
A REMARK ON THE NIJENHUIS TENSOR

EDWARD T. KOBAYASHI

The vanishing of the Nijenhuis tensor of the almost complex structure
is known to give the integrability of the almost complex structure [3, 7].
In order to generalize this fact, we consider a vector 1-form λ o n a
manifold M [4], whose Jordan canonical form at all points on M is equal
to a fixed matrix μ. Following the idea of E. Cartan, we say that such
a vector 1-form is O-deformable [2]. The frames z at x such that z~~xhxz =
μ define a subbundle of the frame bundle over M, as x runs through
M, and the subbundle is called a G-structure defined by h [1]. We find
that for a certain type of O-deformable h, the vanishing of the Nijenhuis
tensor of h is sufficient for the G-structure to be integrable (Theorem,
§2). In § 5 we give an example of a O-deformable derogatory nilpotent
vector 1-form, whose Nijenhuis tensor vanishes, but whose G-structure
is not integrable.

1. Vector forms and distributions As usual, we begin by stating,
that all the objects we encounter in this paper are assumed to be C°°.

Let M be a manifold, Tx the tangent space at point x of M, T the
tangent bundle over M, T{p) the vector bundle of tangential covariant
p-vectors of M. A vector p-form is a cross-section of T®T{V). The
collection of all vector p-forms over M is denoted by Ψp. We notice
that a vector 1-form is nothing but a law that assigns a linear transforma-
tion to each tangent space Tx at point x of M.

We list some definitions and lemmas of the theory of vector forms
[4], which we use in the sequel.

If PeΨp,Qe Ψqy then P A Q e Ψp+q^ is defined by

(1) (PA Q)(ult •• ,up +,_1)

where a runs through all the permutations of (1, 2, •••,# + (/ — 1), and
\a\ denotes the signature of the permutation a.

If & is a vector 1-f orm and P is a vector p-ΐorm, we write hP in-
stead of h 7\ p. In particular if p = h, we write h A h as h\ In general,
h A h A h is written as hk, and this agrees with the usual notation,
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when we consider feasa linear transformation of the tangent space at
each point of the manifold M.

Let ft and k be two vector 1-forms. The bracket [ft, k] of ft and
k is a vector 2-form defined by

(2) [h, fe](u, v) = [fiu, fei>] + [feu, ftα>] — fc[ftu, v] - h[ku, v]

—k[u, hv] — h[u, kv] + kh[u, v]

where u and v are vector fields over M. If ft = k9 we obtain the tensor
[ft, ft], generally known as the Nijenhuis tensor:

(3) JL [h9 h](u, v) - [hu, hv] - h[hu, v] - h[u, hv] + h*[u, v] .

If h, k and I are vector 1-forms, using (2), we can obtain

(4) [hi, k) + [h, kl] -[h,k]7\l = h[l, k] + k[l, h]

(cf. (6.7) [4]).

LEMMA 1.1. Let h be a vector 1-form, then

(5) [hk, hι] = i - Σ ha{{[h, h] 7\ hb) 7\ h° - [h, h] A hb+°} .
9 a+b + + k + l2

Proof. By replacing ft, & and I by ft, ft and ftfc in (4), we obtain

(6) [ft\ ft] - ft[ft&'\ ft] + -ί[ft, ft] A ft*"1 ,

which gives us

(7) \h\ Λ] = — Σ Λ'"1^, Λ] A ^ - { .
2 <=i

Again, replacing ft, k and £ in (4) by ft\ ft and ft1""1, we obtain

(8) [hk+ι~\ ft] + [ft\ ft'] - [ft&, ft] A ft'"1 = ft*[ft*-\ ft] + ft[ft*~\ hk] .

Using (7) and (8) yields

(9) [ft*, hι] = h[hk, ft'"1]

+ - Σ f t ^ m λ] A h"-*) A ft^1 - [ft, ft] A ft*-^"1} ,
2 •=»!

and repeating the reduction we obtain (5).

LEMMA 1.2. Let h be a vector 1-form on M, whose rank is constant
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in a neighbourhood of each point x of M. If [h, h] = 0, the distribu-
tion x-+hxTx is completely integrable.

