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Suppose A and B are two permutations on a finite set X which
commute on almost all of the points of X. Under what circumstances
can we conclude that B is approximately equal to a permutation which
actually commutes with At The answer to this question depends strongly
upon the order of the centralizer, C{A), of A in the symmetric group
on X; and this varies greatly according to the cycle structure of A,
being comparatively small when A is either a product of few disjoint
cycles or a product or a large number of disjoint cycles of different
lengths and being comparatively large when A is a product of many
disjoint cycles, all of the same length. We shall show by example
that when the order of C(A) is small there may exist a permutation B
which commutes with A ' 'almost everywhere" yet is not approximated
by any element of C{A). On the other hand, when A is a product of
many disjoint cycles of the same length, we shall see that for any such
permutation B, there must exist a permutation in C(A) which agrees
closely with B.

It is clear that if B is a permutation leaving fixed almost all points
of X, then no matter what permutation A is given, B will commute
with A on almost all points of X, and at the same time B can be
closely approximated by an element of C(A)—namely, the identity.
However, the examples we shall give will show that only when all (or
nearly all) of the cycles of A are of the same length can we hope to
approximate every B which nearly commutes with A by an element in
C{A). Accordingly, the bulk of this paper will be taken up with the
study of the case in which A is a product of many disjoint cycles, all
of the same length.

1* In order to get a satisfactory notation and a more compact way
of discussing the problem, we begin by making the symmetric group
SN(X) on the space X into a metric space. Here N denotes the cardi-
nality of X, and it is to be understood that N is finite. Define, for
any A in SN(x),

(i) IIA| | = ̂ _ Λ

where fA is the number of fixed points of A on X Now define the
distance d(A, B) between two elements A and B of SN(X) to be

(2) d(A,B)=\\AB-1\\.
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Under these definitions, the identity is the only permutation of norm
0, every permutation has norm ^ 1, and a permutation has norm p if
and only if it moves pN points of X. In particular, the permutations
A and B commute if and only if || [A, B] || = 0, or equivalently, if and
only if d(AB, BA) = 0.

In order to see that these definitions make SN(X) into a metric
space, we need only verify the triangle inequality, since the other prop-
erties are trivial. But the points of X displaced by AB are clearly
among those which are displaced by either A or B. Hence N — fΛB ^
(N - fA) + {N- fB) and consequently || AB || ^ || A || + || B ||. We thus
have the following lemma.

LEMMA 1. With the norm defined above, SN(X) forms a metric
space.

When no restriction is placed upon the cycle structure of A, we
have the following result:

PROPOSITION 1. For any ε > 0, there exists an integer N and
permutations A and B in SN(X) such that || [A, B] || < ε and such that
d(B, D) = l for every D in C(A).

Proof. We shall give two examples of permutations A and B which
satisfy the conditions of the proposition; in the first, A will be a product
of cycles of relatively prime lengths, and in the second, a product of
cycles of lengths n and 2n.

EXAMPLE 1. Let X = {1, 2, , N}, where N = 2n > 4/ε. Let A
be the permutation

(1 2 n - l)(n)(n + 1 n + 2 2n)

and B the permutation xB — x + n if x ^ n, and xB = x — n if x > n.
By direct verification, we find that A and B commute except on the
points n — l,n,2n — 1, 2n. Thus / U ) β ] = N — 4 and hence || [A, B] \\

On the other hand, any element D of C(A) must map each cycle
of A into itself, since these cycles are of different lengths. But, for
any x in X, xB and x lie in distinct cycles of A. It follows that for
any D in C(A), BD~X displaces every point of X and hence that
d(B, D) = 1.

EXAMPLE 2. Let X= {1, 2, •••, N}, where N= Anm and n > 1/e.
Let A be the permutation with m cycles of length 2n and 2m cycles
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of length n, defined as follows:

(1 2 2n)(2n + 1 4n) (2n(m - 1) + 1 2nm)

(2nm + 1 2nm + n)(2nm + n + 1 2nm + 2n)

(Anm — n + 1 Anm) .

Let B be the permutation xB — x + 2nm if x ^ 2wm, and xB =
α? — 2nm if x > 2nm.

Again, by direct computation, we find that A and B commute on
all points x of X except when x = 0 (mod n). Thus fίA,Bi ~ 4wm — 4m
and hence \\[A, B]\\ = 1/n < e. On the other hand, if DeC(A), D
must permute the cycles of A of length n among themselves and must
permute the cycles of A of length 2n among themselves. But if x is
in a cycle of length n9 then xB is in a cycle of length 2n, and vice
versa. It follows that BD~ι displaces every point of X and hence that
d(B, D) = 1, for any D in C(A).

