THE SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS
OF A SYMMETRIC OPERATOR

RoBERT MCKELVEY

1. Introduction. Let T be a closed symmetric operator with do-
main D, dense in a Hilbert space 5#. A (generalized) spectral resolu-
tion of T is a family of bounded self-adjoint operators E, defined for
—o < < o and such that:

(a) E, is nondecreasing, continuous from the right, and E_. =
0, E.=1.

(b) For we D, and ve 57,

(T, o) = |”_pdBu, o), || Tulp = | praBa, w .

‘When in particular T is self-adjoint, it possesses only one generalized
spectral resolution, namely the orthogonal spectral resolution where E,
is for each £ an orthogonal projection. For an account of the theory
of generalized resolutions see [1], Appendix I.

M. A. Naimark has shown that for each generalized resolution E,
there is at least one self-adjoint extension T+ of T in a Hilbert space
&#t D 57 with the following property: If E; is the orthogonal reso-
lution of T+ and P is the projection onto the subspace 5% of 2o~
then E, = PE;. We shall usually require that 7'+ be a minimal self-
adjoint extension of 7T, i.e. that S#* be the closed linear hull of the
set of vectors E/ 57, (—o < pt < =); (see §3). The minimal extension
T+ corresponding to a given E, is determined by E, uniquely, up to
unitary equivalence ([8], §4). We shall denote it by T'" = (E,).

In this paper we investigate certain questions regarding the spectrum
Y of T+ = (E,). In view of the above mentioned unitary equivalence,
the point set 3 depends only upon E,; it may in fact be characterized
directly as the set of points of increase of E, (see § 3). Parts of the
spectrum—e.g. eigenvalues and essential spectrum—may likewise be
characterized directly in terms of E,. It will be convenient to refer
to the spectrum of T'* as the spectrum of E,.

We are interested in comparing the spectra of various resolutions
of a given T. In order to describe the situation precisely, one refers
to A. V. Straus’ extension theory of symmetric operators [10]. For any
complex A, let 4,(\) denote the range of T — \. By definition, the
defect subspace M(\) is the orthogonal complement in 57 of 4,(\).
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Straus has associated with each generalized resolution E, of T a family
of contraction operators F,, mapping M(7) into M(—1%), and such that.
F, is analytic on _#x > 0 with || F,|| = 1 there. Conversely each such
family of contractions is associated with some E,. A constant unitary
F' corresponds by this association to an orthogonal resolution £, and
for these Straus’ extension theory reduces to that of J. von Neumann.
(For a complete description, see §2)

We characterize the spectral resolutions E, of T by the behavior
near the real axis of the corresponding F,. Specifically we single out.
two extreme cases, where F, satisfies, respectively, conditions « and 8
or condition v as defined in §4. These are local conditions, defined for
an open real interval 4. When E, is an orthogonal resolution, condi-
tions @ and B hold on the entire real axis.

In §§4-6 we consider a symmetric operator T with equal finite
defect numbers (n,7). In §4 we extend to generalized resolutions of
T, satisfying conditions « and 8 on an interval 4, the theorem of H.
Weyl [13] on the invariance of essential spectrum. In §6 we obtain a.
parallel theorem on the invariance of absolutely continuous spectrum,
proved for T a singular second order ordinary differential operator. This.
extends a theorem of N. Aronszajn [2]. (The theorems of Weyl and
Aronszajn both concern self-adjoint extensions of T in S#°, hence or-
thogonal resolutions.)

When F, is such that « and B fail everywhere on an interval 4
an altogether different pattern emerges, for in this case 4 lies entirely
within the spectrum of E.. In §5 we adopt the more stringent as-
sumption that condition v holds on 4. In particular, suppose F is a
Jamily of strict contractions, i.e. satisfies condition v on the entire real
axis. Suppose that 7' — ¢ has a bounded inverse for each real ¢£. Then
T+ = 4(E,) is unitarily equivalent to the n-fold direct sum of ¢D with
itself, where D is the differentiation operator in L, (—o, ). This
generalizes a theorem proved by Coddington and Gilbert ([4], Theorem 14)
for T a regular ordinary differential operator of order n. As is indi-
cated in §6, the situation is more complicated when T is a singular
differential operator.

The study of the spectrum of E, requires an analysis of the be-
havior of the resolvent R, of E, near the real axis. The generalized
resolvent R, of a spectral resolution E, is defined for _#\ # 0 by

(1.1) R, — S“’ (¢t — \)dE, .
Thus R, is a bounded operator with domain 572, analytic on each half

plane _#\ >0, #\ < 0. Inversely, E, is determined by R, through
the formula
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(1.2) (E(dyu, u) = lim L S F (Ryric, W) gt
g0+ T J4

where 4 is an interval (g, ], (¢, and g, are continuity points of E,,
and E(4) = E, — E,. When T is self-adjoint, the (generalized) re-
solvent R, of its orthogonal resolution E, coincides with the resolvent
of T, i.e. Ry = (T —\)" for _#\ # 0.

Let T+ = 4(E,). The resolvents Ry and R, of E;f and E, are
related, when _#\ # 0, by (see [1])

1.3) R, = PR} .

A. V. Straus [10] has given another characterization of R,, when _#\ #
0, as the resolvent of a certain quasi-self-adjoint extemsion T, in 57
of T. (For precise definition, see §2). Thus

(1.4) Ry = (T\ — M.

