INFINITELY DIVISIBLE PROBABILITIES
ON THE HYPERBOLIC PLANE

R. K. GETOOR

1. Introduction. This paper may be regarded from two points of
view. First of all it presents the theory of infinitely divisible radially
symmetric probability measures on the hyperbolic plane and the naturally
associated limit theorems. This point of view provided the motivation
for the present paper and is explained in some detail in §2 and 3.
However, just as the analagous theory in the Euclidean case may be
viewed as a chapter in the theory of Fourier transforms, so may the
present theory be viewed as a chapter in the theory of Legendre trans-
forms. That is, by using the Harmonic analysis described in §§2 and 3
one can set up a one-to-one correspondence between the radially sym-
metric probability measures, f¢, on the hyperbolic plane and certain func-
tions of a complex variable ¢(z) in such a way that the convolution of
M and g4, on the hyperbolic plane corresponds to the pointwise product
of their “transforms” ¢, and ¢,. Since g is radially symmetric it is
completely specified by a distribution function F'(A) on A= 0 and the
correspondence between ¢ and g (or F') is given by

(1.1) $() = K NaFQ)

where K(z, \) is a certain Legendre function given by (4.9). The convo-
lution of £, and p,, at least in the case where F) and F, have densities,
is written down explicitly in (3.9).

This second point of view is adopted for the most part beginning
in §4 and so the majority of the paper (sections 4-10) deals with certain
problems in the theory of the Legendre transform (1.1). The tools we
use are those of classical analysis, but the problems treated are motivated
by probability theory. The main results of the paper are contained in §§ 7
and 8. In §10 Gaussian and stable distributions are defined within the
present context. Finally in §11 we indicate the extensions of these
ideas to a wider class of Legendre transforms which includes the theory
of radially symmetric probability measures on the higher dimensional
hyperbolic spaces as special cases.

We would like to thank Professor H. P. McKean who first introduced
us to the material in § 2, and who expressed interest and encouragement
when the present paper was in its formative stages.

Received January 10, 1961. This research was supported, in part, by the National
Science Foundation.
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2. General Remarks. The present section is devoted to a general
situation that we will specialize to the hyperbolic plane in the next
section. We follow, more or less, the expository article of Godement
[4]. Let G be a locally compact second countable topological group and
let K be a compact subgroup. Let z, v, z denote elements of G and u,
v elements of K. We define two equivalence relations on G as follows:

2.1) r~y&EayteK
(2.2) r~ Y& there exist u,ve K such that z = uyv.

Thus H = G/~ 1is the space of right cosets and R = G/~ is the space
of double cosets. We give H and R the usual quotient space topology.
Let dx be right invariant Haar measure on G, then dx induces measures
dh and dr on H and R which are invariant under the (right) action of
G. In order to avoid notational complications it will be convenient to
regard all functions as being defined on G. Thus the statement f e L,(R)
will mean f(x) = f(y) if x~y and gl f(x)|dx < o« with the obvious

conventions for functions defined almost everywhere. Thus we have
(2.3) L,(R) C L,(H) C L&)

for each p > 0.
If f and g are in L,(G) we define their convolution

@4 fro.a) = | Fay oy .

It is well known that L,(G) is a Banach algebra and it is immediate
that L,(R) and L,(H) are closed sub-algebras. The basic assumption of
[4] is that L,(R) be commutative. Selberg [6] has shown that if H is
a symmetric (or more generally, weakly symmetric) space then L,(R) is
commutative. For us the following simple sufficient condition (whose
proof is a routine calculation and is therefore omitted) will suffice.

THEOREM 2.1*. If x ~ x* for all x in G, then L,(R) is commutative.

In the remainder of this section we will assume that L,(R) is com-
mutative. If «a is a multiplicative linear functional on L,(R) then

2.5) alf) = Spw(w)f(x)dx

where p, is in L.(R). It is easy to see that a defined by (2.5) is a
multiplicative linear functional if and only if

26) Pu@)palt) = | polzny)du

1 This remark is due to H. P. McKean.
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for almost all z,y. Here du is normalized Haar measure on K. More-
over (2.6) implies that p, is equal almost everywhere to a continuous
function and thus the multiplicative linear functionals on L,(R) may be
identified with the bounded continuous functions on R satisfying (2.6).
Such functions are called spherical functions on R.

Let C.. be the continuous functions on G with compact support. If
feC. we define f(z) = flx™'). A (signed) Radon measure / on G is said
to be of positive type if

2.7 p(Fxf) z 0

for all feC.. A continugus function p on G is of positive type if the
measure p(x)dx is. Let R be the totality of all spherical functions on
R which are of positive type. For fe L,(R) we define

(2.8) io) = |f@p@ds for pek,

then, at least if G is unimodular, one can develop a complete theory of
harmonic analysis including a Plancherel theorem. For details see [4].
Since we won’t need this general theory we will terminate our general
discussion at this point.