2. The two examples given in Proposition 1 indicate that unless
severe restrictions are placed on the cycle structure of A, the fact that
B comes very close to commuting with A does not necessarily imply
that B can be approximated by an element in C(A). In fact, it seems
that unless A consists almost entirely of cycles of the same length, little
can be said in general of the relation between || [A, B] || and the dis-
tance from B to C(A).

In order to be able to make as exact statements as possible, we
shall assume in the balance of the paper that A is the product of m
disjoint cycles, each of length n. In this case our statements about
the distance from B to C(A) will depend only upon || [A, B] \\ and n.

We may take X = {1, 2, , N}, where now N = nm. Let x, k be
integers such that 1 S % ^ N9 0 ^ k ^ n, and write x = in + r, where
1 ^ r ^ n. We shall adopt the following notation:

(3) x + k = in + s, where 1 ^ s ^ n and s = r + k (mod n) .

Without loss of generality we may assume that A is the mapping

(4) xA = x + 1, x e X .

We shall say that B in SN(X) transforms the cycle a of A into
the cycle α' if, for some x in α, #1? is in af and

\O) \tΛ/ ~T~ n/JJ-β tλ/JL> ~\~ ΓVy tv — \ ) , J-, > Iv X

We shall write (α)# = af it B transforms a into α\ We shall also
say that B commutes with A on a cycle a if it commutes with A on
each point of a.
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LEMMA 2. (a) A permutation B commutes with A on a cycle a
if and only if B tr an forms a into a cycle a\

(b) if B commutes with A on n — 1 points of a cycle α, then B
commutes with A on a.

(c) // B transforms r cycles of A into cycles of A, there exists
an element D in C(A) which agrees with B on these r cycles.

Proof. For A and B to commute on a point x of X we must have
xBA = xAB, and hence

(6) xB + 1 = (x + 1)B .

Suppose (a)B = a!\ then (6) follows at once from (5) for any x in
a. Conversely if (6) holds for all x in α, (5) follows at once by induc-
tion on k.

To prove (b), suppose B and A commute on x, x + 1, , x + n — 2.
Again by induction on k, (5) holds for k = 0,1, , n — 2. In particular,
(x + n — 2)B = xB + n — 2. Now using (6) with x replaced by x + n — 2,
we obtain

(x + n - 1)5 ={x + n — 2)B + 1

= xB + n — 2 + 1 = xB + n - 1 .

Thus (5) holds for all k, and hence A and B commute on a by part (a).
Finally suppose B transforms the cycles alf * ,α r into the cycles

a[, « ,α' . Denote by a'r+u •• ,a'm the remaining cycles of A. Let D
be a permutation which agrees with B on al9 , ar and transforms a{

into α , i = r + 1, , m. By (a) D is in C(A).

3 We shall now begin the analysis of the relationship between
\\[A, 5] || and the minimum distance from B to C{A), under the as-
sumption that A is the product of ^-cycles. We shall denote this
minimum distance by dA(B). Thus

(7) dA(B) - min d(B, D) .
D€C{A)

Then following estimate for dA(B) is easily obtained.

PROPOSITION 2. For any B in SN(X),

; nil [A, BUI

Proof. If || [A, B] || ^ 2fn, the proposition is vacuously true since
dA(B) ^ 1. Hence we may assume that || [A, B] || < 2\n.
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Now N = nm, where m is the number of cycles in A. It suffices
to show that B transforms at least

m N\\\A,B]\\

cycles of A into cycles of A. For then by Lemma 2(c) we can find an
element D in C(A) which agrees with B on these cycles and hence on
at least

N-ψ-.\\[A,B]\\

points of X. It follows that

, D) <L "IIIΛfllll .

By the definition of || [A, B] ||, N || [A, B] || is the number of points
-displaced by [A, B] and hence on which A and B do not commute. But
by Lemma 2(b) any cycle of A which is not transformed by B into a
cycle of A contains at least 2 points on which A and B do not com-
mute. Thus there are at most

N\\[A,B]\\

cycles of A which are not transformed by B into cycles of A, and hence
B transforms at least

m N\\[A,B]\\
2

cycles of A into cycles of A.
Proposition 2 gives an upper bound for dA(B), which depends only

upon || [A, B] || (and ri), but not upon the particular structure of B.
Our main concern in the paper will be in improving this upper bound.
The next proposition shows the limit to which this estimate can be
improved.