In §2 we investigate limit values, as \ tends to the real axis, of
R,. It is found that in general the interpretation (1.3) fails for limit
values while (1.4) retains its meaning. The interpretation (1.3) remains
valid on a real interval 4 precisely when R, can be continued analyti-
cally through 4, and this is possible precisely when 4 lies in the com-
plement of the spectrum of E, (theorem 3.1).

It is a pleasure to express here my indebtedness to E. A. Coddington,
who first drew my attention to generalized resolutions and in particular
suggested that the theorem of Coddington and Gilbert, referred to
above, might be valid in a broader setting. During the course of the
work I have had access to his library and frequent benefit of his
counsel.

2. Limit values of the resolvent. We shall designate an arbitrary
one of the half planes .#\ >0, #\ < 0 by ©* and the other by zn~.
Choose any N, € 7™ and any contraction operator F' (i.e. || F'|| £ 1) with
domain M(\,) and values in M(X,). The operator T, defined by

TcTcT*,

2.1)
D ={uu=u,+ ¢ — Fp. u, € D, p€ M(\)}

has been called by A. V. Straus a quasi-self-adjoint extension of T.
The class C* of operators T obtained by holding X, fixed and varying
F is, in fact, independent of the choice of A, € ©*. (See Straus [10],
Lemma 9 and the discussion preceding it). A second, and in general
different, class C~ of quasi-self-adjoint extensions of 7 is obtained by
taking A\, € 7.

Let R, be the resolvent of E, of T. Straus has proved that, to
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each M e " corresponds a quasi-self-adjoint extension T, € C* such that
2.2) (T, —N)"'=R,, rewt,

For a fixed choice of )\, € 7+, the corresponding contraction F', = F,(\)
is analytic in A on #*. Conversely, any analytic contraction F', carrying
M(n,) into M(\,) gives rise, through (2.1) and (2.2) to a resolvent R,
of T. The relation R; = R (which follows from (1.1) or (1.3)) has as
its correspondent the relation

(2.3) F3(\) = [FA(W)]*

defining a contraction taking M(X,) into M(N\,).
The following theorem shows that these statements remain valid in
a limiting sense on the real axis.

THEOREM 2.1. Let Ay, \y, +++ in T tend to N on the real awis.

(A) Suppose that for a certain N, € T+ the sequence of contractions
Fy, (M) converges in morm as k— co. Then the same is true for every
M e wt.  The limit, also a contraction taking M(\,) into M(X,), will be
denoted by Fi. = Fi.(\). It defines a quasi-self-adjoint extension in
C+ of T, and the extension T4, so obtained does not depend wupon the
particular N, € T+ figuring in its construction.

(B) Necessary and sufficient for the convergence in morm of R,,
to a limit, denoted by R5., is:

(i) Convergence in morm of F,, and

(i) Ewistence of (T, — N)~* as a bounded operator with domain 57 .
In this case,

(2.4) Ry, = (Tss — V).

(C) In any subset of [n* plus the real awxis] in which both R, and
F, are defined (by extension), the single-valuedness and continuity of
either implies that of the other.

(D) When, as above, R, and F, (\,) tend to limits in norm, then
the same 1s true of Rz, and Fx(\,), and

(2.5) Ri-=[Ru]*, Fi(\) = [Fa()]" .

Proof. (A) Let W(\,) denote the Cayley transform of a quasi-
self-adjoint extension T of 7. Thus W= U@ F, where

Uho) = (T — 2T — No) ™

is the Cayley transform of 7. One easily shows ([10], equation (5.22)),
that for )\, and )\j in 7+,

2.6) W) = [ — ) — (5 = M) WO — X)) — (%6 — M) W ()]
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where the inverse shown is a bounded operator with domain 5#°. Since
this equation holds between W, () = U(\) D F,(\) and W, (), there-
fore by continuity Wii(A¢) = lim W, (\j) exists. Furthermore W3.(\,)
and Wi, (M) are related by (2.6) and hence are Cayley transforms rela-
tive to )\, and A}, of the same T = T.. Since Wy, () = Uw) @ Fy, ()
therefore Fi.(\) = lim F), (\)) exists, and Wixi(\) = U(\) D Firi(Mo)-
Thus F'5,(\,) and F5,(\) define the same extension of T.

(B), Here we establish the necessity of the condition. Let )\, ex™.
It follows from (2.2) that, for » € «nt,

Ty — N = (T)\ - )") + (7\' - 7‘0) = [1 + O" - )"O)RA](TA - >")
and therefore that
(Tx — 2= Ri[1 + (A= N)R\], Newt,

Here [1 + (A — N)R,]™" is bounded with domain Z#. ([10], equation
(5.30), footnote.). By assumption, A\, — X on the real axis, and R,, — Rx+
in norm. By choosing a special ), for which | X — X,| « || R34 || < 1, we
guarantee that [1 4+ (X — \)R3.]™" exists, is bounded, and has domain
5#. Consequently the operator

G)\ = RA[]- + ()\' - )\'O)R)\]—l

is well defined for A = X + as well as \ € 7+, and G,, — G4, in norm.
The Cayley transform W,(\,) of T, for € ¥, is given by

W, = (TA - 3V—o)(Ta\ - Xo)_l =1+ ()Vo - Xo)(T)\ - Ko)—1 .
Hence
2.7 Wy=14 (A — N)Gy , for nexwt.