3. The Hyperbolic Plane. Let D be the interior of the unit disc
in the complex plane, i.e., D = {2 : z complex, |z| < 1}. The set D furnish-
ed with the Riemannian metric

(3.1) ds’ = 4(1 — r’)*[da® + dy’]

where r* = |z|* = x* 4+ y* will be called the hyperbolic plane. The geo-
desic joining z, and 2, is the unique circle through them cutting the
circle [z| = 1 orthogonally. The hyperbolic distance £(z,, z,) between z,
and 2z, is given by

(3.2) th§|2 =2, — 25| « |1 — Ziz, |7

where “th” denotes the hyperbolic tangent, similarly “ch” and “sh” will
denote the hyperbolic cosine and sine. See [2] for a discussion of the
hyperbolic plane including the above facts.

If w and b are complex numbers with |#| = 1 and |b| < 1 we define
the hyperbolic motion (u, b) as follows:

(3.3 (u, b) : 2z — u(z — b)(1 — bz)~*.

It is easy to check that (3.3) maps D onto D and preserves the hyper-
bolic distance (3.2). Let G be the totality of all such motions with the
obvious topology. Clearly G is a topological group satisfying the hy-
potheses of § 2. The multiplication in G is composition, i.e.,
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3.4 , b, b)) = Uy (uy + l_’_152)’ u.h, + 111
34 (ss; B}, ) <uz(ﬁz Fbby) U+ blbz)
and

(3.5) (u, b)™* = (&, —ub) .

Let K be the compact subgroup consisting of motions (u,0), then
K is just the circle group. It is straight forward to check that the
equivalence relations defined in (2.1) and (2.2) become

(3-6) (uv b1) ~ (uzy bz) E bl =b,
3.7 (s, b)) =~ (U, b)) & | 1| = |1, ] .

Thus H can be identified with D and R with the half-open segment
0<r<1. Moreover Haar measure in G can be chosen so that the
invariant measure induced in H = D is just that associated with the
Riemannian metric (3.1).

It is convenient to introduce geodesic polar coordinates (¢, 6) in D
with pole at 2 = 0. Here ¢ is the hyperbolic distance and the coordinates
of the point z = re®® with 0 < 0 < 27 are (logl + r/1 — r,6). In terms
of these coordinates we have ds® = d¢? + sh*¢d6® and the corresponding
volume element is given by

(3.8) she dg do .

We now regard R as the half-line 0 < ¢ < « and write f(ch¢) for the
generic function defined on R. Theorem 2.1, (3.5), and (3.7) imply that
L(R) is commutative and routine calculations show that if f,ge L(R),
then their convolution is given by

3.9)  fxg.(cht) = S“’S" F(ch\)glehtehn — sheshh cos O1shadod
0Jo
- S”S“f[ch;chx, — sheshn cos 01g(chn)shadody .
0 Jo
Moreover the defining equation (2.6) for spherical functions becomes

(3.10) p(ch\)p(che) = 2—177:—S:”p[ch)\,ch§ — shsht cos 0]d6 .
From (3.10) one can show that p is a solution of the Legendre differential
equation and since p(1) = 1, it follows that the solutions of (3.10) are
P,(ch¢) where P, denotes the Legendre function of the first kind. See
[3]. Equation (8.10) is then a simple consequence of the usual addition
theorem for Legendre functions [3].

Since the spherical functions are bounded we must have —1 =
Re(v) < 0. Finally it is not too difficult to see that P,(ck¢) is of positive
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type if and only if Re(v) = —1/2. Thus we have identified the spherical
functions and the spherical functions of positive type for the hyperbolic
plane. See also [4].

The fact that the two integrals in (3.9) are equal is, of course, a
consequence of the general theory of § 2. However, one can see this
directly as follows. In the first integral in (3.9) we regard (\, d) as
geodesic polar coordinates for the hyperbolic plane D with pole at 0.
Let 2, be the point whose coordinates are (¢, 0) and let (¢, @) be geodesic
polar coordinates for D with pole at z, with the same polar axis. Using
(8.2) it is not difficult to see that relationship between the coordinates
O\, 0) and (¢, ) of a point z is

(3.11) chpt = chichf — shashg cos 0
ch\ = chpcht + shushg cos @ .
Thus regarding the first integral in (3.9) as an integral over the hyper-

bolic plane we see that it is equal to (the volume elements are shad\d8
and shudude, see (3.8))

S: S:n Sflehpchg + shpshi cos lg(chp)shpdpdp

and this is obviously equal to the second integral in (8.9). The relation
expressed in (3.11) is just the law of cosines for hyperbolic trigonometry.

4. Preliminaries on Legendre Functions. We intend to study integral
transforms of the form

@1 P(v) = S:Py(chx)dF(x)

where F' is a bounded monotone nondecreasing function and P,(ch\) is
the usual Legendre function. In this section we gather together some
facts about the kernels P,(ch)\) that we will need in the sequel.

