ASYMPTOTIC DECAY OF SOLUTIONS OF
DIFFERENTIAL INEQUALITIES

PauL J. COHEN AND MILTON LEES'

1. Introduction. Let A be an operator in a Hilbert space H, and
let u(t), 0 <t < o be a strongly continuously differentiable function of
t with values in H such that Au(t) is continuous. We say that u(t) has
property S if, as t — o, it cannot vanish faster than every exponential,
unless identically zero. A sufficient condition for all solutions of the
abstract differential inequality

.1 \]%—Au”éw)nun, 0<t< oo,

to have property S was determined by P. D. Lax [1]. The required
condition is that there exists an infinite sequence of lines parallel to the
imaginary axis whose abcissae )\, tend to — o and on which the resolvent
operator (A — \)~* is uniformly bounded by some constant d~*, and that
sup ¢(t) < d.

In this paper we give another sufficient condition for all of the
solutions of (1.1) to have property S. We require that the operator A
be symmetric, i.e., (Au, v) = (4, Av), for all v and v in the domain of
A, and that the function ¢(t) be continuous and in L?(0, «), for some
pin 1<p <2 Actually, under these conditions, we prove a slightly
stronger result; namely, that there exist constants K > 0 and g such
that the non-trivial solutions of (1.1) satisfy || u(t) || = Ke®.

The restriction in Lax’s result on the size of ¢(t) cannot be lessened
in general. For in the contrary case he constructed a solution of (1.1)
that, as t — o, behaves like exp (—bt?), b being a positive linear function
of sup ¢(t). It is therefore natural to ask whether there exist solutions
of (1.1) which, as ¢t — oo, tend to zero faster than exp (—\t?), for every
A > 0. We shall show that, at least for symmetric operators, this is
only rossible for the trivial solution. More generally, we obtain results that
relate the rate of decay at infinity of the solutions of (1.1) to the asymp-
totic behavior of the function ¢(t).

In the final portion of this paper we derive similar results for solu-
tions of concrete parabolic differential inequalities. Results concerning
the asymptotic behavior of solutions of parabolic partial differential ine-
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qualities have been obtained recently by M. H. Protter [2].

2. The estimate from below. Throughout this paper A will denote
a symmetric operator in a Hilbert space H, and u(t) will denote a strongly
continuously differentiable function defined for 0 < ¢ < o« with values
in H such that Awu(t) to continuous. We shall also assume that ¢(t) is

a positive continuous function belonging to L?(0, ), for some p in the
interval 1 < p < 2.

THEOREM 1. If u(t) is a solution of the abstract differential ine-
quality

2.1) |%%—mwg¢wnmu 0=t< o,

and u(0) # 0, then there exists K > 0 and p such that
(2.2) [|w(t) || = Ke*, 0=t < oo,

The proof of Theorem 1 requires several lemmas concerning operators
in finite-dimensional Hilbert spaces. Let D be a symmetric operator in
a finite-dimensional Hilbert space F. Since F' is finite-dimensional and

D is symmetric, there is no loss of generality in assuming that D is in
diagonal form.

For any real number )\ and any vector v in F, denote by P,v the
projection of v onto the subspace of F' spanned by those eigenvectors of
D whose eigenvalues are not less than ). Since D is in diagonal form,
we have

(2.3) (DPyv, Pyw) =z M| Py | .
Similarly, if we define R,v = v — P,v, then
(2.4) (DRyv, Rw) < M| Rw ||

Let o be an arbitrary positive number, and define a sequence {t,}

as follows: t, =0, and ¢,, for positive integers m, is determined from
the relation

(2.5) | ety = o,

where t¢,., = o if
Sj¢(77)d77 <p.

LEMMA 1. Let v(t), 0 <t < o, be a differentiable function of t
with values in F such that
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(2.6) |22 = Do = e 101l 0<t< oo,

dt

Assume that v(0) # 0 and that
(2.7 [| Pyo(t,) || = || Ryt || -
Then there exists p, > 0 such that for all p < p,
(2.8) 2|| Pl z Il Bwll, b St =t .