We define the transformation W3, also by this formula, and show that
Wi+ is a quasi-unitary extension, with || W,. || = 1 of the Cayley trans-
form U(\,) of T. In fact, the statements

| Wi 1=1; Wif = U f for fe 4,(\)

are valid for A € #* and, since by (2.7) W, — Wi, are valid for A =
A + as well. But by [10], Lemma 8, these statements imply that Wi,
is a quasi-unitary extension of U(\,).

Consequently W4, is the Cayley transform of a quasi-self-adjoint
extension (of class C*) of T. From the relation

W= U@F, for » e &t
it follows, since W, — Wi, that: Fy, = lim F,_ exists and

Wie =UD Fis .
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Thus W3y, is the Cayley transform of the extension which we have
denoted (in A) by Ti..

From the relation between any quasi-self-adjoint extension and its
Cayley transform we have

e = (T3 = MU(Tae — M) =1+ (o — X)l(The — 2) 7"
Comparing this relation with (2.7), we conclude that
(Tir — M) = Gir = Basl + (V — M)R3] .
From this it immediately follows that R;;' exists and that
Trie — M =[14+ " = MRuIBT = R + (W — o) -

Hence

or
Ry = (T — X)_l .
This shows the necessity of conditions (i) and (ii) for the special choice
of N\, made in the course of the argument. But from part (A), already
proved, it follows that the conditions hold as well for any other A, e 7+,
(B), In order to prove the sufficiency of the conditions (i) and (ii),

we make use of the inverse relation between 7T, and its Cayley trans-
form, namely

Ty = AWy — X)Wy — 1) for nezt or A =N+ .
(For notation, see the proof of part A). Hence
Ty —=r=[ =MW+ =)Wy — 1.
and, since (T, — )™ exists (condition ii), therefore
(2.8) (Tx =27 = (Wi = DIV — X) = (v = )W)
for nemt or A =X+ .

Furthermore, since the inverse appearing on the left side of this equa-
tion is bounded with domain 57, the same is true for the inverse
appearing on the right side. This fact, together with W, — Wi, in
norm, shows that

Ry, = (Th, — M) = (Txs — N,

which proves the proposition.
(C) This is a direct consequence of the reciprocal relations (2.7)
and (2.8), namely



THE SPECTRA OF MINIMAL SELF-ADJOINT EXTENSIONS 1009

By=(Wi— Dl —2) — (= M)W,
Wi=1+MN—=2)R1 + N —2N)R\]".

These are valid in 7+ and under the assumptions of (C), are valid, in
the limiting sense, on the entire set considered. Since the inverses
displayed are bounded operators with domain 5#, the assertion regard-
ing continuity is evident.

REMARK 2.1. When Rj. exists (as a limit in norm) it is, by Theo-
rem 2.1, an extension of (T — X)~*. This implies that X is a point of
regular type of T, i.e. that (T — X\)~* exists and is bounded.

In particular (see [1], Chap. 7), the defect numbers of T are equal.

REMARK 2.2. Necessary and sufficient for the continuity of R,
across an open interval 4 of the real axis is:

(i) Continuity of R, down to 4 in #* and

(ii) Self-adjointness of R,, on 4, i.e. R,, = R,_.
In the presence of (i), condition (ii) is equivalent to

(ii)) Unitariness of F'. on 4, i.e. (F\,) = F\_.
Under these conditions R, is in fact analytic across 4.
(One has only to consider (R,f,f), which is analytic in 7+ and 7~ and
continuous across 4)

3. Resolvent set and spectrum. By the resolvent set of a spectral
resolution will be meant the points of #* U #~ plus any real point X,
contained in an open real interval 4 across which R, may be continued
analytically. The resolvent R, at A = A, is the common value of the
limits R,,. and R,,_ there.

In this paragraph we characterize the resolvent set, showing that
it is the complementary point set of the spectrum of E,, described in
the introduction.

According to M. A. Naimark, the spectral family E, in 5% may be
regarded as the projection on 57 of an orthogonal family E) in an
enclosing space 5#* D 5#. Thus E, = PE}, where P is the orthogo-
nal projection onto 5#°: Po#Z+ = 5#°. The family E;} is the spectral
resolution of a self-adjoint operator T+ in S#*. In the following we
shall assume that T+ is a minimal self-adjoint extension of 7', thus
we assume that the set of vectors

{E*(dh: 4 is any interval, h € 2}

is fundamental in 2#*. In other words, S#* is the closed linear hull
of this set. (See Naimark [8], §4).

LEMMA 3.1. Let 4 be a (possibly degenerate) interval of the real
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axis. Then
(A). The set of wvectors

Z(4) = {E+()h: 4 C 4, h e 57)

18 fundamental in E(4)S#*.
(B) E*(4) =0 if and only if E(4) =0.

Proof. (A) Given fe E+(4)s#*. For any € > 0 there exists g =
»_ B+ (4,)9,, for certain intervals 4, and certain g, e 52, such that
IIf —gll<e. We can write E*(4.)g, = E*(4 N A9, + E*(4 — 4)g.,
and thus g = g® + ¢® with g% = 7%, E*(4)g® and ¢@ = S\2, E+(47)g?,
where 4; C gand 47 N 4=0. Thus g® € E+*(4)2#* while g® | E+(4)s#™,
and [|f—glF=lf—g®IF +11g®[’. It follows that [lf—g™[ <e,
proving the proposition.
(B) (i) Suppose E(4) > 0. The there exists ke 57 such that
0 < (E(Dh, h) = (PEH(Dh, h) = (ET(Dh, k) = || EX(DHR|]>. Thus E+(4) > 0.
(i) Suppose E(4) = 0. Then for 4’ C 4, E(4') = 0 also. Hence for
he 7, 0= (E)h, h) = E (L) h), ie. EX(L)r=0. By part (A)
this implies that E+(4) = 0.