Combining formula (3) of §3.2 and formula (22) of §2.1 of [3] we
see that

(4.2) P,(ch)) = (%2@3) F(_,,’ 1 zgz - 1)

for all complex v provided 0 =\ < c, where F' is the usual hyper-
geometric function. In all statements to follow X\ is a nonnegative real
number. It is immediate from (4.2) that for each fixed N the function
P,ch)) is an entire function of the complex variable v. Also

4.3) P1)=1
Pych\) = P_,(cha) = 1.
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From formula (9) of §3.7 of [3] we have

1
Loh(v + ?>t dt
o (chn + cht)'?

(4.4) Pien) = —V 2 sin wrg

T

provided —1 < Re(v) < 0 and in particular for real x we have

4 Poiii(ehn) =YV 2 e, S”M.
(4.5) 1+i(ChN) = chaz| G o)

Using (4.2) above and the standard integral representation for the
hypergeometric function (§ 2.1.3 of [3]) we find that

(4.6) Py(ch)) = (%@)”[n—p)ru Ly
Yoy el AN — 1\
Sot (1—=9 (1 chn + 1t> di

provided —1 < Rey < 0. For v real with —1 <v < 0 it is immediate
from (4.6) that

4.7) 0 =< P(chy) =1

and since P,(ch)\) is a continuous function of v the inequality (4.7) must
hold for all v in the interval —1 < v < 0. On the other hand using
formula (14) of §3.7 of [3] we have

| Py(ch)) | < %g:[chx + sh cos £]7dt = Py (ch))

and combining this with (4.7) we obtain
4.8) | Pchn)| = 1

provided —1 < Rey =< 0.
Let z = 2 + 7y be a complex variable and define the function

(4.9) K(z, ) = P_y.i(chn)

for =0 and —1/2 <y < 1/2. For each fixed )\, K(z, \) is an analytic
function of z in the strip —1/2 < y < 1/2 and is continuous in the closed
strip —1/2 < y < 1/2. The properties (4.3) and (4.8) become

(4.10) K(z,0) = 1, K<— % x) = K(% x) —1
|K(z, M) =1.

Moreover K(x, )\) is given by the right hand side of (4.5).
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5. Uniqueness and Continuity. Let & be the collection of all
bounded monotone nondecreasing real valued functions defined on 0 <
A < o and normalized so that

6.1) (1) FO)=0
(ii) FO)—>F(z) as M| g forall £>0.

Note that F'(0+) need not be zero. Let & be those Fe. & which
satisfy

(.2) F(e) =lmF(\) =1.

All integrals are to be in the Lebesgue-Stieltjes sense. Integrals over
0 <M< o will be written S , while integrals over 0 < A < o will be

0

oo

written S

v
It {F:} is a sequence in & and Fe . % then we say that F, con-
verges weakly to F (written F, — F') provided

(.3) S” fdF, — S‘” fdF

for all continuous f with compact support. We say that F, is Bernoullt
convergent to F provided (5.3) holds for all bounded continuous f. It
is obvious that if each F,e¢ % and F,=F, then Fe #. (F,=>F
means F, is Bernoulli convergent to F'.)

If K(z, \) is the kernel defined in (4.9) we define the transform of
Fe & by

(.4) P(z) = S”K(z VAFQ)

It is immediate that @ is bounded in absolute value and continuous in
the strip —1/2 < y < 1/2, and is analytic in —1/2 <y <1/2. In parti-
cular @(z) is a real valued even function of x, and Fe & if and only
if (—i/2) =1. Of course, the values of @ on the real axis completely
determine @ in the strip —1/2 <y <1/2. We now show that F is
uniquely determined by .

THEOREM 5.1 If @ is the transform of F, then ¢(x) uniquely de-
termines F.

Proof. It suffices to prove that if F'is of bounded variation (not
necessarily monotone) and if the integral in (5.4) vanishes for all z then
F is identically zero. Using the representation (4.5) for K(x, ) we have

(5.5) S:h(t) cos xtdt = 0 for all x
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where
.6) h(t) = H(cht) = S:[chx + cht]2dF () .

The interchange of order of integration is justified since
[ht)| < Var(F)[1 + cht]% .

Moreover & is continuous and the above inequality implies % e L, hence
(5.5) coupled with the uniqueness theorem for Fourier integrals yields
h(t) =0 for all ¢ = 0. Thus if we define G(u) = F(ch™*(u)) for u =1
and G(u) =0 for 0 < u <1 we have

H(t) = S”(u + t)-3dG(u) = 0
0
for all ¢t = 1. But
H) = n‘%‘rSwe“"“”o‘%deG(u)
0 Jo

- n—%re—“‘a‘%g(a)da
0

where g(o) is the Laplace-Stieltjes transform of G. Since H(t) =0 for

t =1 we see that o-3g(0) = 0 for almost all ¢ which in turn implies
that G, and hence F), is zero. Here we have used the uniqueness theorem
[7] for Laplace transforms twice.

In the present work the following rather weak continuity theorem
will suffice.

THEOREM 5.2. (i) If F,— F and F,() =< M then ¢,(z)— o(x).

(i) Let @, be the transform of F, and suppose @,(—1/2) = F () <
M, then if @,(x) — @(x) there exists an Fe & such that F,— F and
@ 1is the trasform of F.

Proof. (i) For each z the function K(z, -) is continuous and (4.5)
implies that it vanishes at infinity. Thus it is immediate that for each
fixed * we have @,(x) — ¢(x).