Proof. By Frobenius' theorem we have to show that the bracket
of any two vector fields of the form hu, hv belongs to the distribution.
This follows from [h, h] = 0 and (3):

[hu, hv] = h[hu, v] + h\u, hv] — h\u, v] .

We recall that a necessary and sufficient condition for a distribution
to be completely integrable can be given as follows:

Let θ be an r-dimensional distribution x —> θ(x) on an m-dimensional
manifold M. For each x0 e M, let U be a neighbourhood of x0 and
Llf •••, Lr be vector fields on U such that (L^x, , (Lr)x span θ(x) for
each xe U. Then θ is completely integrable if and only if for each
x0 e M, there exist m — r independent functions ψ1, , ψm~r defined on
a neighbourhood V c U of xQ such that

Liψ3 = 0, for 1 S i ^ r, 1 ^ i ^ m - r on V .

Using this it is easy to prove,

LEMMA 1.3. // θu , θg are completely integrable distributions of
dimensions rlf , rg on M, such that

θx{x) + Θ2(x) + + θg{x) = Tx (direct sum)

for each xe M, then for each point x0e M, there exists a coordinate
neighbourhood U of x0 with coordinate functions x1, , xm such that
for each j

gives an integral manifold of θ5 contained in U.

2. The integrability of a O'deformable vector 1-foriru Let h be a
vector 1-form, defined on M, whose characteristic polynomial has con-
stant coefficients on M. Let the decomposition of the characteristic
polynomial be

where ^(λ), i = 1, , g are polynomials in λ, irreducible over the reals,
and (Pi(X), P,(λ)) = 1, if i Φ j . It is easy to verify [5, pp 130-132], that
we can get polynomials β^λ), e2(λ), , eg(\) in λ, with constant coef-
ficients, such that ΣiUMh) = /, {e^K)}2 = e{(h), e^'e^k) = 0 f or i Φ j ,
and
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et(he)T9 - K e Tx I {Vi{K)Ymx = 0} .

Let θi denote the distribution x--> e{{hx)Tx. If we assume [h, h] = 0,
then by Lemma 1.1, because e^h) is a polynomial in h with constant
coefficients, we see that [e^k), e^h)] = 0. Hence, by Lemma 1.2, θi is
completely integrable.

DEFINITION. A vector 1-form h on M is said to be 0-deformable, if
for all x e AT, the Jordan canonical form of Λβ is equal to a fixed matrix
μ [2].

Note that a 0-deformable vector 1-form has a characteristic poly-
nomial with constant coefficients.

A frame at xeM is an isomorphism 2 from Rm onto 7 ,̂ where m
is the dimension of M. For a 0-deformable vector 1-form h, the frames
z at x such that 2~3/&xz = μ define a subbundle if of the frame bundle
over M, as x runs through Λf. H is called the G-structure defined by

M i ] .

DEFINITION. A G-structure H defined by h is said to be integrable,
if for each point x of M there exists a coordinate neighbourhood U of
x with a coordinate system {x1, ,xm} such that the frame {(d/dx1),.,, ,
(0/0$"%,} belongs to the subbundle H for all xr e U. We shall say that
these coordinate functions are associated with the integrable G-structure
H.

Clearly, H is integrable if and only if, for each point x of M, we
can find a local coordinate system around x, in which the coordinate
expression of h is μ.

We are interested in finding a sufficient condition for a G-structure
defined by a 0-deformable vector 1-form h to be integrable. We now
assume [h, h] — 0. By the argument above we know that the distribu-
tions θi associated to the irreducible factors ^(λ) are all completely
integrable, so by Lemma 1.3, for each point x0 of M there is a coordi-
nate system {x1, , xm) on a neighbourhood U of x0, and the integral
manifolds of θt contained in U are given by coordinate slices.