THEOREM 3.1. A real point X\ of the resolvent set of the spectral
Sfamily E, of T may be characterized in these equivalent ways:

(A) R, may be continued analytically across some open real inter-
val 4 containing X.

(B) E(4) =0, for some real interval 4 containing X.

(C) X is in the resolvent set of a minimal self-adjoint extension
T+ = +(E,) of T.
In this case, Ry = PRy*, where Ry is the resolvent of T+.

Proof. (A — B) This is a consequence of the formula (1.2).

(B—C) By the lemma, E+(4) =0. Since E; is an orthogonal
resolution of the identity, this implies that the points of 4 are in the
resolvent set of T'+.

(C— A) If 4 is in the resolvent set of T+ then Rj;* exists for
Ne 4, and PR; is well defined for points in 4 as well as for nonreal
points. Since Ry is analytic across 4, the same is true of PR;}. But
for nonreal \, R, = PR;. Hence R, can be continued analytically
through 4, and will then equal PR, there.

REMARK 3.1. The representation R, = PR, throughout the resolvent
set allows the establishment of a number of formulas already known
for nonreal points:

(i) (Rf g) = g"_“wd%_%ﬂ
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(ii) For fe 4,(»), (R, — R)Sf = (¢ — ME.R.f

(i) 4, =1 + (v — R4 (V).

We next obtain a result concerning the point spectrum of a minimal
self-adjoint extension T+ of T. In the following theorem, dim & de-
notes the dimension (<) of the manifold & (X) of solutions of T*u =
\u. Also E[\] = E,, — E,_.

THEOREM 8.2. Let M*(X) be the characteristic manifold in 57+
corresponding to an eigenvalue N of T+, a minimal self-adjoint ex-
tension of T. Then dim M*(}) = dim E[X]s# < dim (V).

Proof. (i) E[X57 c £(\); proving the inequality in the theorem.
To verify this let he 2~ and choose fe D,. Then Tf = T"f, and
(E[\]h, Tr) = (E+[\h, Tf) =A(T+E:[X][L, f) = RE*[\h, ) = ME[\R, £).
Thus E[\h € D, and T*E[Nh = NE[\]A.

(i) By Lemma 3.1, E+[X].5# is dense on M*(X). Thus dim M+(}) =
dim E+[X\]5#. The theorem will be proved by showing dim E+]\]s# =
dim E[X]27.

Suppose fi, -, fn are vectors in 57 such that E*[X]f, -, E*[Nf
are linearly independent. Then E[X]f,, +-+, E[N]f. are also linearly
independent. For otherwise there would be constants ¢, «--, ¢,,, not all
zero, such that

P3 ckE’L[X]fk = Z%E[X]fk =0.

This would then imply that f = 3 ¢, E+[\]f. was a characteristic vector
of T+ such that fe 52+ O 5#. But that cannot be, since no reducing
manifold of a minimal extension can lie in £ © &7 (see Naimark [8],
§4.)

On the other hand E*[X]f,, ««+, E*[\]f. are obviously independent
when their projections E[X]f,, «-+, E[\]f» are. Thus dim E+[X]s# =
dim E[X\]5#, proving the theorem.

REMARK 3.2. Because of the unitary equivalence of all minimal
self-adjoint extensions T'* associated with a given spectral resolution E,
of T, it is natural to associate with E, the various aspects of the
spectrum of T+. Thus by the spectrum, point spectrum, essential
spectrum, etc. of E, will be meant the corresponding point sets in the
spectrum of T'*. An eigenvalue of E, will mean an eigenvalue of T'*,
with its multiplicity the dimension of the corresponding manifold in S#+.

From the theorems of this paragraph it follows that certain aspects
of spectrum may be simply characterized directly in terms of E,.. We
mention especially:

(i) Spectrum: The points of increase of E,
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(ii) FEigenvalues: Points of jump of E,. The multiplicity of an
eigenvalue X is dim E[N]o7.

(iii) Point Spectrum: Closure of the set of eigenvalues.

(iv) Essential Spectrum: Cluster points of the spectrum, plus
eigenvalues of infinite multiplicity.

4. Essential spectrum. Let E, be a generalized resolution of the
identity associated with a symmetric operator 7. From Remark 2.2, a
necessary condition for an open real interval 4 to belong to the re-
solvent set of E|, is that the associated family of contractions F, from
M(\,) to M(x,) have the properties:

(@) F, is continuous from w©* down to 4, and

(B) F,, is unitary on 4.

These properties obviously cannot hold for any 4 unless the defect
spaces M(\,) and M(\,) have the same dimension. Hence, when T has
unequal defect numbers, the spectrum of any resolution E, consists of
the entire real axis.

On the other hand, when T has equal defect numbers the properties
(@) and (8) may well hold; in particular, when F), is a constant unitary
operator, thus when E, is an orthogonal resolution, the properties are
valid for every interval 4.

In the remainder of the paper we shall consider a symmetric oper-
ator A with equal finite defect numbers. We recall that the essential
spectrum X, is the same point set for all orthogonal resolutions of A,
that is, for all self-adjoint extensions in 57 of A. This is the classical
theorem of H. Weyl, ([13] p. 251), proved originally for ordinary differ-
ential operators, and later extended to abstract operatars by E. Heinz
[6]. The principal theorem of this paragraph extends Weyl’s result to
generalized resolutions which satisfy («) and (8).

