ANNIHILATORS IN THE SECOND CONJUGATE
ALGEBRA OF A GROUP ALGEBRA

Paun CrviNn

1. Introduction. Let & denote an infinite locally compact abelian
group, and let L(®) be its group algebra. The second conjugate space
L**(®) of the group algebra can also be considered as an algebra by
the use of Arens multiplication {1] [2]. Civin and Yood [3, p.857] have
shown that L**(®) is an algebra which is not commutative and has a
nonzero radical R**. They have also shown [3, p. 856] that if & is not
discrete, then the algebra L**(®) has a nonzero right annihilator.

The object of the present note is the study of the nature of the
left and right annihilators of the maximal modular left ideals in L**(®).
It is shown that such annihilators are either nilpotent two-sided or right
ideals, respectively, or else the maximal modular left ideal in question
must have the form {Fe L**(®)|F(¢) = 0} where ¢ is some multiplica-
tive linear functional on L(®). If ® is compact it is seen that all maximal
modular left ideals of the latter form have a nonzero left annihilator and
a right annihilator which properly contains the right annihilator of L**(®).

It should be noted that the choice of the maximal modular left ideals
as the subject of investigation is not simply for definiteness. At the
present stage of available information concerning L**(®), the maximal
modular left ideals are more tractable than the corresponding right ideals.

2. Notation. Throughout the note we shall use the notation in-
troduced above as well as other notation introduced by Civin and Yood
[3]. In particular R** will denote the radical of L**(®) and 9 will denote
the closed subspace of L*(®) generated by the multiplicative linear funec-
tionals on L(®). We shall write £(I)(R(I)) for the left (right) annihilators
in the algebra L**(®) of the subset I of L**(®). We also use the nota-
tion I+(IT) for the linear space annihilator in B*(B) of the linear manifold
I in the Banach space B (the conjugate space B*). Throughout = will
be used for the natural embedding of a Banach space B into its second
conjugate space B**. It should be recalled [1] that when B is a Banach
algebra, 7 is an algebra homomorphism, and if B is commutative then
[3, p. 855] ©B is in the center of B**.

3. Left annihilators. Throughout this section we let I denote a
maximal modular left ideal in L**(®) for which (M) == (0).

LeMmMa 3.1. M and M) are 2-sided ideals in L**(®) and
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RLYWM) = M.

Proof. Since M is a left ideal, (M) is a 2-sided ideal. Thus RL(M)
is a 2-sided ideal containing M. However, the algebra L**(®) contains
[3, p. 855] a right identity E, so (M) + (0) implies RL(IMN) is proper, hence
RL(M) = M, and W is a 2-sided ideal.

In the next several lemmas we consider the consequences of the
assumption (M) & M.

LEMMA 3.2. If Q) ¢ M, then YM) = (L**(®))A4, with A = A

Proof. It follows from (M) & M that L**(B) = (M) + M. Thus
the right identity FE satisfies E = A + M with A € () and M e IN.
Left multiplication by F € () yields F' = FE = FA, so in particular
A = A* and {(M) < (L**(G))A. The reverse set inequality is immediate
since (M) is a left ideal.

We adopt as fixed notation £ = A + M, with Ae (M) and Me M,
throughout the section in which we are discussing £(I) & M.

LEMMA 3.3. For all Fe L**(®), AF = AFA.

Proof. As above E = A + M. Left multiplication by AF gives
AF = AF'A since Ac (M) and FMe M.

LEMMmA 3.4. If8(IR) ¢ M, then AL(IMN) is the set of complex multi-
ples of A.

Proof. Let L # 0 be an element of A2(M). Then by Lemma 3.3,
L=AL=ALA. Since L+0 and A € &M), it follows that LA ¢ M and
L ¢ M Consequently (L**(S))LA is a left ideal not contained in M. Hence
L*(®) = M + (L**(®))LA, and E = N + CLA, with Ne M. Left multi-
plication by A, and appropriate use of the right identity yields A =
ACLA=ACELA=AC(A + M)LA = ACALA = (ACA)(ALA). Thus the
normed algebra AY(IM) has A as an identity and each nonzero element
has a left inverse. This implies that A%(M) is a complex normed divi-
sion algebra and the lemma then follows from the Gelfand-Mazur theorem.

