A REMARK ON THE NIJENHUIS TENSOR

EpwARrRD T. KOBAYASHI

The vanishing of the Nijenhuis tensor of the almost complex structure
is known to give the integrability of the almost complex structure [3, 7].
In order to generalize this fact, we consider a vector 1-form A on a
manifold M[4], whose Jordan canonical form at all points on M is equal
to a fixed matrix ¢. Following the idea of E. Cartan, we say that such
a vector 1-form is 0-deformable [2]. The frames z at x such that z7'h,2 =
/¢ define a subbundle of the frame bundle over M, as x runs through
M, and the subbundle is called a G-structure defined by & [1]. We find
that for a certain type of 0-deformable A, the vanishing of the Nijenhuis
tensor of % is sufficient for the G-structure to be integrable (Theorem,
§2). In §5 we give an example of a 0-deformable derogatory nilpotent

vector 1-form, whose Nijenhuis tensor vanishes, but whose G-structure
is not integrable.

1. Vector forms and distributions. As usual, we begin by stating,
that all the objects we encounter in this paper are assumed to be C=.

Let M be a manifold, 7T, the tangent space at point xz of M, T the
tangent bundle over M, T‘® the vector bundle of tangential covariant
p-vectors of M. A vector p-form is a cross-section of TQ T. The
collection of all vector p-forms over M is denoted by ¥,. We notice
that a vector 1-form is nothing but a law that assigns a linear transforma-
tion to each tangent space T, at point z of M.

We list some definitions and lemmas of the theory of vector forms
[4], which we use in the sequel.

If Pe¥,,Qe?,, then PR Qe¥,.,, is defined by

(1) (p N Q)(u’l’ ) up+q——1)

T o Py 2h0), Uy )
where a runs through all the permutations of (1,2, -++,»p + ¢ — 1), and
|| denotes the signature of the permutation «.

If k is a vector 1-form and P is a vector p-form, we write AP in-
stead of » A p. In particular if p = h, we write o A h as h*. In general,
h' A h <<+« A h is written as k*, and this agrees with the usual notation,
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when we consider % as a linear transformation of the tangent space at
each point of the manifold M.

Let h and k& be two vector 1-forms. The bracket [k, k] of & and

k is a vector 2-form defined by

2

[k, EY(u, v) = [hw, kv] + thw, o] — klhu, v} — hiku, v}
—Fk[u, hv] — hlu, kv] + kh[u, v] + hk[u, v] ,

where u and v are vector fields over M. If h = k, we obtain the tensor
[k, k], generally known as the Nijenhuis tensor:

3

4)

(cf.

()

(6)

—;—[h, h)(w, ) = [hu, ko] — B[k, v] — klu, ko] + ku, v] .

If h,k and | are vector 1-forms, using (2), we can obtain
[nl, k] + [h, kL] — [k, kK] N U= R[L, k] + EIL, K]

(6.7) [4]).

LeMMA 1.1. Let h be a vector 1-form, then

e R =L S we(h, k] A B K ke — [k, B) K R}
2 et
0=sc=l-1

Proof. By replacing h,k and | by h, h and k* in (4), we obtain

(h*, B] = AR+, k] + %[h, R K Bt

which gives us

()

(B, h] = 2 S Rk, B] 7 B
=1

=

Again, replacing h, k and ! in (4) by k*, h and k'™, we obtain

®

[R=404, B] 4+ [B*, 1Y) — [h%, B A R = RO, B+ R, )

Using (7) and (8) yields

C)

[k*, h¥] = h[k*, h1]
+ %éhi—l{([h, Bl A B A Bt — [k, h] & BE0)

and repeating the reduction we obtain (5).

LEMMA 1.2. Let h be a vector 1-form on M, whose rank is constant
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wn a neighbourhood of each point x of M. If [h,h] =0, the distribu-
tion x — h,T, is completely integrable.

Proof. By Frobenius’ theorem we have to show that the bracket
of any two vector fields of the form hu, hv belongs to the distribution.
This follows from [k, k] = 0 and (3):

[hu, hv] = hlhu, v] + hlu, hv] — Ru, v] .

