UPPER BOUNDS FOR THE EIGENVALUES OF SOME
VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction. Let p(x) =0, x<][0, a], be the density of a string
fixed at the points x =0 and « = a under unit tension. The natural
frequencies of the string are determined by the eigenvalues of the
differential system

@) w4+ AMp(x)u = 0, u(0) =u(a) =0.

We note that these eigenvalues depend on the density function p(x)
and denote them accordingly by

0 <M(D) < Mf(p) < M) < oe e
M. G. Krein [5] has found the sharp bounds

4;”)((&%{[—) < M(D) =

mn*H
M2

where X(t) is the least positive root of the equation

VvV Xtan X = 0
1—1¢

and where p(x) is such that Sup(x)dx — Mand 0 < p() < H.
0

Sharp lower bounds are found in [1] when instead of the condition
p(x) < H, we have p(x) either monotone, p(x) convex, or p(x) concave.
The precise definitions of convex and concave are given below.

In this paper, we find sharp upper bounds for »,(p) (r =1,2,83, --+)
whenever p(x) belongs to any one of the following sets of functions:

(a) E(M, H, a), the set of monotone increasing functions where
Sap(m)dao =Mand 0= pk)<H, 2<¢[0,a] .
0

(b) E\M, H, a), the set of continuous convex functions, i.e., conti-
nuous functions p(x) such that

pe) = 2= pw) + = p@), 0w =wm=a,

2 1 2 1
with S“p(x)dx = Mand 0= p@) < H, z¢[0,a].
0
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(c) Ey(M, a), the set of continuous concave functions, i.e.,— p(x)
convex, such that Sap(x)doc =M, x¢]0,a].
0

In general, the values of the maxima appear as the roots of a tran-
scendental system of equations and are not obtained explicitly. However,
explicit bounds are given in some special cases.

The methods used generalize to give bounds for the eigenvalues of
a vibrating rod. Upper bounds are also found for the lowest eigenvalue
of a vibrating membrane over a circular domain when the density is
bounded and convex and also when the density is concave.

We make use of the following lemmas.

LEMMA 1. Let p(x) and g(x) be nonnegative integrable functions
defined for xela, b] and let f(x) be nonnegative, continuous and mono-
tone increasing in [a, b]. If c<(a,b) is such that p(x) = q(x) for x € (a,c)
and p(x) < q(x) for xe(c, b), then

| p@de = | q@da

implies that

[p@s@ds = |'a@r @i .

If f(x) is monotone decreasing, the inequality sign is reversed.
A proof of this lemma is given in [1].

LEMMA 2. Let E, be one of the classes of functions defined above.
There exists a function p(x)< E, such that

X(0) = sup N, (D) .
p(z)eEk

Let p(x) € E, for some k=1, 2, or 3. By the definition of E,,
there is a number H such that 0 < p(x) < H, 2<[0,a]. (When k =3,
that is when p(z) is concave, we take H = EM-.) It follows that

a

n'w?

)’n g iaper—1
(») o’

Hence, there is a number g such that

(= sup A\, (p) .

p(z) € By,

Let E(M, H, a) be the set of all functions p(x), x<[0,a] such that
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0=<pk)=< H< o and Sap(x)dx = M. Krein [5] has shown that there
0

exists a subset {p,(x)} of E(M, H, a) and a function po(x) € E(M, H, a)
such that

lim <§:pv(x)dx> = S:p(x)dx .

Yoo

The convergence is uniform for « €[0, a] and furthermore
lim X (p,) = Na(0) -

In particular if p(x) e E,, then the functions p,(x) also belong to
E,. We now show that in each of the cases k =1, 2, 3, o(x) € E, also.
We first consider E.(M, H, a), that is, the family of all monotone

increasing bounded functions p(x) such that Sap(x)dx = M. Then p,x)
0
eE(M, H,a), (v=1,2,--+). Let

um=&mmu

Smce »,(®) is increasing, 7,(x) must be convex. Hence, hm g,(x) = gy(x) =
p(x)dw must also be convex. For if

o@) £ T o (m) + o)

2 1 2 1
(x, < z < w,), then the same inequality must hold in the limit. It then
follows that o(x) is increasing.

For the family E,M, H, a), that is for convex p(x), we first note
that the functions p,(x) (v =1,2, ---) are also convex. We now con-
sider these functions while restricting « to lie in the interval [, a—&]
where 0 < 8 < a/2. From the convexity of p,(x), it follows that

pv(w+h})b—py(w) '<H/8, (xe[d,a—238], v=1,2 ).