LEMMA 38.5. If (M) & M, then there exist a multiplicative linear
functional ¢ on L**(®) such that M = {F e L**(®)|p(F) = 0}.

Proof. In view of Lemma 3.4 and the fact that AR(MR) is a right
ideal, we may define the complex number @(F') for F'e L**(®) by AF=
@(F)A. Clearly ¢ is additive and by the use of Lemma 3.3 we see that
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P(FG)A=AFG = AFAG = p(F)p(G)A, so @ is multiplicative. It follows
from Lemmas 8.1 and 3.2 that @(F')=0 if and only if F'e M.

THEOREM 3.6. Let M be a maximal modular left ideal in L**(®)
with {M) = (0). Then M is a 2-sided ideal and either (Y(WM)): =
(R(M))* = (0) or there exist a multiplicative linear functional pt on L(S)
such that M = {F'e L**(®)|F(1) = 0}. In the latter case L(M) is a one-
dimensional 2-sided ideal in L**(®) and R(EM) = R(L**(S)) D L(M).

Proof. If (0) + M) M, then MM = RY(W) D R(M), so (L(M))* =
(REY)Y = (0). If (M) M, let e L***(S) be the multiplicative linear
function on L**(®) whose existence is guaranteed by Lemma 3.5. Since
7w is a homomorphism, the functional ¢ = @or is a multiplicative linear
functional on L(®). The null space of £ is then either L(®) or a modular
ideal M, in L(®). If the first possibility prevails, 7L(S)c M, and thus
0 = A(nx) = (rx)A for all xe L(G). The w*-density of wL(®) together
with the w*-continuity of left multiplication [2] in L**(®) implies that
FA =0 for all Fe L**(®). This contradicts 4 = A’ = 0. We thus con-
clude that there is a maximal modular ideal M, in L(S) such that
oM, M. Now [3, p.865] the w*-closure of 7M, is a maximal modular
left ideal M, in L**(@). Let Fe MM, then F = w*— limrx,, x, € IM,.
Thus 0 = A(zx,) = (7x,)A for all @, so FFA =0, i.e. Ac R(IM,;). There-
fore by Lemma 3.5, @o(F)®(A) = ¢(FA) = 0. However, since A ¢ M,
@(A)# 0 and consequently @(F') =0, so F'e M. Therefore M, M and
M =M,. In particular AeREM). Also if FeM, F = w*— lim nz,,
x,€ M, and thus F(p) = lim nz(¢) = lim p(x,) = lim o(7z,) = 0. Since
the set of F'e L**(®) such that F(¢) =0 is a maximal modular ideal
containing M, we see that M has the appropriate form.

It now follows from Lemma 3.4 that L**(®) = MNP AL(MN) with the
second summand one-dimensional. Since A€ R(IM), it then follows from
Lemmas 3.2 and 3.3 that {(IM) = AL(M) and so is a one-dimensional 2-
sided ideal. Since A€ R(M) we have R(L**(S))PLYIM) R(EM). Also
if Fle R(M), then F = M, + oA, with M, e and « complex. Since
Aec R NYEM), it is immediate that M, e R(L**(®)) which completes
the proof.

4. Right annihilators. Again we let Wt denote a maximal modular
left ideal. If @ is not discrete [3, p. 856] then (0) == R(L**(®)) < R(M).
On the other hand we saw in Theorem 3.6 that if (0) # (8(IR))* then
REM) = RKL**(B))DRM). Our object in this section is to investigate
relationships between I and R(M) with no hypothesis on {(WM). As
indicated in the introduction, we use R** for the radical of L**(®).

4.1 LEMMA. Either R(IM) C R** or there exists an F € R(M) which
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18 not left quasi-regular.