Proof. The set T = {t: 2|| Ryw || < || P\ ||} is closed, and the ine-
quality (2.8) obviously holds for each ¢ in 7. Thus it is sufficient to
prove (2.8) for ¢ in CT, the complement of 7. Since CT is an open set
of reals, it can be represented as a denumerable union of disjoint open

intervals. Therefore it suffices to prove (2.8) for a generic open interval,
a <t <b say, forming this union.

We have
(2.9) I Pw@) [l <2 Rw@) |l , a<t<b,
and
(2.10) Il Po(a) || =z || Byv(a) ||

Since the space F'is finite dimensional, D is a bounded operator (the
bound for D may depend on the dimension of F'), and this implies that
the inequality (2.6) can have only one solution with presecribed initial
value v(0). Thus »(t) can never vanish since v(0) = 0. It follows now
from (2.9) that R,v(t) is nonzero in a <t < b, so that we can form the
funection

_ [ Pw@) |
2.11 t) = HL2A8 1
&1 7O =R P
Differentiating f(t), we find that
Af : v

o1z | B 5L = 41| B [P Re( Pro, P22 )

. dv

— 4| P Re<Rw, Rﬁt—) .

Since v(t) satisfies the inequality (2.6) and P, and R, are projections,
we can write

(2.13) P)\—g—z— = D(P)\U) + Q1

and
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(2.14) P2 — D(B) + @,
where

(2.15) Q:ll =@ Ilvll,
It follows from (2.13) and (2.15) that

dv

RG(P)\’U, Pr—) = (P, DPyw) — ¢(@) || v |]* .

dt

Applying (2.3) to the first term on the right, we obtain

(2.16) Re( Py, PA%;L) =M PwllF— @) [ v

Similarly, we have

2.17) Re(th, ng—p <M Bw |+ @) || v P

(i=1,2).

Entering the estimates (2.16) and (2.17) into the right side of (2.12),

we find that

(2.18) | Ry w%fti = —8¢(t) || v ||

Here we have made use of the inequalities || Pyw || < ||v | and || Ry || <

lv]l. It follows from (2.9) that
Ho[P=Polf+ [ Bw|f=5]Rwl]l .
This inequality and (2.18) imply that

df >
= —200¢(t) ,
dt — ®)
and therefore

(2.19) £(t) = f(@) — 200] 9(7)d(y) -

Now, according to (2.10) and (2.11), f(a) = 1. Therefore if we make

use of (2.5), we conclude from (2.19) that

| Pyo@) |I* > 1 — 200
MPe® I > 1 _ 9000 = ¢,
I Ryo() II*

provided that 8000, = 3. This completes the proof of the lemma.

LEMMA 2. Let v(t) satisfy the conditions of Lemma 1.

If
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(2.20) T =x— 20000, —t,)",
then, for all p < p,,
(2.21) | Peo(tasn) || Z || Bev(Ensa) ] -

Proof. First, assume that

(2.22) | Pow@) || <2 Ro@@) ], by <t <ty .
Setting
Po) |
(2.23) gty = L@ I
® =R P
we obtain

sdg _ 2 _C_ll
1R0119L = 4| R |°Re( Pro, P22

— 4| Pw ||2Re<R,,v, R,,%) .

(2.24)

As in the proof of Lemma 1, we have
(2.25) Re(R.v, R,%) <zl Roll + o) 0] .

Inserting the estimates (2.16) and (2.25) into the right side of (2.24), we
conclude that

(2.26) Il Rev H*% =4 —7) [ R [Pl P [ — 8¢(®) [[v |

Since || P || = || Pyv ||, (2.22) implies that || v || = 5| R,v ||, which, when
inserted into (2.21), yields

dg L [P
2.27 =2 > 2000,(t,4; — t,) =22 — 2009(8) .
(2.20) T = 200060 — )7 P — 200800
Here we have employed the inequality || R || < ||Rw]|l. By Lemma 1,
4]|Pw|?= || Rw |, so that we obtain from (2.27)

(2.28) -g% > 2000y(tnss — £,)~" — 2004(2) .