We recall that a necessary and sufficient condition for a distribution
to be completely integrable can be given as follows:

Let 6 be an r-dimensional distribution x — () on an m-dimensional
manifold M. For each z,€ M, let U be a neighbourhood of x, and
L, +++, L, be vector fields on U such that (L,),, ---, (L,), span 6(x) for
each x€ U. Then 6 is completely integrable if and only if for each
x,€ M, there exist m — r independent functions !, -+, ™" defined on
a neighbourhood V — U of z, such that

Ly'’=0,forl<i<r,1<j<m—ron V.
Using this it is easy to prove,

Lemma 1.3, If 0, ---,0, are completely integrable distributions of
dimensions ry, «++, r, on M, such that

0(x) + 0x) + -+« + 0,(x) = T, (direct sum)

for each xe€ M, then for each point x,€ M, there exists a coordinate
netghbourhood U of x, with coordinate functions x', «--, x™ such that
for each j

xl — fl, .o .,xr1+---+1‘j_1 — g"l‘*'""*"‘j—l’ xr1+--~+r]~+1 — 571+--'+rj+1’ oo, xm — Em
gives an integral manifold of 0; contained in U.

2. The integrability of a 0-deformable vector 1-form. Let h be a
vector 1-form, defined on M, whose characteristic polynomial has con-
stant coefficients on M. Let the decomposition of the characteristic
polynomial be

POV} <+« {Py(M)}

where p;(\),© =1, -+, g are polynomials in \, irreducible over the reals,
and (p;(\), p;(\)) =1, if 7 %= 5. It is easy to verify [5, pp 130-132], that
we can get polynomials e,(\), e(\), +++, ¢,(A) in A, with constant coef-
ficients, such that 32 .e;(h) = I, {e;(h)} = e,(h), e(h)-e;(h) = 0 for 7 =+ j,
and
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ez(ha:)T:c = {u’z € Tavl{pﬂy(hx)}diux = 0} .

Let 6; denote the distribution % — e;(k,)T,. If we assume [h, h] =0,
then by Lemma 1.1, because ¢,(h) is a polynomial in » with constant
coefficients, we see that [e,(h), e(h)] = 0. Hence, by Lemma 1.2, 6, is
completely integrable.

DEFINITION. A vector 1-form 2 on M is said to be 0-deformable, if
for all x € M, the Jordan canonical form of %, is equal to a fixed matrix
2]

Note that a 0-deformable vector 1-form has a characteristic poly-
nomial with constant coefficients.

A frame at x€ M is an isomorphism 2z from R™ onto T,, where m
is the dimension of M. For a 0-deformable vector 1-form h, the frames
z at « such that 27h,z = ¢ define a subbundle H of the frame bundle
over M, as « runs through M. H is called the G-structure defined by
h [1].

DEFINITION. A G-structure H defined by % is said to be integrable,
if for each point & of M there exists a coordinate neighbourhood U of
2 with a coordinate system {x',..-,2™} such that the frame {(3/02"),, - -,
(0/6x™),.} belongs to the subbundle H for all '€ U. We shall say that
these coordinate functions are associated with the integrable G-structure
H.

Clearly, H is integrable if and only if, for each point x of M, we
can find a local coordinate system around x, in which the coordinate
expression of & is fr.

We are interested in finding a sufficient condition for a G-structure
defined by a 0-deformable vector 1-form % to be integrable. We now
assume [k, k] = 0. By the argument above we know that the distribu-
tions @; associated to the irreducible factors p,(A) are all completely
integrable, so by Lemma 1.8, for each point %, of M there is a coordi-
nate system {', -+-, 2™} on a neighbourhood U of %, and the integral
manifolds of 6; contained in U are given by coordinate slices.

In U take a point given by coordinates (&, ---, &™). For each %, let
B = E, eee, gricl = g1 gt = Enitl .. g™ = E™ give an integral mani-
fold M; of 0, in U, where r, = m; + m, + -+ + m,; and m; = dimension
of 6,. Consider the restriction k; of &~ on M;. Notice that we can view
h; as a vector 1-form on an open set of M;, depending on m — m;
parameters ', +«+, 271, g"+ ... 2™ in such the way that &, is C= with
respect to the coordinates on M; and the parameters together. The
characteristic polynomial of %; is {p,(\)}* and the minimum polynomial
of h; is {p,(\)}t, where T[2,{p.(\)}" is the minimum polynomial of #; A;
is a 0-deformable vector 1-form on M,, and [k, h;] = 0. If for each <,
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the G structure defined by &, on M, is integrable, and if coordinate
functions y"i-1**, ... y"i associated to the integrable G;-structure around
the point (x7i-1*1, ... x7) = (En—1*Y ... £") are dependent on coordinates
xri-1tt ... g7t gnd on parameters ', -.-, x7-1, g7t ..o 2™ jointly in a
C~-manner, then we can replace {x', ---, "} in a neighbourhood of the
point (z, ---,z™) = (&, -+, £&") by a new coordinate system {y*, ---, y™},
so that » takes the matrix form g, i.e. H is integrable.