Proof. Suppose that the right ideal R(M) is left quasi-regular. Let
Fe3R(EM). Since FD is left quasi-regular for all De L**(®), we see [5,
p. 17] that (L**(®))F is a left quasi-regular left ideal, and so is a quasi-
regular left ideal and is included in R**. Thus EFe R**. However,
EF — Fe R(L**(®)) C R**, so FeR**,

4.2 LEMMA. If R(M) & R**, there exists an Ae R(N) such that
0+A=A4.

Proof. By Lemma 4.1 there is an F'e R(I) which is not left quasi-
regular. The left ideal {BF — B|Be L**(®)} is then a proper modular
left ideal, so is contained in a maximal modular left ideal :%. It follows
from BF =0 for Be M that N = M. Consequently F? — Fe M and
therefore F* = F* = F*, Thus A = F?c R(M), and A + 0 since other-
wise F' would be left quasi-regular.

We fix the notation in the remainder of this section so that A has
the properties asserted in the lemma.

4.3 LEMMA. If REN) & R**, then

(i) E=N+ A, Nel,

(ii) L**(®) = MP(L**(S))A, and

(iii) (L**(®)A is a minimal left ideal of L**(®).

Proof. Since A has the properties asserted in Lemma 4.2, A ¢ M
and therefore L**(®) = MP(L**(G))A with the sum clearly a direct
sum. Let E = N + BA with Ne. Right multiplication by A yields
EA = BA, Thus BA— A= FEA — AcR(L**®))c M. Another right
multiplication by A yields BA = A, so £ = N + A.

Suppose that (0) = & is a left ideal in (L**(®))A. Then L**(®) =
M. Let Be L**(®). Then BA = M, + I, with M, e M and L ecJI.
Right multiplication by A shows that BA = I, so (L**(®))A is a minimal
left ideal.

LEMMA 4.4. If R(M) ¢ R**, then there exists a @ e L***(8) such
that for each Xe L**(®), (AX) = p(X)(AX).

Proof. Since (L**(®))A is a minimal left ideal, A(L**(8))A is a
division algebra and so by the Gelfand-Mazur theorem consists of the
scalar multiples of A. For Xe L**(®), define ¢(X) by AXA = p(X)A.
As defined @ is clearly linear. Moreover, |P(X)||[4] = [|p(X)All =
|AXA| < [|AIPNX]l, so [eX)|=[lAll[|X] and ¢ e L***(@). The
remaining assertion is now immediate.
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4.5 LEMMA. Let M, ={xe L(®)|rxec M}. If REM) & R**, then M,
1s @ maximal modular ideal of L(O).

Proof. Note first that 2(A) is a left ideal containing M, and A & L(A4).
Therefore £(A4) =M. It is an immediate consequence of the definition
of @ given in the proof of Lemma 4.4 that @ is multiplicative on the
center of L**(®). Since 7L(®) is central it follows that por is a multipli-
cative linear functional on L(®), and so has a null space which is either
all of L(®) or is a maximal modular ideal of L(®). Now (72)A = A(rx)A=
p(rx)A, so p(rx) =0 if and only if mxe(4) =M or if and only if
xeM,. If M, were all of L(S), then the w*-continuity of left multiplica-
tion in L**(®) together with the w*-density of wL(®) would imply that
A? = 0 which is not the case. Thus I, is a maximal modular ideal of
L(®) as asserted.

We will use in the sequel two lemmas which are valid in the algebra
B** of the second conjugate space of a Banach algebra B. The nota-
tion is that of [3].

4.6 LEMMA. A w*-closed subspace I of B** is a left (right) ideal
of B** if and only if {f,2>eJIT for all feJT and x€ B ([F, f1e X"
for all feXT and F € B**).

Proof. The argument will be given only for left ideals. Suppose
Y is a left ideal and let fe I and £ € B. Then for any F e, (mx)Fe,
80 0 = (mx)F'(f) = F({f, «>). Consequently {f,x>eJ". Suppose next
that feJT and x € B implies {f, 2> € 7. Then for FFe & and z€ B,
0= F(Kf,2)) = @x)F(f), so (mx)FeI™L =JF. The w*-density of 7B
in B** together with the w*-continuity of left multiplication and the
w*-closure of & give HF ¢ & for all He Y for all He B**, so J is a
left ideal in B**,

4.7 LeMMA. If & is a left ideal im B**, then so is JTL.

Proof. The subspace J'7 is w*-closed. If fe€JT and xze B, then
for any FeJ, (mr)FeJ so 0 = (mx)F(f) = F(Kf,2>) and {f,2>eJT.
Since JT = X717, Lemma 4.6 yields the desired conclusion.