(ii) Since F, () < M the Helly theorem implies the existence of a
subsequence {F} weakly convergent to F’. If ¢’ is the transform of
F’ then (i) implies that ¢'(x) = @(x) for all x. If the entire sequence
{F,} does not converge to F'’, then there exists another subsequence
{F} converging to F'"" = F'. But as before ¢"(x) = @(x) = ¢'(x) which
contradicts the uniqueness theorem. Thus if we let F = F' the proof
of (ii) is complete.
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REMARK 1. Since the limit @ in (ii) above is a transform it follows
that ®(2) may be defined as a continuous function on the strip —1/2 <
y = 1/2 which is analytic in the open strip. If ¢(—1/2) = lim ¢,(—1/2),

then F,(oo) — F(oc) which implies that F, = F.

REMARK 2. If F,= F then since K(z, \) is continuous and bounded
for A = 0 and z in the strip —1/2 < y < 1/2, it follows that ¢,(z) — @(2)
uniformly on each compact sub strip —1/2=y=<1/2 and 0 <z < x,.
See, for example, Lemma 1.5.2 (iv) of [1].

6. Closure Properties. Let <?(<3) be the class of all transforms
of functions in & (). It is then immediate that if ¢ and 4 are in
Z and a, 8= 0 then ap + By e &?, while if p,yre FHanda +B=1,
a=0,8=0, then ap + Byre . Moreover Theorem 5.2 (ii) implies
that if {®,} is a sequence in & and @,(x) — @(x), then P e &7,

The main result of this section is that & and <% are closed under
pointwise products. The proof of the following theorem is, of course,
motivated by the general discussion of §§2 and 3.

THEOREM 6.1. If @, and @, are in F(F) then PP, is in FP(FR).

Proof. Let @, and 9, be the transforms of F, and F,. We first
consider the case in which F, and F, have continuous densities fi(ch)\)
and fy(ch\) with respect to the measure shadr. Of course, fi(ch)) may
be unbounded near A = 0. Thus

(6.1) Pi(w) = S:K(x N Fich\)shadn § =1, 2
rfa-(chx)shxdx < o5 fiehn) =035 =1,2.

For the purposes of the present proof it will be convenient to write
6.2) p(z, ch\) = K(z, ) = P_g.i,(ch)) .

An immediate consequence of the addition theorem for Legendre func-
tions [3] is that

(6.3) p(z, ch\)p(z, chyt) = % S:ﬁp(z, a(0))do
where
(6.4) a(0) = chachpt — shasht cos 0 .

Therefore
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PUPAE) = o | Filehnsinan| | Fiehp(e, al0)shpdody

If in the inner integrals we make the change of variable described in
the last paragraph of §3 we find (the manipulations are justified since
Sfochp) e Li(shpdy) and p is bounded)

Pi@242) = | P, chyh(chp)shpd

where
]

h(chyt) = _21;5 S:"fl(chx,) Fia(0))shAdbdn .

clearly h = 0 and

S A VS G N o
Fi(0)Fy() = ‘7)1< 2 >q)2< 2> SO h(Chlu)Shﬂdlu .
Thus @@, is in &2, and if @, ¢, are in &3, then ¢,p, is in A.
We now turn to the general case. Let k(A) =e¢ if =0 and
E(v) =0 if A <0, and put k,(\) = nk(n)). Defining Fi(\) and F,(\) to
be zero for A < 0, it is clear that

S0 = | = paFe) = [ — maFi)

are continuous functions of A = 0. Moreover if we define ,F,(\) =
A
S Ji(dy, it follows that F,e &, and ,F,e & if F,e . Here ¢ =
0
1,2. It is well known [1, Th. 1.5.3] that ,F;=F; as n— . If
L9:(chy) =, f;(\) then ,g,(ch\)(sh))™ is the density of ,F, with respect
to shaxdx. Thus if ,p; is the transform of ,F), it follows from what we
proved above that +,(2) = ,9.(2).P.(2) is in & (or &#). But by the
second remark following theorem 5.2 we have ,9,(2) — @,(2) everywhere
on the strip —1/2 < y < 1/2. Thus @,(2)P.() = lim +,(2) is in &7, and
PP, e F if both @, and @, are since yr,(—1/2) — @,(—1/2)p,(—1/2). This
completes the proof of Theorem 6.1.

The following theorem gives another interesting closure property of

P

THEOREM 6.2. If @ e P, then (2) = exp (t[P(z) — ¢(—1[2)]) is in
G for all t > 0.

Proof. If a = @(—1/2) = F' () = 0, then

Jr(z) = e7* lim i trp)" .

n—oo k=0 k!
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Using Theorem 6.1, the fact that < is closed under positive linear
combinations, and Theorem 5.2 it follows that vrc 2. (Theorem 5.2 is
applicable since
o= )
2

n
Z - e < emt
i=0 k! -

for all n.) Moreover y(—%/2) =1 and so € Z.

7. Limit Theorems. In this section we will consider only the class
5. We begin by making the following definitions suggested by proba-
bility theory.

DEFINITION 1. @e g; is infinitely divisible if for each positive
integer n there exists a , € &% such that ¢ = (y,)".