Hence {p,(x)} is an equicontinuous family of functions in this interval.
‘We now consider

o (x + h) — o,(x)
h

+ o(x + h) —o,(x) oz + h) — o,(x) ‘ i ’ o(x + h) — g,(x) + o(@)
h h h

| 2@) — (@) | < pifa) —

where z, x + he[5,a — 8]. Since o + h})b —0® _ p(x + 6h) for

some 0 < 6§ <1, it follows from the equicontinuity that the first term
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on the right may be made small by choosing % small. The last may
be made small by choosing # small since oj(x) = o(x). Then for fixed
h, the middle term may be made small by choosing v sufficiently large.
Thus p,(x) — o(x) as v — o in any closed interval properly contained in
(0, @). Hence we must have point wise convergence and o(x) must be
convex, x < (0, a).

The corresponding result for the family of functions E,(M, a), that
is when p(x) is concave, follows directly from the convex case by con-
sidering {— p,(x)}.

LeMMA 3. The first variation of \,(p) with the condition Sap(w)dx =
0
M s

® B,(p) = —(p) | p@Ni@)da

where u,(x) is the normalized eigenfunction corresponding to \,(p) and
Sa(Sp)dx = 0.
0

Consider the differential system associated with a vibrating string
of linear density p(x) + eq(x) = 0, namely

( + )’ + (M + ep)(p(x) + eq(@)(u + €v) =0,
#(0) + ev(0) = u(a) + ev(a) =0,

where Sa[p(x) + eq(x)]de = M. We denote the nth eigenvalue of this
0

system by \.(p) + ¢, and the corresponding eigenfunction by w,(x) +
ev,(x) where u,(x) is the eigenfunction corresponding to \.(p). «, +
ev,(x) then satisfies the equation

w4+ v+ (D) + e)(p(x) + eq(x)(u, + ev,) =0 .

Multiplying this by w,(x) and integrating the resulting expression over
the interval (0, @), we get

—Nu(D) +€S:unv;’dx + (D) + el + 8S:(punvn + qui)dx + 0(e)] =0 .

We have used the relation Sau;’undw = —\,(p) and taken Sapuidx = 1.
0 0
Solving for p,, we find
0| d@u@ds — 1| @2u, — vuds + 06)
0 0
1+ 0(e)

Integrating the second integral by parts, we find that it vanishes so

o =
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that letting ¢ —» 0, we get

= =) a@ni@ds

Hence
Bra(p) stty = —(p)| Sp(aui @)

where we have taken &p(x) = eq(x). Since gu[p(x) + eq(x)]de = M and
a a 0

S p(x)dx = M, it necessarily follows that S Sdp(x)de = 0.

0 0

2. Monotone density functions. We first consider the case where
p(x) is a monotone increasing function such that 0 = p(x) £ H < =,
that is when p(x)eE(M, H, a).

THEOREM 1. Let )\, (p) be the nth eigenvalue of a vibrating string
with fized boundary values and with a monotone increasing density
Junction p(x)eE (M, H,a). Then

(D) = Na(0)

where p(x)eE, (M, H, a) is a step function with at least one and at most
n discontinuities in the open interval (0, a).

By Lemma 2 there exists a monotone bounded function p(z)e
E\(M, H, a) such that X,(0) = max,ez, Mi(p). Hence, letting p(x) = o(x) in
the variational formula (2), we have &\.,(0) <0. We now show that
unless p(x) € E.(M, H, a) is a step function with at most n discontinuities
O\, (p) > 0 for some Op = eg where p(x) + Op(x) e Ei(M, H, a). Hence,
0(x) must be a step function with at most % discontinuities.*

Let u,(x) be the eigenfunction corresponding to \.(p). Denote the
nodal points of u,(x) by «,(k=0,1, --+,n) where £, =0 and =z, =a.
Since u,(x) has only one extremum point in each of the intervals (x,_,,
2)(k=1,2, -+, n)ul(x) has only one maximum there. Let that point
in (%, %4x4y) be T, (k =1,2,+++,0). For £=1,2, +++,n, we let

r(®) = a; = S;k p(@)dx)(@ — T4—y), ® € [Try, Ty]