THEOREM 4.1. Let the symmetric operator A have defect numbers
(n, ») with n < «, and let 2, denote the points of the essential spectrum of
any (hence every) orthogonal resolution of A. If E, be an arbitrarily
chosen (generalized) resolution of A with essential spectrum X, then:

(i) 2o 2.

(ii) When (@) and (B) hold on 4 for the family of contractions
assoctated with E,, then X, and 3, coincide on 4.

(iii) If (@) and (B) fail on every subinterval of 4, them 4 C 5.

We remark that the hypothesis of (iii) holds in particular under the
condition:

(v) F\ is continuous from w* down to the open real interval 4
and || F,. ]l <1 on 4.

The proof will be based upon two lemmas of independent interest.
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For any complex A\, let Z(\) denote the eigenspace of solutions of
T*u = . Thus £\) = M().

LEMMA 4.1. Let T be a quasi-self-adjoint extension of T defined
by F: M(\)— M(x,). For f,ge¢€ D, introduce the form <f,g>=
(T*f, 9) — (f, T*9). Then the domains of T and T* have the following
characterization:

D; = {u: u € Dy and u, p — F*¢> = 0 for all ¢ € £(\)}
D= {u: u € Dy and lu,  — Fap> = 0 for all 4 € £(\)} .

Proof. The proof of Theorem 1 in Coddington [3] is directly adap-
table.

Lemma 4.2. Consider a symmetric T with equal finite defect
numbers (n, n), and suppose that N is & real point of regular type of
T, i.e. that T—\ has a bounded inverse. For any quasi-s.a. extension
T, if (T — AN)7! exists, it is a bounded operator with domain SZ.

Proof. (T —\)™ is defined on 4;(\) = 4,(\) B [4s (V) © 4,(\)]. Tt
is bounded on the first since (7' — \)™* is bounded at a point of regular
type, and bounded on the second since the enclosing subspace M(\) has
dimension n. Hence (7' — \)~* is bounded on the sum of these orthogo-
nal manifolds.

It remains to show that 4;(\) = 5. Since 4,(\) is closed, the
problem reduces to showing that 4;(\) © 4,(\) is n- dlmensmnal By
(2.1), which gives the domain of 7, and by the existence of (7 — )™,
it follows that 4;(\) contains 7 vectors which are linearly independent
mod 4,(A). Their projections onto 4s(\) © 4,(\) are therefore linearly
independent. Q.E.D.

Proof of Theorem 4.1. The statement that in general 3, D> 2%,
follows from a result of Hartman, ([5], § 3, proof of proposition (iii)):
He has shown that, when X € %, (and = is finite), there exists a sequence
fn€ D, such that ||f,|l=1,f,—0 weakly (in 5#) and (4 — \)f, — 0
strongly. Consequently for any extension A* in 5#*, f, € Dy, fn—0
weakly (in 5#*), and (A* — \)f,—0 strongly. Thus by Weyl’s cri-
terion ([9], §133), X is in the essential spectrum of A+, and (by Remark
3.2) in the essential spectrum of the corresponding FE,.

Next we show that, under the conditions (ii) on F,, when X & %,
it cannot belong to X’. Since X ¢ %,, therefore the eigenspace of A at
X is finite dimensiona] at most. We can depress .5# and every S#+
to the orthogonal complement of this manifold without changing any
essential spectrum. Hence it may be assumed from the beginning that
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% is not an eigenvalue of A. Hence, by [5], §3, property (i), there
exists a self- adJomt extension A in 2~ of A for which % is not an
eigenvalue. Since X ¢ ¥, it cannot be a cluster point of the spectrum
of A: consequently X is in the resolvent set of A. Let 4 about % be
an open real interval in which 1%)\ = (fi — A)tis analytic. We shall show
that R, (corresponding to the given E,) is analytic in 4 except at iso-
lated points. Since X has at most finite multiplicity (by Theorem 8.2)
as an eigenvalue of E,, it follows that X & 3.

It will be enough to show that (4, — M)® = 0 has a nonzero solution
at only isolated points A in 4. For, by Lemma 4.2, R, will then exist
except at these isolated points and, by the conditions of the theorem,
and Remark 2.2, will be analytic.

Following M. G. Krein (see [1], §84), we introduce an analytical
basis ¢,(V), <+, ,(\) for (W), vent Un~ U 4, by

(]Sk()\,) = [1 + (7\' - 7\'O)Ie)\]ﬁbko‘io) ’ k= 17 2; e, M.

Here ¢:(0\y), «++, ¢,.(7) form a basis (for convenience assumed orthonormal)
for £(\,), with \, € w+.

The solution space of (4, —Np =0 is &£(\) N D,,. According to
Lemma 4.1, this subspace contains a nonzero vector at just those points
M € 4 which are zeroes in (4—) of

4.1) det {p;(\), p(ho) — F¥d(No)) rerwmU(4-).

As noted, the expression is meaningful also in #—, indeed is analytic
there and continuous in 7= U (4—). Thus the theorem can be proved
by showing that (4.1), (which is nonvanishing in 7~), can be continued
analytically across 4.

For » e n* U (44+) we have

Fidu(%) = 3 Fugi(0), where Ful) = (Fai(%), i0w) -

The coefficient determinant, det (F,(\)) is analytic on 7+ and continuous
on w* U (4+). It is non-vanishing wherever F';' exists, hence in par-
ticular on 4+.