DEFINITION 2. @€ % is a generalized limit if there exist ¢,, e &
forn=1,2,+-+-,and t=1,2, .-+, k, with k, — © as n — o such that

(7.1) max |Pu(x) — 1] —0

uniformly on each bounded interval 0 < z < x, < o, and
kn

(7.2) Pu(@) = 11 Par(®) = P(@)

for all .

In this section we will show that ¢ is infinitely divisible if and
only if ¢ is a generalized limit, and at the same time obtain a canonical
form for such @. In the course of our discussion we will need the
following two lemmas which we state here for convenience. The proofs
of these lemmas will be given in §9.

LeEMMA 7.1. (1) There exist constants N, >0 and My < o such
that 2|1 — K(z, )| < My provided 0 =\ = ), and |[z| = R (of course
z 18 in the strip —1/2 <y < 1/2).

(i) 21— K(z,\)] —1/4(1/4 + %) as A — 0.

LEMMA 7.2. Let H,(\) = %S’h — K(z, \)]dz, then
0

(i) 0=H, =2 and H,(\) >0 for x>0;

(i) H;(\)—1 as »— o

(i) A*H,(\)—C(T)>0as x—0.

We begin with the simple half of our main result.
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THEOREM 7.1. If @ is infinitely divisible, then @ is a generalized
limit.

Proof. Letting k, =n and @,, = 4, for all £ we see that ¢, (de-
fined in (7.2)) is identical with @ for all n. Thus we need only verify
(7.1). But (4.10) implies that |@(x)| =< 1, and, of course, ¢(x) and ,(x)
are real. Therefore

P (@) = [P(@)]F — (@)

where 4r(x) =0 or 1 according as ®(x) =0 or @(x) = 0. But #Q) >0
and hence y0) = 1. Moreover e &% and thus Theorem 5.2 implies
that - ¢ 7. In particular {~(x) is continuous and since 4 can only take
on the values 0 and 1 it follows that y(x) =1 for all . Hence o(x)
never vanishes and since +,(x) = exp [1/nlog @(x)] in a neighborhood
(depending on n) of 0 we must have +, (%) = exp [1/n log ¢(z)] for all
2 =2 0. Therefore 4, (x) —1 as n— c. This completes the proof of
Theorem 7.1.

We now turn our attention to the converse of Theorem 7.1. This
will not be established in full generality until §8. In working with
Definition 2 we will adopt the convention that F),, is the element in
3 whose transform is @,,, similarly @, is the transform of F,, @ of F.
We begin with the following result.

THEOREM 7.2. Condition (7.1) of definition (2) is equivalent to
(7.3) max deFnk(x) -0
as n— oo for all € > 0.
Proof. Suppose (7.3) holds then
max | @u(e) — 1] = max| L — K@ VIdFu0)
+ max S:[l — K@, V]AF..(\)
<eM,+ 2 max E:dF,,k(x)
provided ¢ < ), and 0 < 2 < R where )\, and M, are defined in Lemma
7.1. Thus (7.1) follows.
Suppose (7.1) holds and (7.8) does not hold, then there exists an

¢ >0 and a subsequence 7, such that

(7.4) max deFnj,, =7>0.
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Let k, be the value of ¥ at which the maximum in (7.4) is attained
(0=k;=<k,) and let G, = F,,,. Let +, be the transform of G,, then
(7.1) implies that +,(x) — 1 which is the transform of F (unit mass at
the origin). Thus G, — E weakly, but this is clearly a contradiction

since rdGJ =7 >0.

THEOREM 7.3. If ¢ is generalized limit then @(x) = exp[—yr(2)]
where

(7.5) ¥ = | 1L — K, 015X d00)

with Qe 7 .

Proof. Theorem 6.1 implies that each ¢, € &5. Hence F,(0) =1 =
F(x) and since @,(x) — @(x) we see that F, — F. Combining these
facts yields F, = F. Thus ®,(z) — #(2) uniformly on each strip —1/2 <
y=1/2and 0 <2 =< x,. (Remarks following Theorem 5.2). Also @(x)
can not vanish near x = 0 since @ € & Let x, be the first zero of @,
then @,(x) — @(x) uniformly on 0 < x < x,. Condition (7.1) implies that
@,.(x) doesn’t vanish for 0 <« < x, and all k provided that = is suf-
ficiently large (how large depending only on %). Thus for 0 <z < %,
and n sufficiently large we can write

—log ¢,(x) = —log {1 — S:[l — K(z, x)]an,,(x)} .
Letting
auf@) = 1= 2,4(0) = |11 = Kz, VIF.() 2 0,

it follows from (7.1) that a,.(x) — 0 uniformly on 0 < z < %, uniformly
in k as n— . Hence

kn Epn oo
(7.6) —log P(2) = — 31og Pu®) = 3 5 (1) (),
and letting » — o« we obtain
k’IL k‘ﬂ bad .
@7 —log p(@) = lim { S @, + 3 5 (9@}

provided 0 = x < x,.
Since all the terms involved are nonnegative we have for 0 <z < «,