Since a, is the mean value of p(x) in (%%, %,) and p(x) is monotone
increasing, it follows that a,,, = p(x) if x¢[Z,, 2] k=1,2,++¢,m —1)

and that a, < p(x) if z€[Z%,, 2] k=1,2,.-+,n). Hence, it is possible

! The author is indebted Z. Nehari for suggesting the variational approach used in
this paper.
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to find a point &, € (T,, x,) such that

a, if xelx,, &)
r(x) = . ,
@y, if @ e[&, z:]
satisfies the relation
Ty Tr
S_ r(x)dr = S p(x)dx
Tk £27

k=1,2,..-,n). We have taken a,,, = H, the upper bound of p(x).
In each of the intervals (.-, Z,) and (Z,, %, (k=1,2, .-+, n), r(x) and
p(x) satisfy the hypothesis of Lemma 1.1 relative to uZ(x). Hence, we
have

g;” p(x)ud(x)dr = S;" r(x)ui(x)de

Tx—1 Tr—

and
S::p(x)ui(x)dx > E:r(x)uf,(x)dx
k=1,2,.--,n). Summing on %k, we find that
[ @ — r@hi@ds = 0.
The equality sign will hold if and only if p(x) = r(x), i.e., p(x) is con-
stant or is a step function with precisely one jump in each of the in-

tervals (x,—,2,) (k=1,2,---,n). If we let g(x) = r(x) — p(x), then
for small ¢ > 0 Lemma 3 gives the result

o) = =00 || € i@
= 00| e@ni@ds > 0

unless p(x) = r(x). Hence, p(x) = r(x) if \,(0) is a maximum. But r(x)
is a step function with at most # jumps in (0, a).

Finally, we show that the maximizing density cannot be a constant
so that there must be at least one jump. We first consider the lowest
eigenvalue. We show that &\,(p) > 0 when p(x) = M/a for a particular
op = &q.

The eigenfunction corresponding to \,(M/a) is

u,(x) = 1 2/a sin —Eax— .

If we let
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—e if e(0,a/2+7),
3p(x) = eq(x) = { e @2+ 7

a2 — 7 if xe@/2+7,a),

where 0 < 7 < a/2 then Sasp(x)dx =0 and
0

Sn(Mja) = —\(Mja) | Bp@puia)ds

From the symmetry of u,(x) about the point # = ¢/2 and Lemma 1 it
is easily seen that

S:b‘p(x)u‘f(x)dw >0.

Hence, &\(M/a) >0 so that X\ (M/a) cannot be a maximum value of

M(D).
The corresponding result for the higher eigenvalues can be obtained

by choosing
. a
€ if we<0,—-—2n +7]>,

op(x) = eq(x) = < &(a/2n + 1)
@2n—1)a _p if xe(a/2n + 7, 0a),
2n

where 0 < 7 < a/2n. It then follows from the periodicity of
(%) = 1V 2[a sin _%x_

and the argument used for \(M/a) that \,(M/a) cannot be a maximum
value of \,(p), p e E(M, H, a).

The upper bound of \.(p), » € E\(M, H, a) is thus given as the max-
imum of the lowest eigenvalue of the system.

6] u” + Mpe(@)u = 0, u(0) = u(a) =0
where
0H if x€]0, &a) ,
De(x) = { . 10, £a)
H if zelfa,a];
0<60<1 and £ = __1_—1_M_/0H_a. That § = 0 may be excluded from con-

sideration follows easily from the derivation of the form of p(x) and
the fact that the maximum of u,(x) in this case must occur in the open

interval (£a, a). For we would have a, = |\ py(x)dx + 0 .
0
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The eigenfunctions of (8), are [2]

sin VNH (1 — &a-sin VN0H x, x€]0,£a),

un(x) = {Sin -l/m ga.sin "[/)T;E: ((1, — x) , &XE€ [ga; a]

where \,(py) is the nth positive root of
tan (EaV'N0H) + 1V 0tana(l — £y AH=0.

We could now compute ﬁz(eL") and determine the value which

maximizes \,{Pe).

The determination of the bounds for the higher eigenvalues is also
seen to be a problem in ordinary calculus since the jumps of the step
function which give the maximum must occur in the open interval
©, a).

3. Convex density functions. Let p(x), x €[0,a] be a continuous
convex function such that S p(x)de = M and 0 < p(x) < H, that is, let
0
p(x) € E(M, H, a).

