ON DIRECT SUMS AND PRODUCTS OF MODULES

STEPHEN U. CHASE

A well-known theorem of the theory of abelian groups states that
the direct product of an infinite number of infinite cyclic groups is not
free ([6], p. 48.) Two generalizations of this result to modules over
various rings have been presented in earlier papers of the author ([3],
[4].) In this note we exhibit a broader generalization which contains
the preceding ones as special cases.

Moreover, it has other applications. For example, it yields an easy
proof of a part of a result of Baumslag and Blackburn [2] which gives
necessary conditions under which the direct sum of a sequence of abelian
groups is a direct summand of their direct product. We also use it to
prove the following variant of a result of Baer [1]: If a torsion group
T is an epimorphic image of a direct product of a sequence of finitely
generated abelian groups, then T is the direct sum of a divisible group
and a group of bounded order. Finally, we derive a property of modules
over a Dedekind ring which, for the ring Z of rational integers, reduces
to the following recent theorem of Rotman [10] and Nunke [9]: If A
is an abelian group such that Ext,(4, T') = 0 for any torsion group 7,
then A is slender.

In this note all rings have identities and all modules are unitary.

1. The main theorem. Our discussion will be based on the fol-
lowing technical device.

DEFINITION 1.1. Let & be a collection of principal right ideals
of a ring R. & will be called a filter of principal right ideals if,
whenever aR and bR are in &, there exists cecaR N bR such that cR
is in &7 .

We proceed immediately to the principal result of this note.

THEOREM 1.2. Let AW, A®, «.. be a sequence of left modules over
a ring R, and set A =TI A9, A, =1, A9, Let C= >, C,,
where {C,} is a family of left R-modules and a traces an index set I.
Let f: A— C be an R-homomorphism, and denote by f,. A— C, the
composition of f with the projection of C onto C,. Finally, let &
be a filter of principal right ideals of R. Then there exists aR in
F and an integer m > 0 such that f.(aA,) S MNoieg 0C, for all but a
finite number of « in I.

Proof. Assume that the statement is false. We shall first construct
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inductively sequences {x,} S A4, {a,R} S %, and {a,} S I such that the
following conditions hold:

(i) a,R2a,,R.

(ii) =z,€a,4, .

(iii) fa,(®,) #= 0 (mod a,:.C,,) -
(iv) fa, (@) =0 for £ <m.

We proceed as follows. Select any a,R in &% . Then there exists
a, e I such that f,(a,4;) € Moreg bC,,, and hence we may select bR in
Z such that f,(a,4,) & bC,,. Since # is a filter of principal right
ideals, there exists a,ea,R N bR such that a,Re &, in which case
Sa (@A) & a,C,,.  Hence there exists «,€a,4, such that f,(x,) %0
(mod a,C..)). Then conditions (i)~(iv) above are satisfied for n = 1.

Proceed by induction on n; assume that the sequences {x,} and {a,}
have been constructed for ¥ < n and the sequence {a,R} has been con-
structed for k£ < n such that conditions (i)-(iv) are satisfied. Now, there
exist By, ++-, B, €I such that, if a« # B, -+, B, then f (z,) =0 for all
k<mn. We may then select «,#p8,,--+,B, such that f, (@,4,)Z Noreg bC.,;
for, if we could not do so, then the theorem would be true. Hence
there exists bRe & such that f, (a,4,) € bC,,. Since & is a filter
of principal right ideals, there exists a,,€a,R N bR such that a,,,R
isin &, in which case £, (a,4,) € @,1.C,,. Thus we may select «, € a, 4,
such that f, (¢,) # 0 (mod a,,,C, ). It is then clear that the sequences
{z,} and {a;} for k < n and {a, R} for k < n + 1 satisfy conditions (i)-(iv),
and hence the construction of all three sequences is complete.

Now write z, = (x{”), where z{? € A®, Since x,<€a,4;, z” =0 for
k>4, and ¥ = 3, 2 is a well-defined element of A¥. Also, since
a,R2a,,R2---, it follows that there exists ¥ ¢ A® such that 2 =
2P+ eee + 20 + a,.,y. Therefore, setting z = (¢*) and ¥y, = (y¥),
we see that x =2, + «++ + 2, + a,11y, for all n = 1.

It follows immediately from inspection of conditions (iii) and (iv)
above that a; + «; if 4 # j. Hence there exists » such that f, (x) = 0.
Writing # = », + -+« + 2, + @¢,,%, as above, we may then apply f.,
and use condition (iv) to conclude that f, (#.) = —@u1fa,(¥,) =0 (mod
@,+:Ca,), contradicting condition (iii). The proof of the theorem is hence
complete.

In the following discussion we shall use the symbol | X| to denote
the cardinality of the set X.

COROLLARY 1.3 ([3], Theorem 3.1, p. 464). Let R be a ring, and
A = Jlue; R, where R ~ R as a left R-module and |J| = W,. Suppose
that A is a pure submodule of C = >z @ Cs, where each Cg is a left R-
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module and |Cyz| =< |J|." Then R must satisfy the descending chain
condition on principal right ideals.