In U take a point given by coordinates (f1, , ξm). For each i, let
x1 = ξ1, , ί*̂ -1 = £r*-i, xr*+1 = |r*+1, , xm = £w give an integral mani-
fold Mι of #£ in Z7, where r̂  = mx + m2 + + m i and m{ = dimension
of θit Consider the restriction ht of h on Mi. Notice that we can view
hi as a vector 1-form on an open set of Mif depending on m — mi
parameters x1, , af*-1, xrί+1, , xm in such the way that hi is C°° with
respect to the coordinates on M{ and the parameters together. The
characteristic polynomial of hi is {Pi(λ)}aί and the minimum polynomial
of hi is {Pi(X)}n, where HUi{Pi(^)}Vi is the minimum polynomial of h; hi
is a 0-deformable vector 1-form on Mif and [hif hi] = 0. If for each i,
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the G -structure defined by h{ on M{ is integrable, and if coordinate
functions yrt-1+1, , yr% associated to the integrable G -structure around
the point (# r*-1 + 1, , xrή = (ξrί-1+1, , ξrί) are dependent on coordinates
χu-i+1

9 . . .f χrt and on parameters x1, , xr*-i, xri+1, , xm jointly in a
C°°-manner, then we can replace {x1, « ,#m} in a neighbourhood of the
point (a?1, , xm) = (|\ , ξm) by a new coordinate system {y1, , #w},
so that h takes the matrix form μ, i.e. if is integrable.

Hence we consider the case where h has characteristic polynomial
{p(X)}d and minimum polynomial {p(λ)}Ό, where j>(λ) is irreducible over
the reals, and suppose that h jointly depends on the coordinates of M
and some parameters in a C"-manner. We have the following results:

Case I. degp(λ) = 1.
( i ) If v = 1, then h is a constant multiple of the identity vector

1-form / on M, hence the G-structure is integrable.
(ii) If v = d = m, consider the nilpotent part n of h. n is a poly-

nomial in h with constant coefficients on M, so from [h, h] = 0, we get
[n, n] = 0, by Lemma 1.1. Moreover nm — 0 but nι Φ 0 for I < m, for
all points of M. In § 3 we prove a proposition which shows that the
G-structure defined by n (which is the same as that defined by h) is
integrable, and that the associated coordinate functions depend on the
parameters of h and on the point in M jointly in a C°°-manner.

Case II. deg p(λ) = 2. In § 4 we shall show that the semi-simple
part s of h gives rise to a complex manifold structure M in this case,
and that for the G-structure given by h which is induced from h on M,
(i) and (ii) of Case I has a straightforward parallel on M hence coming
back to the real manifold, we have: if v = 1, or v = d = m/2, then the
G-structure defined by h is integrable, and the associated coordinate func-
tions are C°° with respect to the coordinates on M and the parameters
jointly.

By the preceding arguments and the results in § 3 and 4, we can
conclude the following:

THEOREM. Let h be a 0-deformable vector l-form on a manifold M,
with characteristic polynomial

where Pi(X) are polynomials in λ, irreducible over the reals, and (Pi(X),

— 1 for i =£ 3> and the minimum polynomial
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Suppose for each i, vt = 1 or d{. Then the G-structure defined by h is
integrable if [h, h] = 0.

REMARK. If v{ — 1 for all i, we say that h is semi-simple. If vt = cί̂
for all i, we say that /& is nonderogatory, and otherwise derogatory [6,
P. 21].

3* The integrability of a nonderogatory nilpotent vector Inform •

PROPOSITION. Let hbe a nilpotent vector 1-form on an m-dimensional
manifold M, and suppose hm = 0 but hι Φ 0 for I < m, /or αϊi points on
M. Then [h, h] = 0 implies that the G-structure defined by h is integrable.
Moreover, if h depends on some parameters and is C°° with respect to
the local coordinates x\ " ,xm on M and the parameters jointly, then
the local coordinates y1, , ym associated to the integrable G-structure
are C°° with respect to x1, •• ,xm and the parameters jointly.