Hence we consider the case where h has characteristic polynomial
{p(\)}* and minimum polynomial {p(\)}’, where p(\) is irreducible over
the reals, and suppose that % jointly depends on the coordinates of M
and some parameters in a C=-manner. We have the following results:

Case 1. deg p()\) = 1.

(i) If v=1, then h is a constant multiple of the identity vector
1-form I on M, hence the G-structure is integrable.

(ii) If » = d = m, consider the nilpotent part n of A. = is a poly-
nomial in kA with constant coefficients on M, so from [, A] = 0, we get
[n,n] = 0, by Lemma 1.1. Moreover n™ = 0 but n' # 0 for I < m, for
all points of M. In §3 we prove a proposition which shows that the
G-structure defined by n (which is the same as that defined by &) is
integrable, and that the associated coordinate functions depend on the
parameters of h and on the point in M jointly in a C>=-manner.

Case II. degp(\) =2. In §4 we shall show that the semi-simple
part s of h gives gise to a complex manifold structure M in this case,
and that for the G-structure given by % which is induced from % on I,
(i) and (ii) of Case I has a straightforward parallel on I; hence coming
back to the real manifold, we have: if v =1, or v = d = m/2, then the
G-structure defined by & is integrable, and the associated coordinate func-
tions are C= with respect to the coordinates on M and the parameters
jointly.

By the preceding arguments and the results in § 3 and 4, we can
conclude the following:

THEOREM. Let h be a 0-deformable vector 1-form on a manifold M,
with characteristic polynomial

il—[:l P4

where p,(\) are polynomials in N, irreducible over the reals, and (p,(\),
p,(\) = 1 for i # 4, and the minimum polynomial

IPYOOE
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Suppose for each i,v; =1 or d,. Then the G-structure defined by h is
integradble if [h, h] = 0.

REMARK. If v;=1 for all ¢, we say that A is semi-simple. If v;=d;
for all 4, we say that h is nonderogatory, and otherwise derogatory [6,
p. 21].

3. The integrability of a nonderogatory nilpotent vector 1-form.

PROPOSITION. Let h be a nilpotent vector 1-form on an m-dimensional
mantfold M, and suppose h™ = 0 but k' #+ 0 for | < m, for all points on
M. Then [h,h]= 0 implies that the G-structure defined by h is integrable.
Moreover, 1f h depends on some parameters and is C= with respect to
the local coordinates «*, ---,x™ on M and the parameters jointly, then
the local coordinates y, «--, y™ assoctated to the integrable G-structure
are C= with respect to x', «++, 2™ and the parameters jointly.

Proof. (1) Let m = 2. Denoting the tangent space at x € M by T,
we have a one dimensional distribution given by x—#4,7,. For each point
2, of M we can find a neighbourhood U of x, and a coordinate system
{x*, 2} on U, such that x> = £ is an integral manifold of this distribu-
tion in U. Let h take the matrix form in this coordinate system

(Bll 1812>
Ba B
B;; being functions of ', x?. As 0/6x* at xe U spans h,T,, we have
By = Byx =0, and as h restricted to integral manifold 2* = & is given
by B, and as h* = 0, we have B, = 0. We claim, that we can choose

a new coordinate system {y', ¥’} such that in this new coordinate system
h takes the matrix form

o o

0 0/.

In fact, let the vector fields 9/6x* and 8/6x* be denoted by X, and X,
and choose new vector fields Y; and Y, by

{Y1 = o, X,
Y, = X + X,

where «, and «, are to be determined so that 2Y,=Y; and [Y,, Y,]=0.
Let then n', #* be the 1-forms dual to Y3, Y,; we have dz' = 0, dz* = 0,
so that %', ¥* can be determined from dy' = 7', dy* = 7®. To prove that
Y, and Y, can be found we observe that the condition 2Y, = Y, leads
to
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o, = :812
and that the condition [Y;, Y,] = 0 leads to
(a0X1 + Xz)al - aleao =0