Finally, when we integrate (2.28) between ¢, and ¢,., and apply (2.7)
and (2.23) to the result, we obtain the desired inequality (2.21).

Now assume that there is a value of ¢t <¢,., such that || P || > 2|| Rv||-
Let T be the last such value of ¢t. If ¢ =¢,,, there is nothing to prove,
so we assume that ¢ < ¢,,;. In this situation we have that
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IPw@) || = 2] Bo@) ], <t <tu,

and

|Pu()]| = 2| Rv@)] .
The reasoning emplyed to prove Lemma 1 can now be used to establish
the inequality
V11 _
1P || = 5= Ra®) | F<t<t..,

which certainly implies (2.21).
From the sequence {¢,} we form the series

g = %(tn+l - tn)—l .

Our assumption that ¢(t) belongs to L?(0, ), for some p in the interval
1 <p <2, implies that o converges. This is clear when p =1 sinee in
this case the series has only a finite number of nonzero terms. Assume
that 1 < p < 2. Applying Holder’s inequality to (2.5), we obtain the
nequality
tn+1 1/p
o= (" wman) @t -ty

tn

where p™ + ¢* = 1. Therefore

(s — ta) ' < 0~ 1(S::“sb”(v)al)?)m :

which, since ¢ = p, implies that ¢ converges.

Also, we note here that our assumption that ¢(f) belongs to L?(0, =),
for some p in the interval 1 < p < 2, implies that there exist constants
C, and C, such that

(2.29) [stpdn = ct +c..
From now on we shall assume that o has the fixed value p,.

LEMMA 3. Let v(t) satisfy the conditions of Lemma 1. If

(2.30) [| Pxw(0) || = || Byv(0) || ,
then
(2.31) [o(@) || = e | v(0) || e*, 0<t< o,

where pt =\ — 2000,0 — 3C,.

Proof. Set ny = — 2000,0. We assert that
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(2.32) 2| Pp@) Il = [ Ro@ 0<t< .

Let t be arbitrary. Then for some =, {, <t < t,.,. It follows from
(2.30), Lemma 1 and Lemma 2 that

(2.33) 2| P@) |l = || R(@) 1], by St =<tny.
Hence the inequality
[Prilzl|Pollz3||Bo|l =z 3Ryl

implies (2.32) for this particular value of ¢.
It follows from (2.32) that

(2.34) To@ [l = 31 P@ |l 0<t< .

Set z(t) = P,p(t). Then by (2.34) 2(t) is a solution of the differential
inequality

(2.3 |% — Dz|| = 30ty 121 0st< o,

Differentiating || 2|, and taking (2.35) into account, we get

(2.36) 7% 2| = 2Re(z, %) > 2Re(z, Dz) — 6¢(t) || 2 |I* .

Since 2(t) = P,v(t), it follows from (2.3) and (2.36) that

(2.37) Lzl = @ — 640D 1211
Consequently, if we integrate (2.37), we obtain

lote) 1 = 112011 = 11 200) [ exo [ 2] 0w — 3¢m)dn) | = e 11 o(0) Ipe

which is equivalent to (2.31).

To pass from the finite to the infinite dimentional case, we have to
show that the cut-off parameter ) can be selected independently of the
dimension of the space F.

LEMMA 4. Let v(t) satisfy the conditions of Lemma 1. Then there
exists a N, depending only on || v(0) ||, ||v(1) || and ¢(t), such that
(2.33) | Pow@) || = [| Byw@) ] .

Proof. Define w(t) = v(1 — t). Then w(t) is a solution of the dif-
ferential inequality
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(2.39) |%+Dw”§¢(t>nwn, 0<t< oo,

If for some
[| Poo@) || < || Bow(@) |,

then
(2.40) | P_xw(0) || > [| B_xw(0) || .
Applying Lemma 3 to (2.39) and (2.40), we find that

1v(0) || = [l w(@) |l = 4e % || w(0) || e™ ,
where

m = —\ — 2000,0 — 3C, .