We shall show that the expression, defined for » e 7+ U (4+),

4.2) (=) det (d:0%), Fapi(Ng)) « det <pi(\), di(ho) — F5 br(No)

coincides on 4 with (4.1). Since this expression (4.2) is analytic on 7+
and continuous on #* U 4 +, it furnishes the desired continuation of
(4.1) across 4.

Since F'! = F, on 4, therefore
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¢’k(7_Vo) —F M—ﬁbk(xo) =F A*+F x+¢’k(xo) —F A+¢k(xo)
= ; Fkl(x+)[FA*+¢l()\'0) - ¢z(7\'o)] .

Noting that F} = F,,, this permits writing the limit value of (4.1) in
the form

4.3) (—1)" det (F., (v +)) det {p;(\), b)) — Fdbi(N))
But

Fi(n +) = (F)\+¢’k(xo)r ¢l()“0))
= ($:(\y), F, )\+¢k(xo))

so that (4.3) is identical with the limit value on 4 of (4.2).
The theorem is proved.

5. Strict contractions. In this paragraph we shall examine spectral
resolutions of a symmetric operator A satisfying the conditions

(1) A has equal finite defect numbers (n, n).

(II) Ewery point X\ on a real interval 4 is of regular type for
A, i.e. (A — N exists and is bounded.

Condition II can be stated in the following equivalent form:

Iy Any self-adjoint extemsion in 57 of A has in 4 only isolated
points of its spectrum. No point of 4 is common to the spectra of all
such extensions.

The equivalence of II and II’ follows from Hartman ([5], prop. (ii))

Let E, be a spectral resolution of A, and F, be the associated
family of contractions of M(\,) into M(\,). It follows from theorem
4.1 that, on any sub-interval of 4 where («) and (8) hold, the spectrum
of E, will contain only isolated points.

Our interest here, however, will be in resolutions for which con-
dition (v) of §4 holds on 4. In this case, by Theorem 4.1 (iii), the
spectrum of E, includes 4. We first state a result valid when 4 is the
entire real axis <. When (7) holds on <# we shall describe F', as a
Sfamily of strict contractions.

THEOREM 5.1. Suppose that A satisfies (1), and (II) on <&#. Let
E, be a resolution of A for which the associated family of contractions
F, is strict. Then:

The assoctated minimal self-adjoint extemsion of A is unitarily
equivalent to the m-fold direct sum of 1D with itself, D being the.
differential operator djdx on <5(— o, ).

REMARK 5.1. This theorem generalizes results of Coddington and
Gilbert [4] for ordinary differential operators on a closed bounded inter-
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val. Their method of proof appears to be adaptable to handle certain
other ordinary differential operators satisfying I and II, in particular,
singular operators in Weyl’s limit circle case.

REMARK 5.2. Condition II on <2 of course implies that A has no
eigenvalues. However it is easy to analyze the more general situation
in which eigenvalues do occur, provided II on .2 holds for the restric-
tion of A to the manifold orthogonal to the eigenvectors. In that case
the minimal self-adjoint extension is equivalent to the direct sum of
the discrete part of A with the operator described in Theorem 5.1.

We shall prove Theorem 5.1 as a special case of a more general
theorem. We now suppose that I, II, and (v) hold on 4. By assump-
tion, F',., and hence A,,, exists for every \ € 4. The assumptions that
|| FiL |l < 1 and that A has no eigenvalues on 4 imply that D,,, N &Q\) =
{0} for N € 4, and hence that (A4,, — \)* exists. This statement follows
from the fact, noted by Hartman [5], that when fe &), for N e <&,
is written in the form

f=fi+ft*+f", where fie D, fte&(), f~¢ & (No)

for \, € z*, then ||f*||=1|f"ll. Then, by assumption I and Lemma
4.2, R, exists, and is continuous in », on 7+ U (4+).
One may define a basis for £ (\),x € 7+ U 4, by

(5.1) $:0) = 1+ (v — MRS h=1,2 .

Here )\, € *, and ¢,(\0), **+, Pu(Ny) form a basis for &(\,). That ¢,(\)
is in (V) follows from (A* — MR, =1. That ¢,(\), «++, ¢,(\) are inde-
pendent follows from the fact that

1+ 0= 2)By = (Ay = M)Ay — N7

has an inverse.
We shall henceforth identify #* with the half-plane _#Z(\) > 0.
The basis (5.1) allows a simple representation for _# Ry, = 1/2¢ [Ry. — R,_]:

LEMMA 5.1. Assume that A satisfies I, II, and F\ satisfies (7).
Then for every : € 4 and every f € 5F,

(5.2) S Ruf = 3 0300, 6,000 -

The matriz @(\) is positive definite and continuwous in N. Here w*
has been identified with the half plane _7(\) > 0.

1 In what follows only the existence of a continuous basis is needed, not its relation
(5.1) to Ra.
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Proof. Since for every fe 57, (A* —MNR,.f=f, therefore
FRufez(M. In terms of an orthonormal basis &, +-+,$, for
g(K), jR)\_;.f = ZCk¢k, Where

C, = (fRHf: ﬁk) = (f, fRM—Sgk) = (f, 'st)

for some 4, € £(\). Writing &, -+, $u ¥y, *++, ¥, as linear combi-
nations of ¢,(\), -+, ¢,(\) establishes the form of (5.2).
From the known relation

(ZR\f,f)=0 for ZN>0
follows
(5.3) (RS, f)=z0 for ~Ar=0.