Proof. (1) Let m = 2. Denoting the tangent space at x e M by Tx,
we have a one dimensional distribution given by x-^hxTx. For each point
x0 of M we can find a neighbourhood U of x0 and a coordinate system
{x1, x2} on U, such that x2 — ξ2 is an integral manifold of this distribu-
tion in U. Let h take the matrix form in this coordinate system

β* A

βi3 being functions of x1, x2. As dfdx1 at xe U spans hxTx, we have
β*. = /?22 = 0, and as A restricted to integral manifold x2 = f2 is given
by βiu and as fe2 = 0, we have βn = 0. We claim, that we can choose
a new coordinate system {y1, y2} such that in this new coordinate system
h takes the matrix form

0 1

0 0

In fact, let the vector fields d/dx1 and djdx2 be denoted by X± and X2,
and choose new vector fields Y± and Y2 by

where α2 and α:0 are to be determined so that /&F2= Y1 and [F l f y j = 0.
Let then π\ π2 be the 1-forms dual to Yly Y2; we have dπ1 = 0, dπ2 = 0,
so that y1, y2 can be determined from dy1 = π1, cί?/2 = ττ2. To prove that
Yi and F 2 can be found we observe that the condition hY2 = Yx leads
to
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a! = β12

and that the condition [Ylf Y2] — 0 leads to

which is a first order linear differential equation for α0:

"dx1 ° ° W V dx2 1

&! is clearly C°° with respect to x1, x2 and the parameters. aQ is obtained
as a solution of the above differential equation, so a0 depends on x2 and
the parameters in a C°° manner. By differentiating this differential
equation repeatedly, we see that a0 is C°° with respect to x1, x2 and the
parameters. Hence π1 and π2 are C°° with respect to x1, x2 and the parame-
ters, and finally y1 and y2 are C°° with respect to x1, x2 and the parameters.

(2) We assume that our proposition is true for (m — l)-dimensional
manifolds and proceed to prove it for an m-dimensional manifold (m ̂  3).

Because [h, h] = 0, we know that the distribution x—>hxTx, given by
the image of h at each point x of M is integrable; hence, locally, there
exists a coordinate system {x1, , xm) such that

( i ) χm = ξm gives the integral manifolds of this distribution, and
(ii) in this coordinate system h takes the matrix form

/ Am \
/ \

H

•0

•

β,

0

n—1 m

/

TVe further claim that x\ •••, xm~\ xm can be chosen so that
(iii) H takes the form

/0 1 0 0\

• 0 1 0
•

0 1

\0 0/

In fact, if H is not in the form (2) already, we view the restriction hx

of h to an integral manifold xm = ξm as a vector 1-form on an open set
V of Rm~x, depending on parameter xm, and consider H to be the matrix
form of hλ with respect to the coordinate system {x1, •• ,#m-1}. From
the inductive assumption, there are coordinate functions z1, , zm~1 on
an open set F x c F depending on x1, •• ,#m~ 1 and xm in a C°°-manner,
such that hx has matrix form (2) with respect to the coordinate system
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{z1, •• ,2m~1}. Now, if we take {z1, • • ,2m~1, xm} as the local coordinate
system on M, then (iii) will be satisfied.

So let us suppose that we are in a coordinate system where (i) (ii>
and (iii) are satisfied. For simplicity we write A, A, , A*-i instead
of Am, Am, , A»-im. Note that A»-i Φ 0. We want to prove that we
can find a new coordinate system {y1, , ym} such that in this coordi-
nate system h takes the matrix form (1), H being of the form (2) and
βλ = β2 = . . . = βm_2 = o, A,-! = 1. In order to do this, as in the case
m = 2, we find vector fields Yu ,Ym satisfying hYt= Yi_i (i = 2, , m),
hY1 = 0 and [Γi, Γy] = 0 for all i,j; let the dual of Yl9 •••, F m be
π1, , πm and obtain y1, , ym from dy1 = π1, , cZτ/m = ττm. If we
denote by Xu , Xm the vector fields β/βα?1, , d/dx™ and set

(3)

m _ ! = αTi-Xi + a2X2

[Ym - aQXx + (a, -

where αm_j = /3TO_i, then the problem reduces to finding the a's so that
[Yif Yj] = 0 are satisfied for all i,j.