Hence
(2.41) » = log [%H’T?E;i;ln‘le%] — 2000, — 3C, .

Thus if » is chosen smaller than the right side of (2.41), then the desired
inequality (2.38) holds.

3. Proof of Theorem 1. Let k& be an arbitrary positive integer.
Using the continuity of the derivative of wv(f), one can show that for
any ¢ > 0 there exists a & = 8(s, k) > 0 such that

d _ult + k) — u()
@ ? h <

@3.1) l

for |h| < & and |t| £ E.
We subdivide the interval 0 < ¢ < k into equal subintervals of length

4, where 4 < 8, and
(3.2) | Au(t + h) — Au(t) || < €,

for |h| < 4. We assume that the point ¢ =1 is included in the sub-
division.

Let G be the subspace of H generated by u(0), u(4), u(24), - - -, u(k).
Let A, = EA, where E is the projection of H onto the subspace G.
Clearly, the operator A, restricted to the subspace G is symmetric.

For any subdivision point 74, we have

@) |MIEDD G _ puiia)| < (14 L) luial,

where M is the infimum of ¢(t) || u(t) || for 0 < ¢t < k. Let u(t) be equal
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to u(t) at the subdivision points and be linear in between. Note that
u,(t) has its values in the finite-dimensional subspace G of H.
It follows from (3.2) and (3.3) that

G4 D) — Aat) | = (1 + Z o) w1,

where D, denotes right differentiation, and j4 =t < (5 + 1)4. By tak-
ing 4 sufficiently small and taking into account the continuity of ¢(t),
we obtain

(3.5) [| Diuy — Aguo || = 2¢(8) || wo |, 0st=sk.
By Lemma 4, there is a x = X(]| %(0) ||, || w(1) ||, 24(¢)) such that
(3.6) | Pruo(1) || = || Bruo(1) || .

Now we observe that the lemmas of the preceding section remain
valid when v(f) has a right derivative everywhere and is continuously
differentiable, except at a finite number of points. Once this observation
is made, we can conclude from (3.5), (3.6) and Lemma 3 that

) | = ¢ 11w Il exp | | wepan] 1<tsk,
where
Y(7) =X — 40000 — 64(7) .
Hence
| ut) || = Ke 1<t<k.
Letting 4 — 0, we conclude that
lu(t) || = Ke 1<t<k,

which is easily seen to imply the inequality (2.2) of Theorem 1.

In the proof of Theorem 1 we tacitly assumed that %(f) never vanishes.
The proof of this fact is easy. For let ¢, denote the first value of ¢ for
which u(t) is zero. Since u(0) # 0, t, > 0. According to Theorem 1, we
have || u(t) || = Ke*, for 0 < ¢t < t,, which shows that w(f) cannot possibly
vanish at ¢,.

4. An A priori inequality. In this section we derive an a priori
inequality for a class of functions with a prescribed rate of decay at
infinity.

LEMMA 5. Let ++(t) belong to L*0, a), for every a > 0, and define

(@1 B = | ¢ — peay .



1244 PAUL J. COHEN AND MILTON LEES
Let U(t) be a strongly continuously differentiable mapping from 0 <

t < oo with values im H such that AU(t) is continuous. If the support
of U(t) is contained in 0 < e <t < o and

(4.2 lim || U(¢) || exp A(t) = 0,
Jor every \ > 0, then

4.3) M o) | U Irat = S"’ew“

aU 2
== — A
% ula,
provided that the left side is finite.

Proof. We may assume that U(f) vanishes for all sufficiently large
values of £. For in the general case we can approximate U by the se-
quence U,(t) = £,()U(t), £,(t) being a C= function equal to one for
t<mn, zero for t=n+1and 0 =¢, =1 in between. As n— o, the
inequality (4.3) for U, goes over into (4.3) for U.

