.6 In the case m = 1, our definition of positive quasi-
regularity reduces to the one which was given by Tonelli [59, 60] and
Cinquini [1] for simple and multiple integrals. In this particular case,
the positive quasi-regularity of an integral is equivalent to the lower
convexity of its figurative, i.e., of @[z, y, p] considered as a function of
p only.

In the case n = 1, the definition of positive quasi-regularity reduces
to the one given by this author for the Fubini-Tonelli integrals [30].

REMARK 1.7. If I, is PQR, then its value is + o at every non-
ordinary variety.

2. Let us prove the following

THEOREM 2.1. If I, is PQR, then it is lower semicontinuous at
every variety V of class 2; i.e., if V s of class 2, there exists a
positive function p(e) of the positive variable ¢ such that, if V = (x)
s any variety, then

2.1) I; — I, > — ¢, whenever p(V, V) < p(e).

regardless of whether or not V is of class 2.

Proof. Let L[x,y, p, ] be a function, such that 1, is LPQR. By
(1.6) we may write

@2) I — I = | Blo, 1), @), p@ldo— | Eile, y(a), pa), po)lds
+ | Liz, 5(a), p(a), B@)lds — | Lz, v(@), (@), p@)lds

Let V = y(x) be a variety of class 2;

Plx, ¥, pl = Ll@, ¥, p(), P]
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is a polynomial of a degree not exceeding 1 in each P, and all of the
derivatives

(2.3) oP[¢,9,p] ~ @Plz,7.b] Pz, 7,7l
op: 0p,0p; 11‘[ Dt OppLe

(7":1,2, --.,m;syt:]_,z,...n)

exist and are continuous for every [z, ¥, P] and for every ¢, U, (),
r,s,t as a consequence of the existence and continuity of the functions
(1.4) and of the partial derivatives of the first two orders of the functions
yr(x)r (’r =12, .., m)-

By the continuity Theorem 1.2,

J, = | Pla, 3), p@)lda

is continuous; hence the difference of the last two integrals on the right
side of (2.2) is smaller than any predetermined real positive ¢, whenever
o(V, V) is less than a certain positive number p(¢). Since the first in-
tegral on the right side of (2.2) is not negative by (1.8) and the second
vanishes by (1.7), (2.1) holds: the theorem is thus proved.

3. (a) In this section the concept of asymptotic evaluability of
the integral I, is defined; the lower semicontinuity on every very variety
V of any positively quasi-regular and asymptocally evaluable integral
is proved. The results of this chapter may be regarded as extensions
of Tonelli’s theorems on usual multiple integrals [59, 60], and of our
results on Fubini-Tonelli integrals [30].

(b) Suppose that I, = S olx, y(x), p(x)lde is PQR, and let L[z, vy,
D

p, ] be one of the functions, such that I, is LPQR.
The function

(3.b.1) o[z, y, p] = Elfx, v, 2, 9],

where 0 is a m-n matrix whose elements are all 0, is never negative.
Furthermore,

(3.5.2) I, = SD@[w, y(x), p(x)]dx
is LPQR, where
(8.b.3) Llz,y, p, p] = LIz, y, p, ] — L[z, y, 2, p].

By (1.7), the equation
D[z, y, 2] =0
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holds for every x e D and every .
Let R denote a positive real number and let ®%[x,y, p] denote a
function such that the following conditions are satisfied:

I. @[z, y, p] is continuous with all its partial derivatives of any
of the forms

0P, y, bl - OPte,y, Pl 99tz Y, p]
op; 0p;0p; ﬁ (0! 9o
1

II. The integral
(3.b.4) Y, = Spcp‘*[x, Y, (%), p(x)]dx
is PQR.

III. The relation
(3.b.5) 0 < 9x, y, p] < P[z, y, p]
holds for every y, p and for every x e D; furthermore
(3.1.6) 9[x, y, p] = @[z, y, pl, Whenever 3 3 (pi)?

=1 =1

IIn

IV. There exists at least one function A[xz,y, p, ], such that Y,
is APQR, and such that, for each 7 > 1, there exists a number @, for
which the following condition is satisfied:

Let q, U, ¢, () be defined as they were in §1; let U, denote the
complement of U, with respect to the set of the first m positive in-

tegers, and let T be an index ranging over U,. Then the inequality

Wz, v, 91 < Q1+ I p2®))

e,

where quvu[x, Y, p] denotes the coefficient of the element
H [ﬁ/&({) . pf;;(g‘)]
¢€U,

of the expression Alx,y, p, p], holds for every q, U,, p, for every x ¢ D
and for every y such that

ly: | < T (=12, m).