First we shall obtain all the relations on the derivatives of A, " v
A»-i imposed by the condition [h, h] = 0. We see that

[h, h](Xif Xj) = 0

gives us no relations for i, j <=; m — 1, but

\[h9 h](Xi9 Xm) = [X,_u AXx + + Aa-Λ-l]

- h[X{, β1X1+" + β.-rX.-r]

from which we obtain

(4) Xt-J3s-x = ^ ^ ί i , j ^ m - l

and

(5) X^m_ x = 0 t^m-2.

To make this relation clear, we write this result in Table 1.
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0 = Xβm-2 = Xβm-1

χ& =

TABLE 1

Now let us examine [ Ŷ , F, ] = 0 for i < j ^ m — 1. We see that
this is equivalent to the set of equations (6),

r̂ frXi + am-i+1X2 + + α:m_1Xΐ)αw_1 = 0

(6)

- +i = 0

-iXi + am_i+1X2 + + a^X^n-j+i-!

_1 = 0

-i-Xi + αm_ ί+1X2 + +

- (α^yjζ + am_j+1X2 + + cc^Xjyx^ = 0

0 - Xλam-x
0 = X1am_2 = X2am.x

where i < i ^ m — 1. Using Xi«:w-i = Xβm-i = 0 from Table 1, we see
that (6) is equivalent to the following Table 2.

(a)

— •Λ-m-2CXm-2 — ^-w-i α m-l,

0 = Xλa, = X2a, = . . . =

0 = I A = X2α3 = =

X-βL-L = X2Oί2 = =

(b)

TABLE 2

Next consider [Yif Yn] = 0, i ^ m — 1. This is equivalent to the
following (7a, b, c),
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(α«-.*Xi + ocm_i+1X2 + + αm_1X i)(«»-2 - &.-0 = 0

(7a)

( . - ί X x + αm- i + 1X3 + + α.^X i )(α 1 - &) = 0

-iXi + αm_i+1X2 + + αro_1Xi)(«i-i - A-i)

( α . _ - /3ro_2)Xm_1 + X J α ^ = 0

( α . - Λ + «m-ί+1X2 + + α._1Z4χα1 - A)
- {a0X, + (a, - A)X2 + + (α.-, - /3»-2)X»-i + Xm}am_i+1 = 0

(7b) j

(ff,.iZ, + αTO-ί+1X2 + + α ,

- {ctoXi + fa - A)X2 + + (α -, - /5w-2)XTO-i + Xm}«m-i = 0

where i ^ m — 1.
Because of Table 1, we see that (7a) is equivalent to part (a) of

Table 2. Using part (a) of Table 2, we see that (7b) reduces to a simpler
system (7b'),

(7b') {

(am_i+1X2 + + a^XfYflc - A)

-i+1 = 0

Using Table 1 again, we can show that (7b') is equivalent to part (b)
of Table 2 plus the following equations which are obtained from (7b'>
by letting i = m — 1:

»_1X._1)(α»-1 - /3m_2) - {(α»_, - βm-,)Xm-x + Xm}um-ι = 0

(α2X2 + + α._1X»_1)(α1 - ft)

- {(αi - A)X2 + + (α»_, - β.-JX.-i + X m R = 0

Using Table 1 and part (b) of Table 2, these equations can be written
as (8),

(8) (pc-rYX.-! a™-k ~ ^"-* + (α.-0'X.-i g - t + 1 ~ / 9 m- f t + 1

+ + (αm_ i+1)
1X.-χ α «- ' ~ β*~> - Xmam-M = 0 ," A; = 2, , m - 1 .

1 For simplicity we write (am-i-j)2Xm-i(am-k+j—βm-k+jl(Xm-i-j), 1 ^ j ^ k - 2, for
am-i-jXm-i(am-k+j - βm-k+j) - (Xm-i(Xm-i-j)Xm-i((Xm-k+j — βm-k+j), although at some
point αm_i_^ might vanish.
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We can now obtain tfm_2, α»-8> > ai succesively by integrating (8)
with respect to x*-1; in fact, start from k = 2, and integrate to get αm_2,
then use this α:m_2 in (8) for k — 3 and integrate to get αm_3, in general

We still have to show that αw_2, αw_3, , oil thus obtained satisfy
Table 2. For simplicity let us write (8) in the form