THEOREM 2. Let \(p) be the lowest eigenvalue of a string with
fixed end points and with density p(x) € E(M, H,a). Then

aMn(p) = #(%)

where p(h) = [6(h — 1)t,]’[R* and t, is the least positive root of

Jl/S@)L/a(%) — J_lls(t)J_m((z;%) =0

if 1< h<2and ph) = h(3t,/2) and t, is the least positive root of
J_ot) =0 if h=2. The minimum 1is uniquely attained for the
Sunction

4
®) o() = ?(M—— aH)x + H, z¢(0,a/2),
p(a_m) ’ xe(a’/27a’)’

if1<h=%<2 and
[H/M(M — Hx), e (0, M/H),
(6) p(x) = {0 , ze(M|H,al2),
p(a — ) , xe(a/2,a),
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ifh=2H 2,
M
It is well known that \,(p) is the minimum of
Sau’z(x)dx
Ju) =
| pay(z) da

where the minimum is taken over all functions # € C' which vanish at
2=0and x =a. If we let

B(x) = %[p(x) + p(a — )]

then
gaﬁ(x)uz(w)dx
AMU(p) =max b —
vee S w(x)dw
0
gap(x)uz(x)dx Sap(a — )yu(w)dz
= max <t + max =—o
“es Zg w*(x)dx ves 2§ w(x)dx
= M'(p)

since the eigenvalues of a string with density (e — x) are the same
as those of a string with density p(x). Hence any upper bound of \,(P)
is also an upper bound of ().

The differential system (1) with p(x) replaced by p(x) has the same
lowest eigenvalue as the system

() u” + Ap(x)u = 0, w(0) = w'(a/2) =0, z€]0, a/2].

Furthermore, since p(x) is convex, so is p(x), ©<€[0,a], and the bound
H is also a bound of p(x).

We now compare the lowest eigenvalue of the system (7) with that
of the same system when 7(x) is replaced by

0u(@) = [4/a' (M — aH)e + H, x [0, a/2] ,

if 1< %H 9 ang
1<M<an

_%(M— Hy), =zel0, M/H],
0. v e [M/H, aj2],

101(90) =
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if f}% = 2. In either case, since p0,(0) = H = p(0) and Salzpl(x)dw=
0

Salzp?(x)dw, it follows from the convexity of »(x) that there is a point
(]

£ €(0, a/2) such that p,(x) = p(x) if x € (0, &) and p,(x) < D(x) if x € (&, a/2).
There will be strict inequality in each of these open intervals unless
p(x) = py(x), x€[0,a/2]. If u(x) is monotone increasing in [0, a/2] with
%(0) = %/(a/2) = 0, we have by Lemma 1

®) [ ooni@an = | panwis .

Since the first eigenfunction of the system (7) is a monotone increasing
function, it follows from the comparison theorem [2] that

M(D) = M(0) -

There will be equality if and only if p(x) = p(x), for if u(x) is the
eigenfunction corresponding to the lowest eigenvalue of (7) with p(x)
replaced by po,(x) # p(x) then (8) will be a strict inequality and hence

S:Izu""(x)dx S:/Zu”(x)dx

a/2 al2 = Nl(p ) °
gopl(x)uz(x)dx SD B(a)ui(e)de

)"1(101) =

But M\ (0,) is also the lowest eigenvalue of the system (1) with p(x)
replaced by

0.(x) , z€[0, a/2],
@) =
oa —1x), zela2,a].
This is just the function (6) if 1< %I- < 2 and the function (6) if

E-JISI— = 2. Hence we see that )\, (0) = M(p) for any bounded convex p(x).

When p(x) is defined by (5) we find that

(o)

a,S:p(x)dx

M) =

where p(k) = [6(h — 1)t,]*/h* and ¢, is the least positive root of
Jlls(t)Jz/a(kt) - J—1/3(t)J—z/3(kt) =0,

k= Lz.;_@“_ [4]. When p(z) is defined by (6) we have
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o)

aS:p(x)dx

Mm(0) =

where p(h) = h(3t,/2)* and t, is the least positive root of J_,.(t) =0 [4].
A better bound is obtained if, instead of the bound H, we use H =
3[p(0) + p(a)] for the bound of P(x). This results in a smaller value of
t(aHIM) whenever p(0) # p(a).
For the larger eigenvalues we prove the following.

THEOREM 3. Let \,(p) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a convex density p(x) € E,(M, H,a).
Then

Ma(D) = Na(0)

where p(x) € Ey(M, H, a) is a piecewise linear convex function with at
most (n + 2) pieces.

The existence of a bounded convex function p(x) such that maxX,ey,
a(P) = N, (0) follows from Lemma 2. It then follows by Lemma 3 that

(o) = (o) | Bo(pui@de <0 .