4.8 LEMMA. If M is a maximal modular left ideal of L**(®) with
REM) & R**, then M is w*-closed.

Proof. In view of Lemma 4.7, if MM were not w*-closed, L**(®) =
M7+ and then (0) = MTLT = MT. If A has the same meaning as in the
earlier lemmas, A’ # 0, so there is an f,€ L*(®) such that [A, f,] # 0.
However, since A€ R(M), [A4, fole MT. Thus M is w*-closed.
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4.9 THEOREM. Let I be a maximal modular left ideal im L**(®).

Then either (R(IM))* = 0 or there exists a multiplicative linear functional
@ oon L(®) such that M = {F e L**(®)| F(x) = 0}.

Proof. If R(N)c R**, then R(EAN) M and (R(WM))? = 0. Suppose
that R(EN) M. Let ¢ be the multiplicative linear functional on IL(®)
corresponding to the maximal modular ideal MM, of Lemma 4.5. By
Lemma 4.2 there isan Ae R(WM), 0 = A = A% Let & be the closed span
of {[4, f1If e L*(®)}. Since AeR(M), RCMT, so KL DOM. Also if ge &
and ze L(®), then g =1lim[A4, g,] and <{g, 2> = lim{[4, g,], > = lim[A4,
9., ], s0 g, x> € & Thus by Lemma 4.6, &' is a left ideal in L**(S).
Since &L D M, either &L = M or R+ = L**(®). The latter is impossible since
A*+0, and thus & =M. Now if x €M, then rxeM, so xe KT. Thus
KT M, and KC &L M. However since the latter set consists of the
scalar multiples of ¢, so also must & Thus 9 has the indicated form.

5. Existence. The question of the existence of maximal modular
left ideals in L**(®) with R(WM) & R** or with YWM) & R** is easily
resolved if ® is compact. For & not compact, necessary and sufficient
conditions are given for the existence of ideals with the indicated prop-
erties, but no conclusion is reached as to whether or not the given con-
dition is automatically satisfied.

5.1 THEOREM. Let ® be an infinite compact abelian group, and let
¢ be a multiplicative linear functional on L(S®). Let M = {F € L**(8)|
F(r) =0}. Then R(M) & R** and LM) & R**.

Proof. Since & is compact, its character group is discrete. The
regularity of the Banach algebra L(®) then implies that there is an
e € L(®) such that ¢(e) =1 and v(e) = 0 for every multiplicative linear
functional v on L(®) with v # ¢, The semi-simplicity of L(®) then
implies e =¢*+ 0. Since 7e is an idempotent in L**(®) and thus we ¢ R**,
it suffices to show that me e (M) N R(W). Also since me is central it
sufficies to show me € R(IM). Now for 7wz e M, v(xze) = 0 for all multiplica-
tive linear functional v on L(®) so xe = 0 and (7xz)(me) = 0. However,
M is [3, p. 865] the w*-closure of {wx|mx e M}, so the w*-continuity of
left multiplication shows that we e R(IM) as desired.

5.2 LEMMA. Let ¢t be a nonzero multiplicative limear functional
on L(®). Then there exists De L**(®) such that D(¢) =1, while if v
18 @ multiplicative linear functional on L(®) and v +# (¢, then D(1t) =0.

Proof. We use the notation for multiplicative linear functionals on
L(®) corresponding to the interpretation of the functional as a member
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of the character group ®. Let M donote the almost periodic mean. Then
for any multiplicative linear functionals ¢; on L(®), #; #+ ¢t and for any
complex numbers a;,t =1, -+, n,

[

(= o] = s S

where the norm is that of L*(®). Thus the distance from £ to the span
of the other multiplicative functions is at least one. The desired fune-
tional De L**(®) then exists as a consequence of the Hahn-Banach theo-
rem. The author is indebted to a referee for the suggestion of the above
proof for Lemma 5.2.