‘which 1s a first order linear differential equation for «,:

0 0 0
a —a—lao a0<-a? a1> - Fal = O

«, is clearly C> with respect to x!, 2 and the parameters. «,is obtained
as a solution of the above differential equation, so «, depends on x* and
the parameters in a C= manner. By differentiating this differential
.equation repeatedly, we see that «, is C= with respect to 2', #* and the
parameters. Hence 7' and 7* are C = with respect to «, 2* and the parame-
ters, and finally %' and 9* are C*~ with respect to x!, 2 and the parameters.
(2) We assume that our proposition is true for (m — 1)-dimensional
‘manifolds and proceed to prove it for an m-dimensional manifold (m = 3).
Because [&, k] = 0, we know that the distribution ¢ — &, T,, given by
the image of % at each point £ of M is integrable; hence, locally, there
exists a coordinate system {x', +--, 2™} such that
(i) a™ = &m gives the mtegral manifolds of this distribution, and
(ii) in this coordinate system % takes the matrix form

Bim
(1) H

Bm—lm
0--:00

‘We further claim that «', -+, 2™, 2™ can be chosen so that
(iii) H takes the form

010-0
01 0

01
0«0

)

In fact, if H is not in the form (2) already, we view the restriction A,
of h to an integral manifold 2™ =£&™ as a vector 1-form on an open set
V of R™*, depending on parameter 2™, and consider H to be the matrix
form of h, with respect to the coordinate system {«!, ..., 2™ '}. From
the inductive assumption, there are coordinate funections 2!, ---,2™! on
an open set V,c V depending on 2!, ---, 2™ and 2™ in a C>-manner,
such that k, has matrix form (2) with respect to the coordinate system
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{*, +++, 2™, Now, if we take {z!, --+,2™, 2™} as the local coordinate
system on M, then (iii) will be satisfied.

So let us suppose that we are in a coordinate system where (i) (ii)
and (iii) are satisfied. For simplicity we write B8, B, ++, Bn- instead
of Bims Bamy ***y Bm-im- Note that B, , >+ 0. We want to prove that we
can find a new coordinate system {y', ---, y™} such that in this coordi-
nate system h takes the matrix form (1), H being of the form (2) and
Bi=PBy=¢+v+=B,5=0, Bny=1. In order to do this, as in the case
m =2, we find vector fields Y, -+, Y, satisfying hY, =Y, (:1=2,.--,m),
hY,=0 and [Y;, Y;]=0 for all ¢,5; let the dual of Y}, .-, Y, be
7w, -+, 7™ and obtain ¥, ---,y™ from dy*=7n*, .-, dy™ = ™. If we
denote by X, ---, X,, the vector fields 8/ox!, -+, 8/0x™ and set

Y, = a,X,
Y,=a,.X, + a,_.X,
(B) e
You=aX +a, X+ oo +a, X,
Y, =aX, + (a,— B)X, + oo+ + (Wp_s — Buo) X + X

where «,,_, = B,_,, then the problem reduces to finding the a’s so that
[Y;, Y;] = 0 are satisfied for all 1, 7.

First we shall obtain all the relations on the derivatives of 5, .-,
Bn._1 imposed by the condition [, k] = 0. We see that

[k, KX, X;) =0
gives us no relations for ¢,5 < m — 1, but
%[h» h’](Xu Xm) = [X-i—n B1X1 + oeee + Bm—le—l]

- h[}(u B1X1 + oo + Bm—le—l]

from which we obtain

(4) Xi—lBj—l = Xilgj hLij=m-—1
and
(5) XiBu1=0 1=m—2.

To make this relation clear, we write this result in Table 1.
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0= ‘Ynem—x
0=XBn=XBn
;2: XBy =X,Bi=ccverovecsces = X, —sBn-
0=X8, =XLBi=+ccccceersccn = X,sBm-s= Xp—oBm—1
Xllgl =XBy= e = Xm—SBm—3 = Xp-sBna= Xm—le—l
XyfSy=eeeeeeneeens = Xn-sBns= Xn-sBns= Xn1Bn—s
X’m—BIBI = Xm—262 = X,1Bs
Xm—-2Bl = Xm—1182
TABLE 1
Now let us examine [Y;, Y;] =0 for t <j=<m —1. We see that

this is equivalent to the set of equations (6),

(@piXy + i1 Xy + 000 + @, X)X,y =0
(am—in + am—i+1X2 + oeee + am—lxi)am—j+i =0
(@i Xy + Wpein Xy + o0+ W X)X jris
- (am—le + a’m—j+1X2 +oeee + am—-lXj)am—l =0

oooooooooooooooooooooooo

@peiXy + Wi Xy + o0 + @, X)),
— (i Xy + O jn Xy + oo+, X)), ;=0

where 2 < j<m — 1. Using X, = X;B.— = 0 from Table 1, we see
that (6) is equivalent to the following Table 2.