REMARK 3.1. In the case of the usual multiple integrals (m = 1),
Condition IV reduces to the boundedness of the derivatives
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0p*|x
i R (5=1,2 -+, )
opi

in any domain where y(«) is bounded; this condition is exactly the one consi-
dered by Tonelli [59, 60].

In the case of Fubini-Tonelli integrals (n = 1), this condition reduces
to the one that this author considered in [30, §1, page 132].

REMARK 3.2. Y, exists and is finite on every variety V, i.e., every
variety V is ordinary for the integral Y.

(¢) LEmMMA 3.3. The integral Y, defined by (3.b.4) is lower semi-
continuous at every variety V.

Proof. Let V = y(x) = {y.(x;)} be any variety; and let 1 > ¢ > 0 and
R > 0 be given, and let © = 7(x) = {7,(x;)} denote a variety of class 2,
such that

(3.c.l) oz, V) <e
Let T =sup|yfx)| + 2.

x;,1

Let #'(x) = || 7"i(x) || _H 671'(90) H t=1,2, m;j=1,2 .+, m),

and let D; c D; denote set of the points «; such that, for some j,
either p!(x;) does not exist or it is such that

3.c.2) [ 7i(x;) — pi(w) [= €.
Suppose further that, for each ¢+ (1 =1,2, -+, m),

Ge3) | Sl | + [ pie) e, < e

The construction of such a variety = is possible for any V [68].
If V =y(x) = {y,x)} is any other variety, we may write

() Yr — ¥, = | Bile, i), 7'@), @)l
~ [ Bile, v, 7@, sl
+ e, e, (@), ed

— | a1z, y(@), @), pde

where

{3.c.5) Eflx, y, p, Bl = ?l2, y, ] — 4|z, y, p, D)
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The first integral on the right side of (3.c.4) may not be negative
because Y, is PQR; since 7 is a variety of class 2, we may show in
the same way as we did for proving Theorem 2.1, that there exists a.
0 < o, <1, such that, if P(V, V) < p,, then the difference between the
last two integrals on the right side of (3.c.4) is less than e.

Let us consider the expression

(3..6) |,| il y(@), 7'@), p@)] | do

by (3.c.5), (3.b.7) and (3.c.3), recalling the defininition of A[z,y, p, 7],
i.e., the definition of L[, y, p, p], since @'(x;) (2 = 1,2, -+, m) is bounded,
there exists a number k, which depends upon m, n, the variety V and
the diameters of the sets D; (+ =1, 2, - -+, m), but which depends neither
of # nor of &, such that the expression (3.c.6) is less than e¢-k ([59,
vol. 1, § 11, # 142]; [60, § 3, £9]; [30, §3,c]). Consequently the absolute
value of the integral on the right side of (3.c.4) is also less than ¢-k;
hence

Yy > Y, — (1 + k), whenever o(V, V) < p, .

Thus the theorem is proved.

(d) DEFINITION 3.4. Then integral I, is said to be asymptotically
evaluable (abbreviation: AFE), if it is PQR and if there exists a function
Llz,y, p, p] such that I, is LPQR and if, for every positive R, there
exists a function @%[x, y, p] (as described in § 3.b).

ReEmMARK 3.5. Tonelli [59, vol. 1, page 398-9] gave a procedure by
which @®[x, ¥, p] may be constructed starting from any simple integral
(m =n = 1), which is PQR: he thus proved that, if a simple integral
is PQR, it is necessarily AE. Some criteria of asymptotic evaluability
are exhibited in [30, § 2, page 140]; although it appears intuitively that
every PQR integral is also AFE, this fact was never proved, except in
the case (m = n = 1); therefore the statement of any theorem of semi-
continuity in whose proof the function @.[x, ¥, »] is used, has to contain
the hypothesis that this function can be constructed, i.e., that the
integral considered is AFE.

THEOREM 3.6. If the integral I, is PQR and AE, it is lower
semicontinuous on every ordinary variety.

