HOMOGENEITY OF INFINITE PRODUCTS
OF MANIFOLDS WITH BOUNDARY

M. K. ForrT, JR.

1. Introduction. In 1981, O. H. Keller [2] proved that the Hilbert
cube @ is homogeneous. V. L. Klee, Jr., proved [3] in 1955 that @ is
homogeneous with respect to finite sets, and in 1957 strengthened this
result [4] by showing that @ is homogeneous with respect to countable
closed sets. Qur Theorem 1 extends this latter result to spaces which
are the product of a countably infinite number of manifolds with boundary.
Our method of proof exploits the notion of category for the space of
self-homeomorphisms of the product space, and differs considerably from
the methods of Keller and Klee, who made use of convexity properties
of linear spaces. .

In Theorem 2 we prove that if P is the product of a countably
infinite number of manifolds with boundary and U and V are countable
dense subsets of P, then there is a homeomorphism 2 of P onto itself
such that /U] = V. This theorem is analogous to a well known theorem
about Euclidean spaces (see [1], p. 44). In a corollary to our Theorem 2,
we show that if U is a countable subset of the Hilbert cube @, then
there is a contraction 2, 0 <t <1, on Q such that if 0 <t <1, then
h, is a homeomorphism and %,[JQ] N U = ¢.

2. Notation and lemmas. For each positive integer n, we let M,
be a compact manifold with boundary, and we let B, be the boundary
of M,. We let P be the cartesian product space M, x M, x M, X «+--.
The projection mapping of P into M, is denoted by x,. If xze P, we
denote 7,(x) by x,. An admissible metric d, for M, is chosen so that
M, has diameter less than 2", and we then define an admissible metric
d for P by letting

d(@,9) = 3 du(®,, ) -

If f and g are mappings on a compact metric space X into a metric
space Y, we let o(f, g) denote the least upper bound of the distances
between f(x) and g(x) for = in X.

The set of all homeomorphisms of P onto P is denoted by H.
Although the metric space (H, p) is not complete, it is topologically
complete (i.e. homeomorphic to a complete metric space) and hence is
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a second category space.

The following two lemmas can be proved using standard techniques,
and the proofs are merely outlined.

Lemma 1. If M is a manifold with boundary B, o is an arc
lying in B, uw and v are the end points of a, and W is an open subset
of M which contains «, then there is a homeomorphism  of M onto
M such that () = v and (x) = x for xe M — W.

Proof. Let S be the set of all points ¢ of a for which there exists
a homeomorphism + of M onto M such that y(u) = ¢ and «(x) = « for
xe€ M — W. It is easy to see that S is both open and closed relative to «.

LEMMA 2. If M is a manifold with boundary B, the dimension
of M is at least 2, C is a countable and compact subset of M — B, and
@ 18 o homeomorphism on C into M — B, then ¢ can be extended to a
homeomorphism @ on M onto M.

Proof. For each positive integer n, we can obtain compact sets
J, and K, such that:

(i) C is contained in the interior of J, and @[C] is contained in
the interior of K,;

(ii) each component of J, and of K, has diameter less than 1/» and
is homeomorphic to a spherical ball of dimension equal to that of M;

(iii) for each component D of J,, ¢[D N C] is contained in a single
component of K,; and

iv) J, D J,, and K, D K,41.

Using the sets J, and K,, it is possible to construct homeomorphisms
@, of M onto M such that:

(i) if D is a component of J, and E is a component of K,, then
@,[D] c E if and only if ¢]D N C] C E; and

(ii) ?,,(x) = @,(x) for all xe M — J,.

The sequence &,, @,, @,, --- converges to the desired homeomorphism.

LEMMA 3. If pe P, there is a residual subset R of H such that
if he R, then h(p),€ M, — B, for each n.

Proof. Let K, = {h|he H and h(p),€ B,}. It is obvious that each
K, is closed. We want to prove that K, if nowhere dense. Thus,
suppose he K, for some n and that ¢ > 0. We seek ge H— K, such
that p(g, h) <.