PROPOSITION 3. If A contains at least two distinct cycles, then
there exists a permutation B in SN(X) such that

d A i B ) = " I I 1 ^ * 1 II

when n is even, and such that
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when n is odd. Furthermore for any ε > 0, N and B can be chosen
so that || [A, B] \\ < ε.

Proof. Assume first that n is even. Set m — m1 + m2, where
m1 Ξ> 0 and m2 ^ 2. Define the permutation B as follows: xB = x if
1 <L x <̂  nrnj; if x > wm^ write x = in + k where 1 < k ^ n, and define
#j? = x if & ίg w/2, xB = x + n if i Φ m — 1 and & > w/2, and xB =
ίM»! + fcifΐ = m — 1 and fc > w/2.

Thus 5 leaves the first m1 cycles of A pointwise fixed, one half of
each of the remaining m2 cycles pointwise fixed, and permutes the other
halves of these ra2 cycles cyclically. From its definition, we see that
B commutes with A except on the points x > nm1 for which x = 0
(mod n\2). Thus

(8) \\[A,B}\\= ~
N

Since N = n{m1 + m2), 2mJN can be made arbitrarily small by
making m1 sufficiently large. Thus, to prove the proposition, we have
only to show that

Observe, first of all, that the identity, /, is in C(A) and agrees
with B on

tm. + Jϋϋb-

points of X, whence

(9) d(I, B) = S — = Jϊ!22- = ΊL || [A, B]

On the other hand, by Lemma 2, any D in C(A) must transform
each cycle a{ of A into some other cycle α, . Since B transforms the
two halves of the cycles α< into distinct cycles of A, m1 ^ i ^ — 1, Z>
and 5 can agree on at most half of the nm2 points in these cycles.
Hence DB'1 displaces at least nm2/2 points of X, which implies that

= £\\[A,B]\\

for any D in C(A).
When n is odd, the construction of B is entirely analogous.
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4; If we set

dA = max A\• * — ,
BesNiχ) \A, B\\\n

then dA is a measure of the extent to which every permutation in
SN(X) can be approximated by elements in C{A). Propositions 2 and 3
show that

according as n is even or odd.
In the balance of the paper we shall sharpen these inequalities by-

lowering the upper bound for dA. Our next result will show that in
considering this problem, we may restrict our attention to those cycles
of A on which B commutes with A on exactly n, n — 2, or n — 3 points.
Let UB, VB, WB be the set of points in those cycles of A on which B
commutes with A on n, n — 2, and n — 3 points respectively; and let
uB=\UB\,vB=\ VB \,wB=\ WB |.

THEOREM 1. Suppose there exists an element D in C(A) which
agrees with B on at least uB + {l\2)vB + (ljS)wB points of X. Then

Proof. For simplicity of notation, we drop the subscript B, and
define

(11) t = N— u — v — w .

Thus t is the number of points in those cycles of A on which A and
B commute on no more than n — 4 points. Then by definition of u,vf

w, t, we have

(12) u ^ Ά L
n n n

Now, by hypothesis,

N- (u + —v + —w\ —v + —w + t
(13) d(Bf D) £ ^ ^ ^ — = -? ^

We must show that

(14)
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But using (1), we can rewrite (14) as:

(15) fUM ^u + 2^lv + (i _ 8 V,

Since (15) is an immediate consequence of (12), the theorem follows.

5 In this section, we prove that dA ^ 1/4, by proving that for
any B in SN(X), there exists a permutation D in C(A) which satisfies
the conditions of Theorem 1.

To treat our problem, we need an additional concept: By a block

of a cycle a of A, we shall mean a maximal sequence x, x + 1, •• ,

x + r — 1 of points of a such that A and B commute on every point

of the sequence except x + r — 1. The integer r will denote the length

of the block. According to the definition, if A and B commute on

every point of a then a contains no blocks. When B and A do not

commute on every point of α, we have the following obvious lemma:

LEMMA 3. If A and B commute on exactly n — k points of a
cycle a of A, k > 0, then A contains exactly k blocks, the sum of whose
lengths is n.