7.8) 0= 35 (1)@ = max @) 5 F ()@
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— 0(—log @(x)) = 0
as n— oo, If we define
G = 3 )
and use (7.7) and (7.8) we obtain
(7.9) ~logp(e) = lim | "[1 — K(@, MG,

provided 0 < x < 2,

We now investigate the behavior of the functions G, as n— .
It is an immediate consequence of Lemma 7.2 that for each T >0
there exists a constant A(7") > 0 such that

S L — Kz, M)]de = A(T)

1 + A\
for all A = 0. Also from (7.6) and the definition of G, it is clear that

g, (z) = S:u — Kz, MG, (V)

for 0 < x < =z, and = sufficiently large. Moreover since @,(x)— P(x)
uniformly on 0 <z <z and @(x) is continuous and bounded away]from
zero on 0 < x < 1/2¢, it follows that log @,.(x) — log @(x) uniformly on
0=2x=<1/2x,. Thusif 0 < 7T < 1/2x, and » large enough we have

[, 25600 = [TAD]] ~log 2y (@)de

- [TA(T)]—IS0 —log p(x)dx < o .

Hence there exists a constant M < o such that

(7.10) > 4G =M.

e
Next we will show that given ¢ > 0 there exists an R (independent of
n) such that

(7.11) S:dG,,(x) <e¢.

To this end we first note that ,(ty) — ®(¢y) uniformly an —1/2 <y < 1/2.
Also (4.2) and (4.9) yiell 0 < K(#y, M) =1 for A= 0and —1/2<y =< 1/2
with K(—1%/2,)) =K(i2,x) =1. Thus o,(iy) and @(iy) are strictly
positive on —1/2 <y<1/2. Since a,,(?y) =1 — @,.(7y) < 1 an argument
similar to the one leading to (7.6) yields
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(7.12) —log #,(i) = |11 — Ky, MIdG, )

0
Let » > 0 be given, then since ®(—%/2) =1 we can choose T such that
—1/2< T <1/2 and

—2
2T +1

S; log p(iy)dy <7 .

Moreover (4.4) and (4.9) imply K(iy,\) — 0 as A — o for each fixed ¥
with —1/2 < y < 1/2. Thus we can choose R, so that

2 ST 1 — K@y, Wdy > 1 —
5T 1 _%[ (y, Mldy >1—7

for all » = R,. Since @,(ty) — ®(ty) uniformly on —1/2 =<y < T and @
is bounded away from zero there we can choose 7, so that for n > =,

2T +1

2T +1

T T
|, 108 pu(in)dy = |, log lindy + 7 = 2.
-2 2

Thus for n > n, we have

o 2 T oo . )
1,0 = 06,00 = 22" 171 — Ky, 0146, 00dy

_ T X
2 S | log @, (iy)dy = 27,

<
T 2T +1J)-4

or S& dG, < —1—277—- if » > mn, It is now evident that given ¢ >0 one
Ry

can choose an R so that (7.11) holds (each G, being monotone nondecreas-

ing and bounded).
Define

(7.13) 2,00 = S‘ 1 ¢ ~d6.().
+ 2

Then each 2, is in &% . Using (7.10), the Helly theorem implies the
existence of a subsequence (call it £, again) such that 2, - 2 with
Qe Z and 2 () < M. Moreover from (7.11)

[[a2.0 = [[a6.00 = ¢

uniformly in » for R sufficiently large and this easily implies that 2, =
Q. Therefore

(7.14) S:[l — Kz, V)] ;: 230,00 — S:u — K, )] L ; M 400
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where the integrand is defined by continuity, using Lemma 7.1, to be
1/4(1/4 + 2*) at A = 0. Combining (7.9), (7.13), and (7.14) we obtain

(7.15) —log p(x) = S:ll — Kz, V] L ;C M ao0y)

provided 0 < x < x,, But 2z, was the smallest zero of @(x) and thus
—log () —  as « | x, while the integral in (7.15) remains bounded.
Hence ¢(x) never vanishes and (7.15) must hold for all . Finally defin-
ing Y(x) = —log @(x) we obtain Theorem 7.3.

THEOREM 7.4. A function +r has the representation (7.5) if and
only if it can be written in the form

(7.16) We) =2 (% n x2> + S;[l — K(z, VGO

where ¢ =0 and G s monotone nondecreasing, right continuous for » >0,
G() = 0, and satisfying.

(7.17) S:+x2dG(x) < oo,

Proof. If + has the representation (7.5) define ¢ = 2(0+) = 0 and
G(») = — S;t‘z(l + t)dQ2(t) for » > 0, then using Lemma 7.1 (ii) it is
clear that (7.16) holds and that G has the required properties. Con-
versely if (7.16) hold define 2(0) =0 and 2(\) = ¢ + SA (1 + t)'dG(@),
then clearly 2 € & and (7.5) holds. "

8. Uniqueness and Simple Consequences of (7.5). In order that
our theory be reasonably complete the following uniqueness theorem is
required.

THEOREM 8.1. The representation (7.5), and hence (7.16) also, is
unique.