Choose an integer m # n such that M, has diameter less than e.
We define M = M, x M,. M is also a manifold with boundary, and the
boundary B of M is the set (M, x B,) U (B, x M,). Since he K,, the
point (A(p),, M(P).) is a member of B, x M,. Let ¢ be a point of B,
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such that ¢+ W(p),.. There is an are B in B, x M,, which joins (k(p),, h(D).,)
to (h(p)., @) and has diameter less than ¢ (since M, has diameter less
than ¢). We may now choose a point r€ M, — B, and an arc v joining
(7, @) to (h(p),, @) such that B U v is an arc and has diameter less than
e. Weleta=p8Un~r.

We now use Lemma 1 to obtain a homeomorphism « of M onto M
such that + maps the point (%(p)., 2(p).) onto (7, q) and the distance
from x to +r(x) is less than ¢ for all ze M.

Now, we define ge H by letting g(y), = k), if n+k =+ m, and
letting

@@, 9W)n) = v(R(Y)., L)) -

Since g(p), = r and r¢ B,, gc H— K,. It is easy to see that o(g, k) < ¢,
and hence we have proved that K, is nowhere dense. We define R =
H— Uz, K,. Ris a residual set and if ke R, then h(p), ¢ B, for all u.

LEMMA 4. If p and q are points of P, then there is a residual
subset R of H such that if he R, then h(p). # hQ), for all n.

Proof. We define J, ={h|he H and h(p), = h(q),}. Each J, is
closed. We want to prove that J, is nowhere dense. Suppose ke J,
and ¢ > 0. We seek ge H — J, such that o(g, h) < e.

It follows from Lemma 3, and the fact that residual subsets of H
are dense in H, that there exists fe H such that o(f, k) < ¢/2 and for
all k, f(p).¢ B. and f(q).€ B.. If f(p), # f(q). we can let g =f.
Otherwise, we choose m#n so that f(p).+# f(q).. and define M = M, x M,,.
Since (f(p),, f(»).) and (£(q)., f(q).) are not equal and neither is on the
boundary of M, there is a homeomorphis @ of M onto M such that the
distance from z to o(x) is less than ¢/2 for all x€ M and such that the
points @((f(p)., f(9).)) and ((f(q)., f(@)..)) have different first coordinates.
We now define ge H by letting 9(¥)., = f(y)., if n + k #+ m, and
@), SW)n) = P((FW)n, f(W).)). Tt is easy to see that o(g, f) < ¢/2 and
hence o(g, h) < . Moreover, g(»), # 9(q), and hence ge H — J,.

We obtain the desired residual set R by letting R=H — U~ J..

THEOREM 1. If A is a closed and countable subset of P and f is a
homeomorphism on A into P, then f can be extended to a homeomorphism
F on P onto P.

Proof. There is no loss in generality in assuming that each M,
has dimension at least 2, for otherwise we could define S, = M,,—, X M,,
and represent Pas S; X S, X S; X -+«

It follows from Lemma 8 and Lemma 4 that there is a homeomorphism
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he H such that for each n, the projection mapping 7, maps both A[A]
and 2f[A] in a one-to-one manner into M, — B,. The mapping @, =
,hfh~'m;' is one-to-one on 7,k[A] onto 7, hf[A] and can be extended by
Lemma 2 to a homeomorphism @, on M, onto M,. We obtain dc H
by letting @(x), = @,(x,). The desired extension F' of f is obtained by
defining F = h~'@h.

Let & be a homeomorphism on a compact space X into a compact
space Y, and let n be a positive integer. We define

n(h, n) = 27" «inf {d(h(x), M(y)) |z, y€ X and d(z,y) = 1/n} .

LeMMA 5. If hy, hyy by, +++ 18 @ sequence of homeomorphisms on X
onto Y such that o(h,, h,.,) < N(h,, ), then the sequence converges
uniformly to a homeomorphism h on X into Y.

Proof. It is clear that the sequence converges uniformly to a
continuous function # on Xinto Y. We must prove that % is one-to-one.