Proof. Since J is an infinite set, it is easy to see that A ~ [, A?,
where A” ~ A, and so without further ado we shall identify A with
7, A9, Let fi A— C be the inclusion mapping, and fz: 4 — Cs; be
the composition of f with the projection of C onto C;. Finally, set
An = ?:n+1 A(i)'

Suppose that the statement is false. Then there exists a strictly
descending infinite chain a,R 2 a,R 22 --- of principal right ideals of R.
These ideals obviously constitute a filter of principal right ideals of R,
and so we may apply Theorem 1.2 to conclude that there exists n =1
and B, ---, B, such that fu(a,4,) & @,..Cs for B8+ 5, +--, B,.

Now let C" = Cp D -+ D C;,; then the projection of C onto C’
induces a Z-homomorphism g:«,C/a,.,C — a,C'la,.,C’, where Z is the
ring of rational integers. Also, the restriction of f to A, induces a Z-
homomorphism 4:a,4,/a,.,4, — a,Cla,,C. A, is a direct summand of A4,
which is a pure submodule of C, and so A, is likewise a pure submodule
of C. Hence h is a monomorphism. We may then apply the conclusion
of the preceding paragraph to obtain that the composition gk is a mono-
morphism. In particular, |a,4,/a,..4,] =< |a,C'|a,..C'| < |C"|.

Observe that |C'| < | J|, since J is infinite and |Cz| = |J| for all
B. However, since a,R + a,..R, a,Ra,,,R contains at least two elements;
therefore | a,A4,/0, 1, A, | =] a,Ala, Al = 27 >]J|. We have thus reached
a contradiction, and the corollary is proved.

2. Applications to integral domains. Throughout this section R
will be an integral domain. If C is an R-module, we shall denote the
maximal divisible submodule of C by d(C). In addition, we shall write
R“C = N aC, where a traces the nonzero elements of E.

Our principal result concerning modules over integral domains is
the following theorem.

THEOREM 2.1. Let {A®} be a sequence of R-modules, and set A =

2 AY A, =T AY. Let C= >, C,, where each C, is an R-

module. Let f: A— C be an R-homomorphism, and f,. A— C, be the

composition of f with the projection of C onto C,. Then there exists

an integer n =1 and ac R, a # 0, such that af, (A, = R“C, for all
but finitely many «.

Proof. Let % be the set of all nonzero principal ideals of R.
Since R is an integral domain, it is clear that & is a filter of prinecipal
ideals. The theorem then follows immediately from Theorem 1.2.

1 A is a pure submodule of C if A NaC = aA for all a€R.
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COROLLARY 2.2 (see [4].) Same hypotheses and notation as in Theorem
2.1, with the exception that now each C, is assumed to be torsion-free.
Then there exists an integer » = 1 such that f.(4,) & d(C,) for all but
finitely many «. In particular, if each C, is reduced (i.e., has no di-
visible submodules) then f,(A4,) = 0 for all but finitely many «.

Proof. This follows immediately from Theorem 2.1 and the trivial
observation that, since each C, is torsion-free, R“C, = d(C.,).

Next we present our proof of the afore-mentioned result of Baumslag
and Blackburn concerning direct summands of direct products of abelian
groups ([2], Theorem 1, p. 403.)

THEOREM 2.3. Let {A“} be a sequence of modules over an integral
domain R, and set A =1[2, A?, C= 372, P AY (then C s, in the
usual way, a submodule of A.) If C is a direct summand of A, then
there exists m = 1 and a + 0 in R such that aA® = d(A®) for © > n.

Proof. Assume that Cis a direct summand of A, and let /14— C
be the projection. Then the composition of f with the projection of C
onto A® is an epimorphism f;: A — A%, We then obtain from an easy
application of Theorem 2.1 that there exists » = 1 and @ # 0 in R such
that af;(4) & R“A"”. Since each f; is an epimorphism, it follows that
aA® = R°AY for © > n.

Now let ze R°A"”, where 7 > n. If b+ 0 is in R, then there exists
x € A” such that abx = 2. Hence, setting y = ax, we have that y ¢ R°A®
and by = 2. It then follows that R“A“ is divisible, and so R“A® &
d(A%). Therefore aA® = R°A® < d(A”) for % > m, completing the
proof of the theorem.

We end this section with a proposition which will be useful in the
proof of some later results.

ProrosiTiON 2.4. Let {A“} be a sequence of finitely generated
modules over an integral domain R, and set A =[], 4%, Let C=
S @ C., where each C, is a finitely generated torsion R-module. If
f: A— Cis an R-homomorphism, then there exists ¢ € R such that ¢f(4) =
0 but ¢ # 0.