Now consider the integral

I — Swezﬂ(t)
0

au
— AU || dt .
|

If we make the transformation U(t) = e *® V(t), then

av g ”2
— AV —-——V|dt.
dt dt

(4.4) I= S“ l
0
It follows from the elementary inequality
(@ — b= —2ab
and (4.4) that

(4.5) = —25 Re(‘?t/ flijJrAV)d
We have
(4.6) [, (4 v )ar = § 2, SE v Jas

(v Ly s 284V,

The first integral on the right vanishes since V(f) has compact support.
Hence

(4.7) —2S Re (Gzl‘t’ ‘jlf V)dt - xs:e”‘”«lﬂ(t) | U@) |1dt .
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In view of (4.5) and (4.7) it is sufficient to prove that

o av _
(4.8) S Re(w, Av)dt ~0.
Taking into account the symmetry of A, we have that
av d dVv
. -, = (V,AV) — (=, AV,
(4.9) ( - av) L (v.4v) ( - )

the bar denoting complex conjugation. Therefore

2Re(‘zl_f,AV) - —d%—(V,AV) :

from which (4.8) follows directly by integration. This completes the
proof of the lemma.

5. A special instance of Theorem 1. As a first application of
Lemma 5, we give a direct proof of a slightly weaker version of Theorem
1 in the case that ¢(¢) belongs to L*0, o).

THEOREM 2. Let u(t) be a solution of the abstract differential in-
equality

(5.1) ||0§—;‘—Au”§¢(wnun, 0<t< o,
where ¢(t) belongs to LX0, ). If
(5.2) Pm lu(t)|l e =0

for every x> 0, then w has property S, i.e., it vanishes identically for
0t< oo,

Proof. Since ¢ € L*(0, =), it follows from (4.1) that (we take ¥ = ¢)
B = M| $ndy .

Therefore (5.2) implies that
(5.3) lim || u(¢) || exp 8(¢) = 0
for every A > 0. Let {(t) be a C= function equal to one for 0 < 2 < t,

equal to zero for 0 = ¢ < eand 0 < ¢ < 1 in between. Set U(t) = &(t)u(z).
Because of (5.3) and the fact that

S:¢z(t)ezs(z) U@ |Pdt < o
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all of the conditions of Lemma 5 are met, and therefore

)\’S;W(t)e'“ﬂ(“ (@) |[*d¢ = S?emm oil_(t]

_ AU”zdt

+ | 0 lutt) Irae .
If » = 2 then

G4 | e lu pat < | ee

|47 - av szt :
dt
Using the monotonic character of B(¢), we get from (5.5) that

* 28 2
6:5) | 90 lutt) Irde = exp [62¢) — A(Ee)I| “ 4u avffa.
Since B(2¢) — B(8e) — — o as M — oo, it follows from (5.5) that

[ 9@ llucy Pdt = 0.

Therefore u(t) = 0 for ¢ = 8¢. Since ¢ is arbitrary, w(t) vanishes identi-
cally for 0 <t < oo,

In much the same way we can prove the following result for bounded

®.

THEOREM 3. Let wu(t) be a solution of the abstract differential in-
equality (5.1), where ¢(t) < const. If

lim || u(t) || exp (M) = 0

for every N > 0, then u(t) vanishes identically.
More generally, we have the

THEOREM 4. Let u(t) be a solution of the abstract differential im-
equality (5.1). Assume that ¢(t) belong to L*0, a) for every a >0, and

@) = exp 1] ¢ — D],
Jor all sufficitently large t and ). If

lim || u() || exp £(t) = 0,
for every )\ > 0, then u(t) vanishes identically.

6. Parabolic differential inequalities. Let G be a bounded domain
in the real Euclidean n-space E". For two real functions w(x) and v(x)
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belonging to L*G) we denote by
(u, v) = Seu(x)v(x)dx
their real scalar product and by || u ||, = (u, u)'* the associated norm.

Let H/(G) denote the closure of C;°(G), the C= functions on G with com-
pact support in G, relative to the norm

]2 = SGQ w@)  + 5] 2 (x)(z)dx .