Suppose % and v are distinct points of X. We choose » > 1 so that
d(u, v) > 1/n. Then, for k = n,

d(Prrs(w), By1i(v)) = d(Ri(w), hi(v)) — d(Be(w), i () — A(Ri(V), hiss(v))
= d(hu(u), ki(v)) — 27(hs, )
Z d(h(w), hi(v)) — 2+ 27%d(Ru(w), ha(v))
Z d(h(w), he(v)) - (1 — 27%%) .
Thus,

d(h(w), h(v)) = lim d(hy(u), 7u(v))

= d(hy(w), h(0) - TT (1 — 27+
i=n
= d(h,(u), h,(v))/4, (since n >1).
This proves that % is one-to-one and hence a homeomorphism.

THEOREM 2. If U and V are countable dense subsets of P, then
there is a homeomorphism h of P onto P such that h[U] = V.

Proof. As we have remarked in the proof of Theorem 1, there is
no loss in generality in assuming that each M, has dimension at least
2. In view of Lemma 3 and Lemma 4, we may also assume that U and
V are so situated in P that each x, maps both Uand V in a one-to-one
manner into M, — B,.

We are going to arrange the points of U and V into sequences
Uyy Uy, Ugy *++ and vy, Vg, Vs, - -+ and choose homeomorphisms #k;; for all
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positive integers ¢ and j. This is done by a fairly complicated inductive
process, the first four steps of which are given below. We let U, = U,
V.=V, and as soon as u,, +-+,%, and v, -+, v, are defined, we let
Upir= U, — {ty, oo, %}, Vor2 =V, — {vy, -+, v,}. We assume that U
and V are well ordered so as to have the order type of the positive
integers. We let H, be the set of homeomorphisms of M, onto itself.

Step 1. wu, is chosen to be the first point of U and v, is chosen to
be the first point of V. h,e€ H, is chosen so that h,m(u,) = 7,(v,).
h,;€ H; is the identity for 5 > 1.

Step 2. v, is the first point of V,. wu,€ U, is chosen near enough
to v, for us to obtain k, € H, so that: o(hy, ki) < P(hy, 1) and hym(u;) =
m(v;) for 5 =1,2. hye H,is chosen so that h,m,(u;) = w(v;) for j = 1, 2,
h,;€ H; is the identity for j > 2.

Step 8. u, is the first point of U,. v,e V, is chosen near enough to
u, for us to obtain h, € H; so that: o(hs;, hy) < 9(hy, 2) and hym(u;) =
w(v;) for ©=1,2 and j =1,2,3. hye H, is chosen so that hym(u;) =
my(v;) for 5 =1,2,8. hy;€ H; is the identity for j > 3.

Step 4. v, is the first point of V,. wu,€ U, is chosen near enough
to v, for us to obtain Ak, € H; so that: po(hy, k) < 9(hs;, 3) and h,wi(u;) =
w,(v;)fort=1,2,83andj=1, --+,4. h,€ H,is chosen so that k7, (u;) =
w(v;) for j=1,.++,4. h,c H; is the identity for j > 4.

We continue this process. By Lemma 5, the homeomorphisms
Wiy By By, +++ converge uniformly to a homeomorphism g€ H;. It is
easy to see that g,m;(u;) = w;(v;) for all ¢ and j. There is determined
uniquely a homeomorphism h e H for which 7;2 = g,z; for all j. Since
h(u;) = v; for all 4, and U= {u,, Uy, +++}, V={vy, vy, +++}, h is the desired
homeomorphism.

COROLLARY. If C ts a countable subset of the Hilbert cube Q, then
there 1s a contraction h,, 0 <t < 1, defined on @ such that:

(i) h, is the identity,

(ii) h, s a constant mapping, and

(i) ¢f 0<t<1, h, ts a homeomorphism of @ into Q and
RIQI N C = g.

Proof. We let M, be the closed interval [—57", 57"]. The resulting
space P may then be thought of as the Hilbert cube Q. (This represen-
tation is used since M, was assumed to have diameter less than 27.)
We let D be the set of all points « in P such that m,(x) is rational for
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all 4, and 7,(x) = 5% for all but a finite number of values of :

Both C U D and D are countable and dense in P, so by Theorem 2
there is a homeomorphism G of P onto P such that G[C U D] = D.
We define g,(x) =tx for 0 <¢t <1 and zc P. Finally, we let h, =
G'9,G. It is easy to see that the desired contraction is %,,0 ¢ < 1.
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