We now show that either p(x) is a convex piecewise linear function
with at most (n + 2) pieces or there exists a function ¢(x) such that
S\, (p) > 0 when 8p = eq where p(x) + 8p(x) € E(M, H,a). Let u,(x) be
the eigenfunction corresponding to M,.(p). We first find a convex
function r(x) such that

[ = [ e .

Instead of trying to find »(x) directly, we carry out a preliminary con-
struction. As in Theorem 1, we denote the minimum points of w’(x)
by z, (k=0,1, ---, n) and the maximum points by Z,(k =1, 2, +++, n).
We first consider each of the intervals (%, %,,)(k=1,2,+-+,n—1)
sepgrately.

Let L(x) be any linear function such that L(x) < p(x), € (%, Tisy)
for some fixed integer k(1 <k <mn —1). Then m(x) = max {L(x), 0}
satisfies the inequality 0 < m(x) < p(x). Now let ¢, be any number
such that ¢, = p(z,). Then there is a number a, such that

g

© [t — 2 + edde = (™ p@ar

Tk
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If ey — z) + ¢, = m(x), @€ (s, Tpsr), then we let

92, ¢) = a,(x — x,) + ¢, T E (B, Tpyy) -

If au(x — x;) + ¢, < m(z) for some x e (xy, %), then we redefine a,
by the condition

§ z 1 Ek 1
(10) S k[ak(w —x) + ¢ Jdx + 85“ m(x)dx = S ’ o(x)dx

£33 k %K
where £, satisfies the equation a.(§, — z,) + ¢, = m(§,). In this case,
we define g,(z, ¢,) by

ay(x —x,) +c¢,, we(r, &),

9z, ¢;) = {m(x) , xel&, ®) .

Now consider the interval (z,, x,). Let m(x) = max {L(x), 0} where L(x)
is any linear function such that L(x) < p(x) if z e (Z,, ;). There is a
number b, such that

a [ oute = w0 + eddo = ["p(@)d

If b,(x — x,) + ¢, = m(x) for x < (x,, x,), we let

hi(x,c,) = b(x —x) + ¢, xe (@, x) .

If b(x — x,) + ¢, < m(x) for some x € (Z,,x,), we redefine b, by the
condition

(12) S;km(oc)dx + S:k [bu(x — x;) + ¢ lde = S:’cp(w)dw

where 7, satisfies the equation b,(7, — x,) + ¢, = m(7,). We then define
h(z, ¢;) by

m(x) , ® €Ty, M)
b(x — ) +c., ey, xy) .

We may consider @, and b, to be functions of ¢,. They are conti-
nuous functions as is easily seen from the defining relations of a, and b,.
It follows that there is a number v, = p(x,) such that a, = b, if ¢, = 7,.
For if ¢, = p(x,), the convexity of p(x) implies that a, — b, =0. On
the other hand, if ¢, is sufficiently large, a, — b, < 0. Hence, by the
continuity, the value v, exists such that ¢, = v, implies a, = b,.

In the interval [z, Z,], we define gz, c,), in the same way that
g.(z, ¢,) was defined except that we specify ¢, = p(0) = 7,. Similarly
in [%,, a] we define h,(x, c,) as above except that we take ¢, = p(a) = 7.

We now let

hk(x, ck) = {

rl(x) = go(x; 70) ’ re [0’ El] )
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hi(x, 7v,), we [zk’ z] ,
"'k(x) = _

g, 72) » e[y, Tpil,
() = h,(®,7,), ®elZ,x,.],

k=1,2,---,n—1). From (9) or (10), which ever applies, we have

gxk ro(x)dx = rk
Tr—1

T

p(x)dz .

The convexity of p(x) and the definition of 7,(x) imply by Lemma 1 that

(13) | rem@ds < | papi@ds .

Tr—1

Similarly from (11) or (12) we have
a4 [ i@ = | paps@ds .
Ik Zk

Furthermore, we have strict inequality unless 7,(x) = p(x) in each case.

We are now able to define the function r(x) by induction. We
carry out the process only for » =3 to avoid unnecessary detail. In
(z,, Z,), we let m(x) =0 and define ,(x) as above. In (¥, Z,), we also
define r,(x) with m(x) = 0. Then, comparing 7,(Z,) and 7.(%,) we have
the following alternatives:

(i) If r(x) > r,(x,), we define a new function r,(x) with m(x) =
max {r,(x), 0}, = ¢€[Z,, T,] where we define »r(x) in this interval by extra-
polation.