Proof. It is sufficient to prove that if 2 is of bounded variation
and

8.1) v = | 1L - K@ 125 dooy = 0

for all «, then ¥ = 0. We will use the following formula [5, p. 168]
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8.2) (en + chpy™ = 7| EME g 0K, p)dx

o ch’mx
which holds for all ), # = 0. (Robin’s K,(ch\) is our K(x,)\).) Since
K(,») =1, if we multiply (8.1) by mashmx(chmx) *K(x, t£) and integrate
from 0 to « we obtain, using (8.2),

= ohn—1 142
8.3 S ¢ doo) =0 .
®3) o chn + chpr N )

The interchange of order of integration is justified since (|K(z, p)| =1
and K@, ¢) = 1)

o oo 2
7| I | g, ) | 11— Ko, M EXd| 2] ()de
o ch’nx 0 Y

chhy\;—l 1+7\’2d97\.
—Soz(l+chx) o G1210) < e

where | 2| stands for the total variation of 2. But (8.3) may be written
8.4) S”(t + 5)'dQ*(t) = 0

for all s = 1, where for t = 1

n—1

8.5) 0%(t) = SO N1 4 (e — 1))

Noting that 2* is of bounded variation on each finite interval 1 <t < T,
we can apply the uniqueness theorem for Stieltjes transform [7, p. 336].
This leads to the conclusion that £2*, and hence £, is identically zero.

THEOREM 8.2. Given a + of the form (71.5) then ® =e v is an
infinitely divisible element of .

Proof. Since K(-,N) is in <& for each M =0, it follows from
Theorem 6.2 that exp {—b[1 — K(-, M)]} is in &% for all b, A = 0. Thus
if we approximate the integral defining +(x) by a Riemann sum and use
the above fact and Theorem 5.2, we find that @(x) = exp [—+(x)] is in
2. Since @ is in & it can be extended to a function @(z) which is
continuous on the strip —1/2 < y < 1/2 and analytic on —1/2 < y < 1/2.

Using Lemma 7.1 (i) it is immediate that the integral in (7.5) con-
verges for z in the strip —1/2 < y =< 1/2 to a function which we denote
by 4(z). It is also clear that « is continuous on —1/2 <y <1/2 and
analytic on —1/2 < y < 1/2. It now follows that ®(2) = exp [—+(2)] for
all z in the strip —1/2 <y <1/2. Since (—1%/2) =0 it follows that
®e . Similarly exp[—1/ny] is in &£ for each » >0 and thus ¢ =
exp (—+) is infinitely divisible.
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COROLLARY 8.1. @ ts a generalized limit if and only if ¢ is infi-
nitely divisible.

Proof. This results from Theorems 7.1, 7.3, and 8.2.
Actually contained in the proofs of Theorem 7.3, 8.1, and 8.2 is the
following result which we state explicitly for completeness.

THEOREM 8.3. Let ¢p,x€ F for n=1,2,++- and k=1,2, ---,k,
with k, — o and satisfy (7.1). Let @, be defined by (7.2), then a
necessary and suffictent condition @, — @ e A is that

kn A 2
2.0 =3 Sol—deFnk(t)

be Bernoulli convergent to 2e # . In this case ¢ = exp (—v) where
¥ 18 defined by (7.5).

9. Proofs of the Lemmas. We begin with Lemma 7.1 (i). In view
of the definition (4.9) of Kz, \) it will suffice to show A7*|1 — P(ch))| <
M, for 0 =N =), and |v| = r. Choose )\, such that the inequalities.

9.1) chx —1<1;A%(chr —1) <1

hold for 0 < M < \,. Since [3, p. 122]
9.2) Pychy) = F(—v,v + 1; 1; % (1 — ch\)
provided |1 — ch)| < 2, we easily find that for 0 = A =),
1
—2 _ < c1e =
V1= P < F(1v] v+ L1 ).
Taking M, = F(r,r + 1;1; 1/2) we obtain the desired conclusion.

Let )\, be as above, then from (9.2) and (4.9) we have for 0 < X\ < ),

1

K(z, ) = F[E — i, L

=+ ix; 1;.;_(1 - chx)] .
Expanding the hypergeometric function we find that
—2 — _1_ —2 l 3 —_ ]:
NVIL = K@, W] + [(4 + x)(l i) | = Gz, )

where G(x,\) > 0 as A — 0 for each fixed . The second conclusion of
Lemma 7.1 is now immediate.

Finally all of the conclusions of Lemma 7.2 with the possible excep-
tion of H,(\) > 0 for » > 0 are easy consequences of Lemma 7.1 and
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(4.5). But if H,(\) = 0 for ), > 0 we would have K(x,),) =1 for all
2 in [0, T]. In particular K(0,),) = 1. Using (4.5) and the fact that
K(0,0) = 1 this leads to the conclusion that

S‘” dt _ r dt
o [chn, + cht]'? o [1 + cht]'?

which is clearly impossible if A, > 0. This then completes the proofs of
our lemmas.