0x;

Consider the differential operator

6.1) L=3 2 (a2 ),

i, J=1 ax,, axj

where a/(x) = a’(x). We assume that there exist positive constants m
and M such that, for all # in G and all real vectors & = (§,, &, +++, &),

(6.2) m 3= 3@ty = MY

Thus L is a real elliptic differential operator.
If we H(G) we say that Lue LXG) when {a"(x)}(0u/0x;) is differen-
tiable with respect to z; (in the sense of distributions) and

0 k¥ _a_li 2

6_%((1 () 6%) e L(G) .
It is not difficult to show that

(6.3) (Lu, v) = (u, Lv) ,

for w and v in HXG) and Lu and Lv in L*G), the common value of (6.3)
is

6.4) (L, v) = — Sg<i;:3=1aif(x)%a_“>dx

Thus the operator L is formally self-adjoint.
t
Let I'(t) = exp [')'S x[rz(n)dn], and introduce the function
(6.5) o) = [ 1) | re)weazdy .

The function ¢(t) is non-decreasing provided that v and )\ are nonnegative.
We also note that

(6.6) rgt—[r—l %;’—] =\
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If the functions ¢(t) and +(¢) e L*0, «), there exists a constant I,
depending on v, such that
6.7) o(t) = Nt .

We introduce the norm
n a 2
luli={ 2|2 @,
¢i=1| 0x;
which is equivalent to the norm defined above for HXG).

LEMMA 6. Let ¢(t) and (t) belong to L*0, ). Let Z(t) be a
strongly continuously differentiable mapping from 0=t < o with
values in HXG) such that LZ(t)e LXG) s continuous. If the support
of Z(t) is contained in 0 < t, =t < o and

(6.8) lim || Z(?) [l.e* =0,
t—oo

for every N > 0, then

m[‘—lt 20 ()
| e

l L7 9Z lrdt > xg“r—l(t)ewwt) | Z |t
(6.9) ol 0

+ my| e O | Z e

Proof. The integrals on the right side of (6.9) are finite because
of (6.7) and (6.8). As in Lemma 5, we may assume that Z(t) is identi-
cally zero for all sufficiently large values of ¢t. Set Z(t) — eV (t). Then
if J denotes the integral on the left side of (6.9), we have

(6.10) J= ——2S l(t)(dv LV + Vj")d

Integrating by parts and using the fact that V(t) has compact support,
we find that

(6.11) —2S —1(t)( av VZ‘Z )dt - xS e V) || Z |lidt .

In proving (6.11) we have made use of (6.6).
Since L is real and symmetric, we have

_ - -1 —-—-dV = — °°I_'_1 __i_
6.12) 2S0r (t)( - ,LV)dt S -2 (V, LV)it .
Another integration by parts yields

(6.13) —28:1*-1@)(%, LV)it = —'VS:F“I(t)«W(t)( Vv, LV)dt .



ASYMPTOTIC DECAY OF SOLUTIONS OF DIFFERENTIAL INEQUALITIES 1249

In view of (6.2) and (6.4) we have (V,LV) =< —m/|| V||}, so that (6.13)
implies that

— - -1 __d_K ” -1 20 (8) 4102, 2
(6.14) 2S0r (t)( o ,LV)dthmgol’ (e (t) || Z |lidt .
Combining (6.10), (6.11) and (6.14), we get (6.9).

THEOREM 5. Let ¢(t) and +(t) belong to L*0, o). Let u(t) be a
strongly continuously differentiable function from 0 <t < o with values
wn H)(G) such that Lu(t) e LXG) is continuous. If u(t) satisfies the dif-
ferential inequality

(6.5) ‘

2
Lu_%l\oéwa)nunz+«w<t>nu||%, 0<t< o,

and
lim || u(t) |[,e** =0,
t—oo

for every N > 0, then u vanishes identically.

Theorem 5 follows from Lemma 6 in much the same way that Theorem
2 follows from Lemma 5, and for this reason the proof will be omitted.

If in Theorem 5 we only assume that ¢(¢) is bounded, then we can
deduce from Lemma 6 that only the trivial solution of (6.15) can vanish
faster than exp (—\t?), for every » > 0.
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