Recalling that &' (\) is invariant under _# R,., let {_# R,,} denote the
restriction of _# R, to &(\). We assert that

(5.4) ({7 Raitg, ) >0 when [[4][>0, ge&()).
In view of (5.3) it is sufficient to show that
(5.5) {F R}y =0 implies 4 =0.
Suppose that { #Ry}4»r=0. Then ¢ = Ry;v = R,y belongs to
D(A.;) N D(A,.). Writing ¢ in the form
9=0+9"+g, geDA),g"e&M), g-c &)
then, by the definition of D(A4,.),
—9*=Fug, —9 =Fg".

Since || Fix+ |, || Fi- 1l < 1, this implies that g* =g~ =0, i.e. g e D(4).
Since Ry;y € D(A) therefore € 4,(\), the orthogonal complement of
& (). Thus 4 = 0. This proves (5.4).

Now let ¢ be an arbitrary element of & (\) and put

& = (¢, 6:(V) k=1,2,--+,m.

In view of the independence of ¢,(\), «++, N(¢4), this relation is a one-
to-one linear mapping of & (\) onto the n-dimensional space of vectors

£=(&, -+, &). Thus relation (5.4) is equivalent, because of the form
of (5.2), to

20, (\VEE, >0 when |E][#0.

That is, the matrix @(\) is positive-definite.
It remains only to prove the continuity of @(A). This follows
directly from the relation
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(F Baigu(V), 65(V) = 25, (M ($uV); $50)P V), P(V)

since det (¢.(\), ¢;(\)) # O.

THEOREM 5.2. Suppose that on an interval 4 the operator A satis-
fies 1, 11 and that E, is a spectral resolution of A for which the corre-
sponding mapping F) satisfies (v). Let A* in S#*+ be a minimal s.a.
catension of A with orthogonal resolution E, satisfying E, = PE}.
For it e 4 define p(p) = 1/m S@(ﬂ)d/z. Then the part of A* on E+X(4)s#~

1s unitarily equivalent to the multiplication operator om 2, (o(1)),
(e 4.

Proof of the Theorems. It is pointed out by Coddington and Gilbert
[4] that the multiplication operator in <#,(0) (where p is strictly increas-
ing and continuous in A on <Z) is unitarily equivalent to the =-fold
" direct product of iD with itself, D being the differential operator d/dx
on & (—o, o)., Thus Theorem 5.1 is a corollary of Theorem 5.2.

For every f e 57~ and every bounded real interval 4’ C 4,

EWS,f) =limL{ (7Bt £ir
= L Rusndn
T Ja

Here we have used the continuity of R, on n*t U (4+) and of E, on 4.
Let g(\) = {g:(M)}i=: be defined by g.(») = (f, .(A)). Hence

(B, $) = 2| 200000700 ;
(5.6) IE@)F I = | 2000804000

Now suppose fe€ 57 is in E*(4d)s7+. Thus E(4)f = f. Consider
V. EX(4")f — x»N\)g(\), where y%.(\) is the characteristic function of
the interval 4'c 4. From (5.6) V is an isometric mapping of Z(4)
(see Lemma 8.1) into ZZ,(0(\)), (» € 4), which carries E*(<4') into the
operation of multiplication by X,(\). Since Z(4) is fundamental on
E+(4)s7*, Theorem 5.2 follows.

6. Differential operators. Let Lu = —(pw')’ + qu be an ordinary

differential expression on the positive axis 0 = ¢ =< o, with p and ¢
real measurable functions such that p(x) > 0,

S:p(x)“‘dac <o, §| o) do < o
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for any b > 0. With a suitably prescribed® minimal domain in &2 ,(0, ),
L defines a symmetric quasi-differential operator L, with defect numbers
(1,1) or (2,2). It is easily seen that L, has no eigenvalues. When the
defect numbers are (2, 2), the Conditions I and II of §5 are automati-
cally satisfied on &2, so that the results of that section hold.

We shall assume that L, has defect numbers (1,1), i.e. is in the
limit point case, and shall study the absolutely continuous spectrum of
a minimal self-adjoint extension L; of L,. As before (§3), Li operates
in a space 57" containing 5% and has a spectral family of projections
denoted by E..

Let M, and M, be the absolutely continuous and singular subspaces
of 57+ with respect to Li (see [7] for definitions). Thus M, and M,
reduce L, are orthogonal, and 57 = M, @ M,. For any ue M,[Jue M],
the function (E/u, ) is absolutely continuous [singular] with respect to
Lebesque measure on —co < ¢t < . Let E, be a generalized resolution
of L, for which E, = PE;. By the absolutely continuous spectrum of
Ly (or of E,) will be meant the spectrum of the part of L; in M,.
The singular spectrum is defined similarly.

It has been proved by N. Aronszajn [2] that the absolutely continu-
ous spectrum is the same point set for all orthogonal resolutions of the
differential operator L,. The following theorem extends Aronszajn’s
result to generalized resolutions in a way parallel to Theorem 4.1 for
essential spectrum. Clause (iii) contains a partial extension, for differ-
ential operators, of Theorem 5.1.

THEOREM 6.1. Let L, be a quasi-differential operator as described
above and let X, denote the points of the absolutely continuous spectrum
of any (hence every) orthogonal resolution of L,. If E, is an arbitraily
chosen (gemeralized) resolution of L, with absolutely continuous spec-
trum 2!, and singular spectrum 23, then:

(i) .02,

(ii) When (o) and (B) hold on 4 for the family of contractions
associated with E,, then X, and X, coincide on 4.