10. Gaussian and Stable Distributions. It is an immediate conse-
quence of Theorems 8.2 and 7.4 that for each ¢ > 0 the function

(10.1) o(x) = exp[—t(—i— + x’)]

is an infinitely divisible element of <. Following Bochner [1] a @ of
the form (10.1) will be called Gaussian (or normal). Let U,()\) be the
element in . & corresponding to exp [—t(1/4 + «*]. If one uses the in-
version formula of Fock [5, p. 165] and the fact that [5, p. 154]

=  sinxtdt

V2 S
K(x, \) = — coth 7z » (@ht — oo™

one finds that
.0 = [u, mshpdp

where

—t/4 gw se"z’“ds

__ €
(10.2) u(ty )’) - R (Chs . Ch)\:)llz °

@t)"
The function u(¢, \) defined in (10.2) is therefore the density (with re-
spect to shad)) of the rotationally invariant Gaussian distribution on
the hyperbolic plane. It is not difficult to check directly that

ru(t, Nshady =1 for all ¢ >0,
0

although it is not necessary for us to do so since we know that U, e .
Finally it is interesting, but not unexpected, to note that

ou 0 ou
10.3 U _ (shy 2 (shx ouy |
(10.3) ot = T A sk
The differential operator on the right side of (10.3) is the radial part of

the Laplace-Beltrami operator in geodesic polar coordinates (), 6) for the
hyperbolic plane.
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Let 0 <a <1 and let g,(u) be the positive continuous function
defined on # = 0 by the relation

(10.4) o = S”e—sug,,(u)du

0
for s = 0. See §4.3 of [1]. (The function g, is the density of a one-
sided stable law of index « on the real line.) For ¢ > 0 we define

(10.5) ualt, V) = ru(t‘as, N)gu(s)ds

where (¢, ») is the normal density (10.2). Clearly u,(¢, ) is a probability
density with respect to shaAdr. Moreover

(10.6) rK(x, Ntta(t, MshO)AN = exp [— t(1/4 + a7)7]

Thus for each ¢t > 0 the function exp[—t(1/4 + %] is an infinitely
divisible element of <%. By analogy with the Euclidean case one might
call the densities (10.5) or the transforms (10.6) stable. We will investi-
gate the properties of these distributions in a future paper, in particular,
we will give a fuller justification of the name stable.

11. Higher Dimensional Hyperbolic Spaces. All that has gone before
can be easily extended to a more general class of integral transforms
that are related to the higher dimensional hyperbolic spaces. Let f be
a real parameter with ¢ > —1/2 and define the kernels

11.1) K.(,\) = 2“7 (t + 1)(shn)#P %, o (ch))

= (—1+2—CM>7MF<1/2 —1x,1/2 + ax; 1 + 15 —1-_2—6h>l> ,

where P/ is the usual associated Legendre function [3]. Similarly we
define K,(z,\) for complex z by replacing « by 2z in (11.1). Clearly
K,(z,)\) is analytic in z and it is not difficult to verify that

(11.2) | K.z, =1 if —p—12=y=1/2
and
(11.3) K.(z,0)=1, K. (—i(¢e+1/2),x)=1.

Moreover it follows from 3.7(8) of [3] that

_ /2 2r(e+1) A 1
) \) =./2 I — cht)-
11.4) K. (z,\) \/ 2 T TR So(c cht)*1* cos ztdt |

and combining this with (11.2) results in
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(11.5) 1=K@N<1.

If £ =0 then K, reduces to the kernel K considered in the previous
sections.

Let = NJ2 —1 where N= 2 is an integer, then the functions
K,(z, ) are the spherical functions on N-dimensional hyperbolic space
and the functions K,(x, -) are the spherical functions of positive type.

If for arbitrary ¢ > —1/2 we define the pg-transform of an element
Fe 7 by

(11.6) #(0) = | Kule, VAF ()

then all of the results of the preceding sections can be carried over to
p-transforms with only minor changes. In particular, in (7.16) one
must replace c¢/4(1/4 4+ x*) by c/[4(¢ + D][(¢ + 1/2)* + «?] and then the
Gaussian elements have the form exp (—t[(¢# + 1/2)* 4+ 2?]). The proofs
require only minor technical changes with the exception of Theorem 6.1.

In order to prove the analog of Theorem 6.1 for u-transforms one
needs the following formula

_ 22/&[1(1 _}_#)2 T . 2#9 0
L7 Ko, VKo, ) = ELETEY SK(x w) sin*6d

where
w = chacht + shasht cos 0 .

Formula (11.7) is a simple consequence of the addition theorem for
associated Legendre functions (formula 80 of Peter Henrici, Addition
Theorems for General Legendre and Gegenbauer Functions, Journ. of Rat.
Mech. and Anal. (4) 1955; note the misprint in this formula, namely
—p —n should be —vy —n) and the orthogonality relations for Gegenbauer
polynomials. Using (11.7) the fact that the product of two p-transforms
is again a p-transform is proved by an argument similar to the one
used in §6.

Note added in proof. Some results which are similar to a part of ours appeared in a
paper by F. I. Karpelevitch, V. N. Tutubalin, and M. G. Sur entitled ““Limit theorems for
convolutions of distributions on Lobachevsky’s plane and space’’, Theory of Probability and
its Applications, 4, (1959), 432-436. These authors were particularly interested in con-
vergence to the normal distribution.
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