Proof. Let us first point out that existence and lowers emi-
continuity on any variety of I,, and those of the integral I, defined by
(3.b.2), are equivalent, since the integral
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[, @12, y(@), p@) — Pla, y(@), pe)hde = | Lis, y(o), 2, p@)ld

exists and is continuous at every variety, by the Continuity Theorem
1.2.

Let V = y(x) = yix;) be an ordinary variety, and let ¢ > 0 be given.

Since @[z, y, p] is never negative, it is possible to find a positive
number R, such that, if D;(1=1,2,---,m) is the subset of D, con-
sisting of the points «; such that, for each j (5 =1,2,-..,%), the
partial derivative oy;(x;)/0x! exists and its absolute value does not
exceed R, the inequality

3.d.1) I, — Sg Bl y(a), p(@)lds < &2

1

holds.

The integral Y,, that we associate with I, and R (see §3.b) is lower
semicontinuous on V by Lemma*3.3; i.e., there exists a positive number
0 such that, for each variety V

(3.d.2) Y7 > Y, — ¢/2, whenever p(V, V) > p .
From (8.b.5) and (3.d.1) we have
I, — Y, <¢?2
whence, by (3.d.2)
I > I, — ¢, whenever o(V, V) < p

i.e., I, is lower semicontinuous at any ordinary variety, and so is I,.

DEFINITION 3.7. We shall say that the integral I, is lower semi-
continuous at a variety V, such that I, = + oo, if there exists a positive
function o(¢), defined for each positive ¢, such that, if V is any ordinary
variety, then

I; > ¢, whenever o(V, V) < p(e) .

THEOREM 3.8. An integral I,, which is PQR and AE, is lower
semicontinuous at every variety V.

In the case in which V is ordinary, Theorem 3.6 states the lower
semicontinuity of I, on V. If V is not ordinary, the value of I, on V
is + o (see Remark 1.7).

Let us again consider I, instead of I,. Let ¢ be a given number,
and let R be another positive number, such that, if D, (i =1,2, ---,
) denotes the subset of D, consisting of the points x; where all the
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partial derivatives of y;(x;) exist and are less than R in absolute value,
then

3.e.1) [ - P12, @), p@)ds > e+ 1.

16

Like in the proof of Theorem 3.6, we consider again ¢?[z,y, D].
Y, exists finite and is lower semicontinuous at V: hence we may find
a positive number p, such that, if V is any variety such that

(3.e.2) oV, V)<p,
then

Y > Y, —1.
By (3.b.5) and (3.b.6),

Y, = [, oo, u@), p@)lda

147

= | - Ol 9(@), p(@)ldz

hence, considering (3.e.1), if (3.e.2) is satisfied,
T 7> €.

Therefore I, is semicontinuous at V, and so is I,. The theorem is thus
completely proved.

Conclusion. Let us list four problems which are still open in the
area of the study of the semicontinuity of the integrals of the Calculus
of Variations in non-parametric form:

Problem 1. No example of any lower semicontinuous integral which
isnot PQR is known: it appears worth while to investigate whether or
not positive quasi-regularity is also necessary for lower semicontinuity.

Problem 2. For proving Theorems 3.6, 3.8, we used the construction
of the function @*[x, y, p], and we had to assume that this construction
could be made for every R (see §3.b). It would be interesting to prove

Theorem 3.8 without using this construction, i.e., dropping the hypothesis
that [, is AFE.

REMARK C.1. The semicontinuity at any variety V of class 1, or
even just such that all the functions y,(x;) are Lipschitzian, can easily
be proved for any I,, which is PQR, without any hypothesis of asymp-
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totic evaluability, by generalizing the procedure followed in [30, §3,
First Theorem of Semicontinuity].

Problem 3. No example of any integral I,, which is PQR without
being AE, is known. It would be useful to devise a general method
by which it would be possible to construct %[z, ¥y, p] from R and
¢lx, ¥, p]: thus proving that if I, is PQR, it is necessarily AE.

Problem 4. Only varieties which are absolutely continuous in the
sense of Tonelli [63] and the m-uniform metric were considered in this
paper; however, it appears that positively quasi-regular integrals are
lower semicontinuous even with respect to weaker metrics, on more
general classes of varieties. Generalization of the results contained in
this paper may be considered.
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