(iiiy) When (v) holds on 4, then 4 cC 3., while 4 N 2, = 0.

The proof depends upon

LemmA 6.1. Let p(pr) = [pi()]2 =1 be a mondecreasing Hermitian
matrix (—oo < (< o) and A the multiplication operator with maxi-
mal domain in < (0). Let

o(28) = P.(19) + (1)
be the Lebesque decomposition of p imto its absolutely continuous and

2 A precise specification may be found in [1], Appendix II,
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singular parts, defined by the corresponding decomposition of the
components of p.

Then p, and p, are nondecreasing Hermitian matrices. Z(0,)
and Z(0,) are, respectively, the absolutely continuous and singular
subspaces of (o) with respect to A. Thus the absolutely continuous
spectrum of A consists of the points of increase of p,, or equivalently
of its trace tr p,. A similar statement holds for the singular spectrum.

We shall omit the proof of Lemma 6.1.

Proof of Theorem 6.1. For _#\ # 0, let 4, = 4(x, \) denote the
% solution of L+ = Ay which is determined by

[p(x)' (@, M=o = —1.

Put (0, ) = m(\). Each generalized resolution E, of L, is now specified
by a family of contractions F: M(t) — M(—%) of the form

FA"V—i = W(X)”‘lh
where W()\) is analytic and | W(A)| =<1 for _# X\ > 0. Define

= WOm(i) — m(—1)

Since .#m(7) > 0 and m(—1) = #m(z), therefore _#0(\) = 0 (with § = o
when W =1).

A. V. Straus [11] has associated with each E, a spectral matrix
o) = [0;s(W]s k=1 —o° < £ < oo, which is Hermitian nondecreasing,
and such that

tro( = Liim " 7o + iy

where

mO)IN) — 1

(6.1) () = 0% + moy)

, FA>0.
In particular, when W(\) = 1, ¢(\) reduces to m()\).

Let 4 be the multiplication operator with maximum domain in
<Z(p) and let L be a minimal self adjoint extension of L, with E, =
PE;. By the reasoning in [4], §4, 4 is unitarily equivalent to L.

Therefore, by Lemma 6.1, the problem is reduced to a consideration
of the absolutely continuous and singular parts of tr p. But such con-
sideration is possible along the lines of [2].

A set G is a support of a real measure v when (<% — G) =0. It
is a minimal support when for every support G, C G, the Lebesque
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measure |G — G,|=0. It is easy to prove that when v and ' are
absolutely continuous measures with minimal supports G C G’ then
y <V (i.e. V'(s) = 0 implies y(s) = 0).

The following disjoint sets G, and G, are minimal supports for,
respectively, the absolutely continuous and singular parts of tr o (com-
pare [2]):

G, = {¢t € Z: lim ¢(\) exists finitely and 1im Z(\) > 0}
Aom -l
G, ={¢re #: 7¢(\)— o when n— 4} .

(Here it is understood that »— £ with the constraint that ¢ < Arg(A— )<
w — ¢ for some fixed ¢ > 0.)

We shall compare the sets G,, G, corresponding to an arbitrarily
chosen resolution E, with the special sets GI, G% corresponding to the
orthogonal resolution for which W = 1. Thus in the definitions of
G:, GY, ¢(\) is replaced by m(\).

We note first that _#0, _#¢ and _#m are all =0 when _# X\ > 0.

Since lim,_, (\) exists finitely except for \ on a certain set S, of
Lebesgue measure zero, inspection of (6.1) and the formula

g Q10D Fm+ A+ m)ro

K
|m + 0

reveals that G, D G — S,. Since these are minimal support it follows
that tr p, > tr 0%, implying the statement (i) of the theorem.

Next, assume that («) and (8) hold on 4. Therefore 6(\) may be
continued down to 4 with _Z6(#+)=0 on 4. Inverting (6.1) one
obtains the formulas

m:¢0+1, jm=(1+[0|2)f¢—(1+|¢12)fﬁ,
0—¢ 10— g

which show on inspection that G, N 4 < GS. Together with the earlier
obtained inclusion, this implies that G, and G° coincide on 4. Since
these are minimal supports, (ii) follows.

Finally, assume (v) holds on 4. In this case 6(\) may be continued
down to 4 with _#6(z+) > 0 for ¢ e 4. Equation (6.1) shows that ¢())
remains bounded as M — ¢ on 4 and hence that G, N 4=0. Thus
2N 4=0. At the same time, by Theorem 4.1 (iii), 4 does belong to
the spectrum of E,, and hence must belong to the absolutely continuous
spectrum %,. Q.E.D.

REMARK 6.1. A. V. Straus [12] has shown that when 6(\) may be
continued to real limit values on the entire real axis—equivalent to the
assertion that (@) and (B) hold on .Z—then E, has simple spectrum,
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This, together with Theorem 6.1 (ii), implies the unitary equivalence
of the absolutely continuous parts of minimal self-adjoint extensions
corresponding to resolutions E, satisfying («) and (8) on .

REMARK 6.2. Assume (v) holds on .&#. If conditions I and II of
§5 hold for L, then, by Theorem 5.1, the multiplicity of spectrum of
Ly will be 1, and the operator equivalent to ¢D. Simple examples
show that in general (i.e. without Conditions I and II) the multiplicity
of spectrum may well be 2 (the maximum consistent with o0 being a
2 X 2 matrix) and that L; may even be equivalent to +D @ iD.
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