(6)

0=Xa,_,
0=Xu, ,=Xa,,
0=Xa =Xoa = = Ap—3®p— @)
0= X, =Xty = vv0 = X, @y = Xy oy
X, =Xa=+ =X, ;=X 0y =Xy 1Oy
X, = = XnsOmes = Xpoollpy = Xppoi@py

Next consider [Y;, Y,]=0,¢t=m — 1.

following (7a, b, c),

TABLE 2

This is equivalent to the
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(@i Xy + O Xy + oo + 0 X)) Ay — Br—s) =0
(7a) o
((am-in F Qi Xy + oo + W XY, — 6) =0
(Ui Xy + Wi Xy + oo 0 + A X)Wy — Biny)
—{a Xs + (0 — B)Xy + <o+ + Ay — Br-o) Xy + X}ty = 0
(7b) T R R S ST R S S S S S
(am—iXI =+ am-i+1X2 +oeee £ am—lXi)(al - :31)
—{a Xy + (@ —B)Xy + oo + Wy — Bud) Xy + Xy iy = O
(7¢) (Ui Xy + Ui Xy + =0+ @, X,

- {aoXl + (al - Bl)Xz + oo (am—z - Bm—Z)Xm—l + Xm}am—i =0

where © < m — 1.

Because of Table 1, we see that (7a) is equivalent to part (a) of
Table 2. Using part (a) of Table 2, we see that (7b) reduces to a simpler
system (7b’),

(am—-lXi)(ai—l - 1872—1) - {(am—z - IBm—-Z)Xm—l + Xm}am—l =0
(@psXis + A X) iy — Big) — {( Qs — Bu—z) Xz
+ (am—z - Bm—Z)Xm—l + Xm}am—-z = O
(am—i+1X2 + oeee 4 am—1Xi)(a1 - Bl)
- {(am—z - Bm—i)Xm—-ﬂHl + e + (am—z - Bm—?)Xm—l + Xm}am—i+1 =0

(7b") <

Using Table 1 again, we can show that (7b’) is equivalent to part (b)
of Table 2 plus the following equations which are obtained from (7b’)
by letting ¢ = m — 1:

(am—IXm—l)(am—2 - Bm—z) - {(am—z - Bm—z)Xm—l + Xm}am—l = 0

(a2X2 + oo + am—le—l)(al - :81)
- {(a1 - 181)X2 + oo + (am—z - Bm—2)Xm—1 + Xm}az =0

Using Table 1 and part (b) of Table 2, these equations can be written
as (8),

(8) (am_l)ZXm_ICM + (am_Z)ZXm_l Ap—r1 — Bm—inr

m—1 am—z

o b (@) X Frr = By x 09 k=2, m—1.

am—k +1

t For simplicity we write (am-1-5)2Xm-1(@m—t+i—Bm-k+i/om-1-3), 1 <j<k—2, for
am—1-5Xm-1(@m—k+7 — Pm—t+3) — (Xm—10m—1-5)Xm—-1(@m—x+5 — Bm-k+j), although at some
point am—1—; might vanish.



A REMARK ON THE NIJENHUIS TENSOR 973

We can now obtain «,_,, &,_,, *++, & succesively by integrating (8)
with respect to x™'; in fact, start from k = 2, and integrate to get «,,—,,
then use this «,_, in (8) for k=3 and integrate to get «,_;, in general

) dpt— Bt =0 IS( P {(a L)X, Emoktn — Bkt

am —2

Foeee A+ (@ppsn)? Xm_lm — X, +1}dw”“1 .

m—k+1

We still have to show that «,_;, @, _s, +++, & thus obtained satisfy
Table 2. For simplicity let us write (8) in the form

(Sk) (am—l)sz—lg"E‘k_‘———gLn’—_k + Am-—k+1 = 0 .