(i) If r(Z) < 7r(Z,), we define a new function »(x) with m(x) =
max {r,(x), 0}, = €[, Z,], where r,(x) is defined in this interval by extra-
polation.

(iii) If r.(x,) = r.(x,) we leave r(x) and 7,(x) as they are.

Using whichever alternative applies, we define

'r‘l(oc) ’ X € [wm El] ’

@ = ), wels, 7).

Now, define ri(x), « ¢[Z,, ;] with m(x) = 0 and compare r¥(Z,) and
r4(Z,). We use the same alternatives as above, the only difference being
that if »™(Z,) < ry(Z,) we must redefine »®(x) with m(x) = max {r,(x), 0},
x € [x,, Z,] where as above we define 7r;(x) by extrapolation.

It is clear that the above process can be completed for any integer
n. The function which we obtain by this method we call r(x). It will
be a convex function since any two adjacent segments of the graph of
r(x) can only have a point of intersection which lies on or below the
graph of p(x). Since there is possibly a subinterval of [0, a] where r(x)
may be zero, 7(x) may have up to n + 2 linear pieces.



1196 DALLAS BANKS

If we sum the inequalities (13) and (14) we find that
[[reni@az < | p@uida
0 0

with strict inequality unless r(x) = p(x) in (0, a). Choosing &p = eq(x) =
g[r(x) — p(x)], we have that p(x) + 8p(x) is convex if ¢ > 0 is small and
hence

SaSpui(x)dx <0
0

or &\,(p) >0 unless p(x) = r(x), x€[0,a]. Since we must have \,(0)
= 0, it follows that p(x) is the same type of function as 7(x). From
the method of determining r(x), we see the p(x) is a convex piecewise
linear function with at most # + 2 linear segments.

We note from Theorem 2 that this is precisely the case when n = 1.

4. Concave density functions. We consider the case when p(x),
z €[0, a] is a continuous concave function such that E p(x)dx = M, that
0
is, when p(x) € Ey(M, a).

THEOREM 4. Let \,(p) be the nth eigenvalue of a string with fixed
end points and with a concave demsity function p(x)<c E(M,a). Then

(D) = M(0)
where p(x) € E(M, a) and is a piecewise linear concave function with

at most n pieces.

The existence of a concave function o(x) such that
max \,(p) = N\,(0)
PE B3

follows from Lemma 2. As in the previous cases, we must have
M,(0) £ 0. We show that it is always possible to find a function gq(x)
such that

Sh(p) = —x."(p)SZBp(x)ui(x)dx >0

when p(x) = eq(x) where p(x) + dp(x) € ES(M, a), unless p(x) € E(M, a) is
a piecewise linear concave function with at most n pieces. Hence, it
follows that p(x) must be such a function.

We find the function q(x) by the method used in the proof of
Theorem 3. Thus, we seek a function 7(x) such that

[[reya@as < | pens@is



UPPER BOUNDS FOR THE EIGENVALUES OF SOME VIBRATING SYSTEMS 1197

Where u,(x) is the eigenfunction corresponding to A.(p). To apply the
method of Theorem 3, we consider

| p@ui@ds = | T—p@)] [—ui@)ds

Then —p(x) is convex and the zeros z,(k =0,1,2,.--,n) of u,(x) are
the maximum points of —u2(x). The maximum points Z,(k =1,2, ---, n)
of ui(x) are the minimum points of —ui(x).

Over each of the intervals (x;, x,.)(k =0,1,+--, » — 1) we define
—rx,c,) where —p&, =c,=0. As in the convex case, thereisa
number v, such that r.(x, v,) is linear at « = Z,. Using the inductive
argument as before, we let m(x) = L(x) since L(x) will be negative and
form new functions —7,(x, v,). Finally we obtain —»(x) which is convex
and satisfies the inequality

[[pepa@ds = | r@uieds
Hence, choosing q(x) = r(x) —p(x), we have
S%puﬁ(m)dw = Sa e q(x)ul(x)de =0,

where for ¢ sufficiently small p(x) + 8p(x) € Ey(M, a). Furthermore,
there is strict inequality unless p(x) is a concave piecewise linear func-
tion with at most n pieces. This proves the theorem.

It follows immediately from Theorem 4 that

71-2
M) =
®) =7

when p(x) is concave.! For in this case, o(x) is a linear function. But,
as was shown in the proof of Theorem 3, A\ (0) = M\ (0) where p(x) =
Hpo(x) + p(@ — x)]. In this case, o(x) = M/a and N\(M/a) = m*[a M.