Then (9) becomes

To show that the α's do satisfy Table 2, it suffices to show (10^),

(10,) Xm_,(αm_, - βm_k) = Xm_g + 1(αm_,+ 1 - /3m_fc+1)

for fc, g = 2, , m — 1. We shall prove (10fc) inductively. For k = 2
it is easy to check. Suppose (102), "^(lOfe-!) are true; using this as-
sumption, we differentiate (9fc) and get (11),

(11) Xm-q{am-u ~ /?.-) = αm_,

q+l^m-k + 2 -Γ

If q > 2, then Xm_gαm_2 = 0, so (11) gives us (10*). If q = 2, we observe
first that differentiating (8fc+1) with respect to xm~x gives us (12),

(12) (Xi-i(α*- f c + i - ^ - i f c + O ^ - ! - (««-*+! - /β»-fc+1)-Xi-1α.-i

Using (12) and Xm_ 2(αm_ 2 - βm_2) = 0 in (11) for g = 2, we obtain

X m _ 2 (α m _, - βm_k) = α m

which completes the proof (10fc).
Finally to obtain α0, we examine (7c), and find that the same type

of argument employed to obtain (8) enables us to show that (7c) is
equivalent to
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(Xxa0 = Xm^(am^2 - /3m_2)

(13) Xm-2a0 =

m^ = 0 .

Using the first m — 2 equations of (13) in the last one, gives us (8k) for
k = m, where we agree that /30 — 0. Hence we obtain a0 from (9m).
To check that the first m —2 equations in (13) are satisfied by this a0,
we check (10fc) for Jc = m. The same argument in (11) holds for k = m,
and it is even simpler than before, because in this case the first term
in the integrand vanishes.

If h depends on x1, « , # m and some parameters jointly in a C°°-
manner, then it is clear that αm_2, •• fa1,a0 obtained above depend on
x1, •• , # m and the parameters in a C°°-manner, hence we can claim the
same for y1, , ym.

4. The complex case. For Case II in § 2, where deg p(X) — 2, we
have dim M = m — 2n. Let the roots of p(λ) — 0 be σ ± iτ (τ Φ 0).
Because the semi-simple part s of h is a polynomial in /& with constant
coefficients, from [h, h] = 0, via Lemma 1.1, we get [s, s] = 0. The vector
1-form J8 defined by

Js = i-(β - σJ)

satisfies λ2 + 1 = 0, because s satisfies p(X) = 0. So we have an almost
complex structure Js on M, and as [ Js, Js] = 0 (because [s, s] = 0), this
almost complex structure is integrable [7]. Hence we can introduce a
new real local coordinate system {x1, , xm) such that zk — x21*"1 + ίx2k

(k — 1, *',n) gives a local complex coordinate system, with which M
becomes the underlying C°°-manifold of complex manifold M. As h is
C°° with respect to the coordinates on M and the parameters jointly, so
is the almost complex structure Js. Hence the new coordinate functions
x1, « ,xm are also C°° with respect to the coordinates on M and the
parameters jointly [7].2 h is now C°° with respect to x\ , xm and the
parameters jointly. The vector 1-forms on M induce vector 1-forms on
M in a natural way. The vector 1-form s on M induced by s is equal
to pϊ, where p — σ + iτ and I is the identity vector 1-f rom on M. We
shall show that polynomials in h with constant coefficients induce holo-
morphic vector 1-forms on M. In particular, the nilpotent part n of h
induces the nilpotent holomorphic vector 1-form n on M.

2 The author wishes to thank Professor L. Nirenberg for communicating the proof of
this fact to him. The dependence on parameters is stated without proof in [7].
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Let To and T£p) be the vector bundles over M, which are obtained
ΐ y complexifying the tangent space Tx and the space of tangential
covariant p-vectors Γβ

ίp> respectively at each point x of M. Then any
p-form P on M, i.e. any cross-section of Γ ® T ( p ) , extends in a natural
way to a cross-section Po of Ta®Tp\ If k and I are two vector 1-
forms on M, then kOf l0 and [kf l]0 are defined. If we define the bracket
of two cross-sections of To in a natural way, and if we define [k0, l0]
by (2) of § 1, where we replace h, k by k0, la acd u, v by cross-sections
of To, then we have [k, l]σ = [&σ, Z ]̂.