Thus when a cycle a of A lies in VB, a consists of 2 blocks which
we denote by p19 p2; and when a lies in WB9 a consists of 3 blocks which
we denote by qu q2, q5. We define \p3 \, \ q^ \ to be the lengths of pj9 qjf

respectively. Furthermore we order the blocks so that | p± \ ̂  | p21 and
I q11 ^ \q21 ^ I 9.1- Since | px \ + | p2 \ = n,

(16) Iftl^f

and likewise

(17) kil^x

Let x9 x + 1, , x + r — 1 be a block contained in a cycle a. If
xB = -?/, then, it follows from (6) as in the proof of Lemma 2, that

(18) (x + k)B = y + Λ , 0 ^ & ̂  r - 1

and

(19) (x + r)B Φ y + r .

Thus the image of the block is a consecutive sequence of points in a
cycle af. It follows that there exist permutations which transform a
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into a1 and agree with B on the block 6 = {x, x + 1, , x + r — 1}.
In fact, any D in C(A) for which xD = y has this property. If D is
such a permutation, we shall write simply (a)D = α'; (δ)Z> = (δ)i?.

From this fact, we easily derive the following lemma:

LEMMA 4. Let a19 •• ,αfc be distinct cycles of A containing the
blocks blf , δfe respectively. If the images of 6; under B lie in dis-
tinct cycles a\ of A, i = 1,2, •• , k, then there exist permutations D
in C(A) such that (a^D = a[; {b%)D = (b^B, i = 1, 2, , k.

We are now in a position to prove the following result:

THEOREM 2. Given any B in SN{X), there exists an element D in
C(A) which agrees with B on at least

points of X.

Proof. Let alf a2, , am be the cycles of A. For any i, j, 1 ^ i,
i ^ m, let δ^ be the maximal number of elements of a{ on which a
permutation D in C(A) mapping a{ into c^ can agree with B. Thus if
i? transforms a{ into α,, δ^ = n. If (α^β Π aό — ψ, then δί:/ = 0. Now,
to any mxm permutation matrix {eia) there corresponds a permutation
D in C(A) which agrees with B on

(20) Σ ^ Ap-

points, where D is defined to transform α, into aj if e{j = 1, and to

map α̂  so as to agree with B on δ o points.
We wish to show

(21) max Σ eφa ^ u + \v + ^w ,

where {ei3) ranges over all permutation matrices. To do this, consider
the set of all real mxm matrices {xi5) such that

(22) xi:i ^ 0 1 ^ i, j ^ m

(24) Σ * w = 1 l^ί^m.

This is the set of doubly stochastic matrices and is a convex, bounded
set whose vertices consist of exactly the permutation matrices (see [1],
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pp. 132-3).
The following lemma will be useful in proving the theorem.

LEMMA 5. If (xi3) is any doubly stochastic matrix, then there
exists a permutation matrix (eί3) such that

(25) Σ ei3bi3 ^ Σ,xi3bi3 .
i.3 i.3

Proof. See [1], p. 134.
If we can now demonstrate a doubly stochastic matrix such that

(26) 5X A, ^u + h) + —wf

we will clearly be finished since, by Lemma 5, there must then be some
permutation matrix (ei3) such that

Σ eiόbi3 ^ u + —v + —w ,

and this permutation matrix will yield the desired mapping D.
To find a matrix satisfying (26), define

(27) xi3 = ^ ~ ,
n

where nl3 is the number of points of a{ which B maps into a3. The
matrix (xi3) is clearly doubly stochastic, so we must show that (26)
holds. But if a{ gΞ UB, then

since (a^B — aj± for some j \ . If a{ S Vβ, there exist indices j \ and j 2

such that (p^B c α i χ and (p2)B c α i 2. Note that j \ Φ j 2 , or else α*
would be transformed by B into α^. In this case, then,

(remember | Pi | + | pa I = ^)

Finally, when a{ s Wΰ, one of three things can happen:
(a) ?i, ?a> ̂ 3 can be mapped by i? into three distinct cycles of A.
(b) qlf q2, q3 can be mapped by B into only two cycles of A,
(c) ?i, ^2, 3̂ can be mapped into one cycle of A.

In the first case,
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In the second case,

where | qH | ^ | qH \ .

Finally, in case c,

where | gx | ^ | q21, | ? 8 1 .

Since | qx | + | q2 \ + | g31 = n, it follows at once in all three cases
that

3 O

We have thus demonstrated the existence of a doubly stochastic matrix
(Xij) with the property

Σι%isK' ^ u + TΓ v + i r w

ί.i 2 3

Together with Lemma 5, this completes the proof of the theorem.
As an immediate corollary of Theorems 1 and 2, we obtain our

main result:

THEOREM 3. Let A contain at least two distinct cycles. If n is
even, dΛ = 1/4. If n is odd,

— ^ dA ^ — .
4^ 4
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