5. The vibrating rod. The eigenvalue problem associated with a
vibrating rod with clamped ends and density p(x) = 0, z€[0, a] is
(15) u® —ap@)u =0, u0)=u'0)=wul@)=u@=0.
As in the case of the string, we denote the ordered eigenvalues by
0 <M(P) < N(p) < +-v

That there should be strict inequalities in this expression has been

1 This result has already been obtained by Z. Nehari. His proof is the one dimensional
analog of that given in [7] where he shows that the lowest eigenvalue of a circular mem-
brane with a superharmonic density p(x,y) is bounded above by that of a homogeneous
membrane of the same total mass.
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shown in [6].

In this section, we consider the problem of finding upper bounds
for these eigenvalues when p(x) is restricted to be either monotone,
convex or concave. In the first two cases, we require in addition that
P(x) = H < . As in the case of the string, we denote the set of all

functions p(x) = 0, z €[0, a] with Sap(x)dx = M where p(x) is monotone
0

increasing, convex and concave by E\(M, H, a), E (M, H, a) and E(M, a)

respectively. The H in E(M, H,a) and E,(M, H, a) indicates that in

these cases p(x) < H.

LEMMA 4. Let E, be one of the sets of functions defined above.
There exists a function p(x)<c E, such that

Aa(0) = sup 1,(p) .
PEEY

This follows in exactly the same manner as the result of Lemma
2. We need only note that the result of Krein quoted in Lemma 2
may be generalized to this case. The generalization is trivial for the
Green’s function of the system (15) and its first partial derivatives are
bounded. Krein’s proof then applies word for word to this case and
hence the proof of Lemma 4 follows as in the proof of Lemma 2.

LEMMA 5. The first variation of M,(p) with S:p(x)dao =M s

on(p) = ()| Sp(@ui(@)de

where u,(x) is the normalized eigenfunction corresponding to N\,(p).
In particular we may choose Op(x) = eq(x) such that SOSp(ac) = 0.

The result is easily derived in the same way as the result of Lemma 3.

The results of Theorems 1, 8 and 4 will now generalize to the case
of a vibrating rod with clamped ends. The only question which arises
concerns the properties of the eigenfunction wu,(x) corresponding to
M(p). It must be true that u,(x) has the same general character as
the nth eigenfunction of a vibrating string. In particular, it has been
shown in [6] that wu,(x) has exactly » — 1 zeros in the open interval
(0, ). Furthermore wui(x) has exactly one maximum between any con-
secutive pairs of zeros. For suppose there are two or more maximum
points between some consecutive pair of zeros. Then u)(x) must have
at least m + 4 zeros in [0,a]. Hence u)(x), «)'(x) and u”(x) must
have at least n + 3, n + 2, and n + 1 zeros respectively in the open
interval (0,a). This leads to a contradiction if p(x) > 0 since w;” =
A p(@)u,(x) may have only n — 1 zeros in (0,a). If p(x) =0, we may
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apply the same argument with p(x) replaced by p(x) + ¢, ¢ > 0. Thus,
if u,.(x) is the nth eigenfunction, #’.(x) has » maximum points in (0, @).
Letting € — 0, we see that the same must be true of the nth eigenfunc-
tion when the rod density is p(x) = 0.

From these observations, Lemmas 4 and 5, and the arguments used
in Theorems 1, 3 and 4, we have the following result.

THEOREM 5. Let \,(p) be the nth eigenvalue of a rod with clamped
ends and density p(x), x<€][0, a], such that S p(x)dx = M .
0

(a) If p(x) is monotone increasing and bounded

Aa(D) = Ma(0)

where p(x), x€|0,a] is an increasing step function with at least one
and at most n discontinuities in the open interval (0, a) and S ox)dx =
0

M.

) If p(x) is convex and bounded

M(P) = Ma(0)

where p(x), x€[0, a] is a bounded piecewise linear convex fumnction
with at most n + 2 linear pieces and S o(x)dx = M.
0

(¢) If p(x) is concave

(D) = M(0)

where p(x), x<€[0,a] is a piecewise linear concave function with at
most n linear pieces and S o(x)dx = M.
0

In the case of the lowest eigenvalue, the density which gives the
upper bound may be obtained precisely when p(x) is convex or concave.
It follows from the Rayleigh quotient as in Theorem 2 that for p(x) =
i[p(x) + pla — »)]

M(D) = M(D) .

This and the above theorem thus show that when p(z) is convex, p(x)
is symmetric and piece wise linear with at most three linear pieces and
that when p(x) is concave, o(x) is a constant. This result may also be
obtained by the method used in the proof of Theorem 2.