5.3 THEOREM. Let %) be the closed subspace of L*(®) generated by
the multiplicative linear functionals on L(®). Let B be the closed span
of {IF,flIF e+ and fe L*®)}.
(i) A necessary and sufflcient condition that there exist a maximal
modular left ideal M in L**(®) with {(M) & R** 1s that P < 8.

(ii) A necessary and sufflcient condition that there exist a maximal
modular left ideal M in L**(®) with R(M) & R** 4s that there
exist B¢ 9L such [B,f]e€ 9 for all f € L*®).

Proof. Suppose first that there exists a maximal modular left ideal
M in L**(S) with M)z R**. Then by Theorem 3.6 there exists a
multiplicative linear functional £ on L(®) such that M={F e L**(®)|F ()=
0}. By Lemma 3.2, (M) = (L**(G))A and A’=A+0, so A¢g M. It
follows that A(¢) = 1. Suppose that Y 3, so that e 3. Thus

m(n)
ﬂ = lim ‘V_‘{ [Gn,iy fn.i]

n 1=

with G, ;e DL, Now 9L C I and Ae QM) so AecPL). Thus
1= A() = lim'S} 4G, (f,.) = 0.

Consequently ) & B.

Suppose that 9 Z 3. Then there exist some multiplicative linear
functional ¢ on L(®) such that £ ¢ 8. Thus there exists J € L**(®) such
that J € 8+ and J(¢) = 1. Let De L**(®) have the property asserted
in Lemma 5.2. Let M = {F e L**(®)|F () = 0}. Clearly M is a maximal
modular left ideal of L**(®). Let H=JD. Then H(y)=J(¢)D(x) =1,
so H¢ 9L and therefore H ¢ R**. Let PeM, and let f € L*(®). Then
HP(f) = JDP(f) = J(DP, f]). Now if v is any multiplicative linear
functional on L(®), (DP)(v) = D(v)P(v) = 0, since Lemma 5.2 D(v)=0
if v+ ¢, while P(v) = 0if v = ¢t since P e M. Thus DP e P+, and thus
[DP, f]1e 8. However J e 8%, so HP(f) = 0. Since f was arbitrary in
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L*(®) and P arbitrary in M, we see that H € {M) and H ¢ R** which
completes the proof of the first half of the theorem.

Next, we suppose that there exist a maximal modular left ideal I
in L**(®) with REN)z R**. By Theorem 4.9, there is a multiplicative
linear functional £ on L(®) such that M = {F e L**(®)| F (1) = 0}. Also
by Lemma 4.2, there exists A € R(IM) such that A = A2+0. In particular.
A¢ M, so A¢PDL as YLt M. Let fe L*(®). Then A e REM) so
AcR®L). Thus for any Te DL, 0=TA(f)=T(A, f]),and [4, f]1eDYTL=
9. Thus A has the required properties.

Finally, we suppose that there exist B ¢ 9L such that [B, f]€9 for
each f e L*(G). Since B ¢ 9+, there exist a multiplicative linear func-
tional ¢ such that B(¢) + 0. Let MM = {F € L**(8)| F(¢) = 0}, so that
M is a maximal modular left ideal in L**(®). By Lemma 5.2, there
exist A e L**(®) such that A(¢) =1 and A(v) = 0 if v is a multiplicative
linear functional on L(®) different from . Now AB(¢) = A(¢)B(r) + 0,
so AB ¢ R**. Let Pe I, then for fe L*®), [B, f1€9, so

[B,f] =lim'S: ¢, itt.
n =1

where each f,; is a multiplicative linear functional on 2(®) and each
¢,..; is a complex number. We choose the notation so that x,, = ¢£. Hence
by the stated properties of A and the fact that [4, v] = A(v)v for any
multiplicative linear functional ¢£ on L(®) we see that

m(n)
[AByf] = [A7 [By f]] = li},’n ; cn.iA(ﬂn,i)lun.i - li?lcn,ll’l .

Thus PAB(f) = P([AB, f]) = 0, and since f was arbitrary in L*(®) and
P arbitrary in I we have ABecR(M). This completes the proof of
Theorem 5.3.
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