m—1

Then (9) becomes

%) Aty ~ Bmr = m—lS( _1)2 A pnda™ .
m—l

To show that the a’s do satisfy Table 2, it suffices to show (10,),
(10k) Xm—q(am—k - Bm—k) = Xm-—q+1(am-—k+1 - Bm—k—l.—l)

for k,g=2,---,m —1. We shall prove (10,) inductively. For k=2
it is easy to check. Suppose (10,), -+, (10,_,) are true; using this as-
sumption, we differentiate (9,) and get (11),

_ m— +1 Bm—k—H
(11) Xm—q(am—k — Bp-) = Qe IS( Wps)? {(X meam= ) Xy ;(m_qam—z

+Xngr1Amiys + (am—k+1)2Xm—1Xm—q(am—2 — B’”_a)}dw"‘_l .

am—k+1

If ¢ > 2, then X,,_,a,_, = 0, so (11) gives us (10,). If ¢ = 2, we observe
first that differentiating (8,,,) with respect to z™* gives us (12),

(12) (X72n~1(am—k+1 - Bm—k+1))am—1 - (am—k-!-l - Bm—k+1)an~lam-—1
+ Xm—lAm—-k+2 = O'

Using (12) and X,, (@, — Bn_,) = 0 in (11) for ¢ = 2, we obtain

e R e (€

— (Xo-(Wpppsr — Bm—k+l))am—1}dxm_1 = Xps(Upis — Bt

which completes the proof (10,).

Finally to obtain @, we examine (7c), and find that the same type
of argument employed to obtain (8) enables us to show that (7c) is
equivalent to
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Xlao = Xm—l(am—-z - Bm—2)

(13) Xm——zao = Xm—l(al — :81)
(C(le + oo + am—le—l)aO - {aoX1 + (al - B1)Xz +
e + (am—z - Igm—2)Xm—1 + Xm}am—l = 0 .

Using the first m — 2 equations of (13) in the last one, gives us (8,) for
&k = m, where we agree that 5, = 0. Hence we obtain «, from (9,).
To check that the first m — 2 equations in (18) are satisfied by this «,,
we check (10,) for k=m. The same argument in (11) holds for k =m,
and it is even simpler than before, because in this case the first term
in the integrand vanishes.

If b depends on «', -.-, 2™ and some parameters jointly in a C=~-
manner, then it is clear that «,,, -, a;, &, obtained above depend on
x', «++, 2™ and the parameters in a C~-manner, hence we can claim the
same for y', ---, y™.

4. The complex case. For Case II in § 2, where deg p(\) = 2, we
have dim M = m = 2n. Let the roots of p(\) =0 be ¢ %= it (v # 0).
Because the semi-simple part s of % is a polynomial in ~ with constant
coefficients, from [k, k] =0, via Lemma 1.1, we get [s, s] =0. The vector
1-form J, defined by

J, =X —oI
T

satisfies \* + 1 = 0, because s satisfies p(\) = 0. So we have an almost
complex structure J, on M, and as [J,, J,] = 0 (because [s, s] = 0), this
almost complex structure is integrable [7]. Hence we can introduce a
new real local coordinate system {x', ---, 2™} such that z* = «** + ix*
(k=1,---,m) gives a local complex coordinate system, with which M
becomes the underlying C=-manifold of complex manifold M. As & is
C= with respect to the coordinates on M and the parameters jointly, so
is the almost complex structure J,. Hence the new coordinate functions
x', «++, 2™ are also C~ with respect to the coordinates on M and the
parameters jointly [7].> & is now C= with respect to z, ---, 2™ and the
parameters jointly. The vector 1-forms on M induce vector 1-forms on
M in a natural way. The vector 1-form ¥ on I/ induced by s is equal
to oI, where p = 0 + ir and I is the identity vector 1-from on I. We
shall show that polynomials in %~ with constant coefficients induce holo-
morphic vector 1-forms on M. In particular, the nilpotent part n of A
induces the nilpotent holomorphic vector 1-form % on M.

2 The author wishes to thank Professor L. Nirenberg for communicating the proof of
this fact to him. The dependence on parameters is stated without proof in [7].
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Let T, and T/ be the vector bundles over M, which are obtained
by complexifying the tangent space 7T, and the space of tangential
covariant p-vectors T ® respectively at each point z of M. Then any
p-form P on M, i.e. any cross-section of TQ@ T'®, extends in a natural
way to a cross-section P, of T, T. If k and ! are two vector 1-
forms on M, then k,, I, and [k, [], are defined. If we define the bracket
of two cross-sections of 7, in a natural way, and if we define [k, {4]
by (2) of §1, where we replace h, k by ks l;, acd u, v by cross-sections
of T,, then we have [k, ], = [k, lo].