Denote 8/0s<, θ/θz* by Z i f Z« for i = 1, • •, n. (ZJ,, , (Zn)x, {Zx)x,
• , (ZJ^ span the complexification of Tx. (Z1)xf , (Zn)x span the eigen-
spaces of eigenvalue p. This eigenspace can be identified with the tangent
space of M at x. {Z^)x, , (Zn)x span the eigenspace of (so)x of eigen-
value p. If k is a polynomial in h with constant coefficients, by Lemma
1.1 we have [s, k] = 0, and hence [sσ, fcσ] = [s, &]σ = 0. On the other
hand we have

[80, ko](Zi9 Zj) = {ρ- s)[Zif k0Zj] + (p - s)[k0Zif Zd] .

s0 and k0 are polynomials in hσ with constant coefficients, so s0 and k0

commute; hence k0 leave the eigenspaces of s0 invariant, so using the
coordinate expression for k0, the equation above can be written as

[s0, ko\Z{, Z3) = <β-p)± {{Zlka) )Zk + (ZMca)M)
k=l IC3

from which we get

(ko)kί is the matrix form of k on M (induced by k) with respect to the
coordinate system {z1, •••,2*}, and (1) expresses the fact that k is holo-
morphic.3

( i ) If v — 1 in Case II of § 2, then h induced by h on M, is equal
to s = pϊ. So in the real coordinate system {x1, , xm} h takes the
matrix form

A \
A 0

0
\

where

τ

τ iσ
3 The author is indebted to Professor H. C. Wang for this proof.
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so that G-structure is integrable.
(ii) If v = d — n in Case II of §2, then n satisfies nn = 0 but

nι Φ 0 for I < n for all points on iίί. As ίϊ is holomorphic, it is
meaningful to define the Nijenhuis tensor [n, n] of n, using (3) of § 1
as the defining formula, where u, v should be holomorphic vector fields
on M. As [nσ, n0] = [n, n]0 = 0, we have [n, n] = 0.

Now following the method in § 3, it is easy to see that we have a
complex version of the Proposition in § 3, i.e.

"Let & be a holomorphic nilpotent vector 1-form on an ^-dimensional
complex manifold, and suppose kn = 0 but kι = 0 for I < n, for all points.
Then [&, k] = 0 implies that the G-structure defined by k is integrable.
Moreover, if k depends on some complex [real] parameters and is holo-
morphic [C°°] with respect to the local coordinates z1, •••,£" [the real
coordinates a?1, , xm, where zk = x2k~τ + ix2k] and the parameters jointly,
then the local coordinates w1, , wn associated to the integrable G~
structure [the real coordinates 2/1, , 2/m obtained from wk = T/2^1 + ίy2k]
are holomorphic [C°°] with respect to z1, , zn\xx, , α?w] and the para-
meters jointly.7'

Using this complex version, for each point of M, we have a neigh-
bourhood with a local complex coordinate system w1, , wn, with respect
to which h — s + n takes the matrix form

0

Passing back to the real coordinate system {yι,
h takes the matrix form

IAB
AB 0

AB
A

where

- τ σ

The G-structure defined by h is thus integrable. The associated local
coordinates y1, *',ym are C°°-functions of the coordinates of M and the
parameters jointly.

5. An example/ Let M be the euclidean space of dimension 4, and
4 The author is indebted to Professor H. C. Wang for this example.
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suppose x9 y, z, t are the coordinates. Let

Xx = d/dx, X2 = d/θy, XB = d/dz, X, = (θlθt) + (1 + z)(djdx) ,

and define h by hXx — X2, hX{ = 0 for i = 2, 3, 4. It is easy to check
that

( i ) h* = 0,
(ii) [h,h] = 0,

and (iii) [Xs, X4] = X, .
Now, if the G-structure defined by h would be integrable, so would the
distributions intrinsically given by h. However, (iii) shows that the dis-
tribution given by the kernel of h at each point of M is not integrable,
hence we conclude that the G-structure is not integrable.
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