6. The membrane. We consider a vibrating membrane stretched
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with uniform unit tension over a disk D= {(x,%) |2’ + ¥* < R*}. We
assume the areal density of the membrane is given by the measurable
function p(x, y) where

Sgpp(x, y)dxdy = M .

For such a membrane with a fixed boundary, the eigenvalues and eigen-
functions are determined by the integral equation [8]

16) w, ) = || G, v, & Mp(E, e, Ddedy

where G(z, y, &, ) is the Green’s function of D. We denote the first
eigenvalue by )\(p) and the corresponding eigenfunction by u.(z, ).
We find upper bounds for \,(p) by use of the following result.

LEMMA 6. The lowest eigenvalue of a circular membrane with
JSized boundary and integrable demsity p(x, y) is always less than that
of a circular membrane with fixed boundary and density.

B(x, y) = p(r) = zl—ﬂ Shp(r cos 0, r sin 0)d0 .
0

Proof. We use the fact the first eigenvalue is given by the in-
fimum of the Rayleigh quotient

SSD(ug + uddady

R(u) =
”Dp(x, Yz, y)drdy

where the infimum is taken over all functions u(zx,y)e C’ such that
u(x, y) vanishes on the boundary D. In particular, the lowest eigenvalue
of a circular membrane with density p(r) is given by

e — ot “D(uﬁ + u)dwdy |
vee Sgpp(r)uz(w; y)dzdy

We note that
. 1 2r B 1 2r _
p(r) = ==\ "p(r, g = = b, 6 + 0)d = 5(r, 0)
T Jo 2 Jo

Hence, it follows that
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L ot rieer
) e SSD(uz + ut)dzdy

S X (‘LSZRP(" ¢+ 9)d9)u2(r, p)rdpdr

o\ 27
= sup
veo [, @2 + ui)dady
D
p e (]ope @+ o, gyrdsar
= ——S dg - sup =2
2 Jo uel

“D(uz + utdady

=L S__l_ dg =1
2 Jo n(p) M(P)

ie., M(P) = (D) since N(p) does not depend on §. We may now prove
the following.

THEOREM 6. The lowest eigenvalue of a circular membrane with
fized boundary and a bounded convexr density p(x,y) is less than the
lowest eigenvalue of a circular membrane with density

(7‘)'—' O, O<T§R_H/a’
= lar—R)+ H, R—Ha<r<R,

if R> Hla and
o(r) =a(r — R) + H

R

if R < Hlx where « is such that 27'L'S q(r)yrdr = M .
0

We first note that since p(zx, %) is convex, so is

o(r) = ir’p(r cos ¢, 7 sin P)do .
21 Jo

For suppose 7=, and 7, are such that —R < r, < r, < R. By the con-
vexity of p(x, y) we have

:o(—":%”— cos ¢, —rl—;ﬁ sin ¢> < 3[p(r, cos ¢, r, sin ¢)
+ p(r,cos ¢, r,sin )] .

Integrating this with respect to ¢, we have

p(ZETe) < 3lnr) + pir]

We now consider
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: _ ”Dﬁ(x, Yy (x, y)drdy
Mp(r)) “D(ug + w)dady

where u(x, y) is the eigenfunction corresponding to M(p(r)). For any
function u,(x, ¥)e(’, we then have

1 - SSDT)(‘”, yui(x, y)dedy

M) Sgp(ugz + u,)dady

In particular, if u(z,y) = u,(r) is the eigenfunction corresponding to
the first eigenvalue () of a membrane with density q(r), it is a de-
creasing function of 7. This is easily seen by considering the differential
equation which is equivalent to the integral equation (16) [3]. By Lemma
1, we thus have

an 27rrﬁ('r)uf(r)rdr > 27z§Rq(r)u§(r)rdr .
Hence,

1 - Sgpq(r)ui(r)rdrd 1
Mp(r) SS grad u} rdrd RN

This same method yields a result if p(x, y) is a concave function.
For p(r) is also concave and the inequality (17) holds if we choose ¢(r) =

SS o(x, y)dxedy = M. Hence we find that
D
M(p) < T8y
(») = oz
where j, is the least positive zero of Jy(x) = 0. As pointed out in [1],
this result is a corollary to a theorem of Nehari [7] which says that if

y2
p(x, y) is superharmonic in D, then X\ (p) = 7T~—3R°TM. Since a concave

function is superharmonic, this implies the above result.
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