Denote 8/0%¢, 8/6z° by Z;, Z; for 1 =1, «++, 0. (Z)a, **+, (Zo)., (Z0)s,
«++,(Z,), span the complexification of T,. (Z.)., **-,(Z.). span the eigen-
spaces of eigenvalue p. This eigenspace can be identified with the tangent
space of M at x. (Z),, ++-,(Z,), span the eigenspace of (s,), of eigen-
value p. If k is a polynomial in - with constant coefficients, by Lemma
1.1 we have [s, k] =0, and hence [s,, ks] = [s, k]o = 0. On the other
hand we have

[s0, kol(Z:, Zj) = (0 — 9)|Z, kazj] + (0 — s)koZ;, Z_j] .

sy and k, are polynomials in k, with constant coefficients, so s, and %,
commute; hence k, leave the eigenspaces of s, invariant, so using the
coordinate expression for k,, the equation above can be written as

[s0, k6)(Z:, Z,) = (0 — D) ]‘Zill{(Zi(ka)Ej- )Z, + (Z(ko)ii) Z1}
from which we get
(1) (a/azj)(kd)ki =0.

(ko)r; is the matrix form of & on I (induced by k) with respect to the
coordinate system {z!, ---, 2"}, and (1) expresses the fact that % is holo-
morphiec.?

(i) If v=1 in Case II of §2, then & induced by h on M, is equal
to §= pI. So in the real coordinate system {&', ---,2™} h takes the
matrix form

where

A <0 T
— 7
—7 Fo)’

8 The author is indebted to Professor H. C. Wang for this proof.
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so that G-structure is integrable.

(ii) f v=d=mn in Case II of §2, then # satisfies #" =0 but
#t#0 for I <mn for all points on M. As # is holomorphic, it is
meaningful to define the Nijenhuis tensor [#, #] of #, using (8) of §1
as the defining formula, where u, v should be holomorphic vector fields
on M. As [ng, no] = [n, n], =0, we have [#, 7] = 0.

Now following the method in § 8, it is easy to see that we have a
complex version of the Proposition in § 3, i.e.

“Let % be a holomorphic nilpotent vector 1-form on an n-dimensional
complex manifold, and suppose &* = 0 but &’ = 0 for I < n, for all points.
Then [k, k] = 0 implies that the G-structure defined by % is integrable.
Moreover, if & depends on some complex [real] parameters and is holo-
morphic [C>] with respect to the local coordinates 2!, --., 2" [the real
coordinates ', « -+, ™, where 2" = x*~* 4 {2*] and the parameters jointly,
then the local coordinates w?, ---, w" associated to the integrable G-
structure [the real coordinates %, -.-,y™ obtained from w*= y*~* + 1y*]
are holomorphic [C =] with respect to 2, --., 2"[2", -+, 2™] and the para-
meters jointly.”’

Using this complex version, for each point of 7, we have a neigh-
bourhood with a local complex coordinate system w?, ---, w", with respect
to which # = § + % takes the matrix form

o1
p1?
Sy
O

Passing back to the real coordinate system {y',---,y"}(w*=y*" + iy™),
h takes the matrix form

AB
AB 0
0 AB

where

o T 1 0
A et d B e .
(—T 0) an (0 1)
The G-structure defined by & is thus integrable. The associated local

coordinates %', ---, y™ are C=-functions of the coordinates of M and the
parameters jointly.

5. An example.! Let M be the euclidean space of dimension 4, and

4+ The author is indebted to Professor H. C. Wang for this example.
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suppose x, ¥, 2, t are the coordinates. Let
X, = 0fox, X, = 0/oy, X, = 0/06z, X, = (98/0t) + (1 + 2)(8/0x) ,

and define & by hX, = X,, hX,; =0 for ¢+ =2, 8,4. It is easy to check
that

(i) =0,

(i) [hh]=0,
and (iii) [X,, X,]=X,.
Now, if the G-structure defined by # would be integrable, so would the
distributions intrinsically given by k. However, (iii) shows that the dis-
tribution given by the kernel of % at each point of M is not integrable,
hence we conclude that the G-structure is not integrable. ‘
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