Proof. As before we let 5 be the filter of all nonzero principal
ideals of R. Clearly R“C, = 0 for all @, and so we may apply Theorem
2.1 to obtain @ #+ 0 in R and an integer » > 0 such that af.,(4,) =0
for all but finitely many «, where A, = [[2.. A® and f.: A—C, is
defined as before. Say this condition holds for a # «, ---, «,; then,
since each C, is finitely generated and torsion, there exists a’ = 0 in R
such that a'C,, =0 for ¢ =1, ---, 7, in which case aa’f(4,) = 0. Since
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each A“ is finitely generated and C is a torsion module, there exists
a” #0 in R such that a”"f(A®) =0 for ¢ <n. Set ¢ =aa'a”; then
¢# 0 and, since A=AYP --- P A™ D A,, it is clear that ¢f(4) =0,
completing the proof of the proposition.

3. Applications to Abelian groups. This section is devoted to a
discussion of the results of Baer, Rotman, and Nunke mentioned in the
introduction.

THEOREM 3.1 (see [1], Lemma 4.1, p. 231). Let {4} be a sequence
of finitely generated modules over a principal ideal domain R, and set
A =TIz, A9, If C is a torsion R-module which is an epimorphic image
of A, then C is the direct sum of a divisible module and a module of
bounded order.

Proof. For each prime p in R, let C, be the p-primary component
of C and C, be a basic submodule of C, (see [5], p. 98;) i.e., C, is a
direct sum of ecyclic modules and is a pure submodule of C,, and
C,/C; is divisible. Set C' = 3, @ C}; then, since C = >, P C,, C' isa
pure submodule of C and C/C’ is divisible. Also, C’ is a direct sum of
cyclic modules.

We now apply the fundamental result of Szele ([5], Theorem 32.1,
p. 106) to conclude that C, is an endomorphic image of C, for each
prime p, from which it follows that C’ is an endomorphic image of C.
Since by hypothesis C is an epimorphic image of A, we then see that
there exists an epimorphism f: A — C’. By Proposition 2.4, there exists
¢ # 0 in R such that ¢C = ¢f(4) = 0; i.e., C’ has bounded order. Since
C’' is a pure submodule of C, we may apply Theorem 7 of [6] (p. 18)
to conclude that C' is a direct summand of C. Since C/C’ is divisible,
the proof is complete.

For the case in which R is the ring of rational integers, the as-
sertion of Theorem 3.1 follows from the work of Nunke [9].

In the remainder of this note, R will be a Dedekind ring which is
not a field. If A and C are R-modules, we shall write Ext (4, C) for
Exth(A4, C). The following two lemmas are well-known, but to our
knowledge have not appeared explicitly in the literature.

LEMMA 3.2. Let a + 0 be a nonunit in R, and let A and C vbe R-
modules. Assume that aC = 0, and a operates faithfully on A (i.e.,
ax =0 for x€ A only if x =0.) Then Ext(A4,C) = 0.

2 The definition and properties of basic submodules used here, as well as the theorem
of Szele applied in the following paragraph, are in [5] given only for the special case in
which R is the ring of rational integers. However, it is well-known that these results can
be trivially extended to modules over an arbitrary principal ideal domain.
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Proof. Since a operates faithfully on A, we obtain the exact
sequence—

0 A4 AlaA 0

where m, is defined by m.(x) = ax. This gives rise to the exact coho-
mology sequence—

*
Ext (4, C) —% Ext (4, C) — 0

where m}(u) = au for u in Ext (4, C). But, since aC =0, we have
that m} =0, and so it follows from exactness that Ext (4, C) = 0, com-
pleting the proof.

LEMMA 8.3. Let a + 0 be a nonunit in R, and A, C be R-modules.
Assume that a operates faithfully on A. Then the following statements
are equivalent:

(a) a operates faithfully on Ext (A4, C).

() The natural mapping Hom (4, C) — Hom (4, C/aC) is an epi-
morphism.

Proof. Consider the exact sequence—

Ma

0 C. C

where C, = {x € Clax = 0} and m, is defined as in Lemma 3.2. This
sequence may be broken up into the following short exact sequences:

C ClaC——0

0 C, ¢, ac 0

v

0 aC C ClaC 0

where v is the inclusion mapping and g differs from m, only by the
obvious contraction of the range. Since aC, = 0 and a operates faithfully
on A, we obtain from Lemma 3.2 that Ext (4, C,) = 0, and so the relevant
portions of the resulting cohomology sequences are as follows:

0 —> Ext (4, C) 2% Ext (4, aC) — 0
Hom (4, C) — Hom (4, ClaC) — Ext (4, aC) —> Ext (4, C) .

Since m, = y¢, we have that m,, = v, /,, where m,,: Ext(4,C)—
Ext (4, C) is defined by m,,(u) = au for u in Ext (A4, C). Hence (a)
holds if and only if m,, is a monomorphism. But this is true if and
only if v, is a monomorphism, since f, is an isomorphism. But it is
clear from the second exact sequence above that v, is a monomorphism
if and only if (b) holds. The proof is hence complete.
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In the remainder of this section we shall set ] = [[=, R, where
R(i) ~ R.

THEOREM 3.4. Let R be a Dedekind ring, and a #+ 0 be a nonunit
wm R. Set C = >, Rla"R. Let A be a torsion-free R-module satis-
Sying the following conditions:

(a) Every submodule of A of finite rank is projective.

(b) @ operates faithfully on Ext (A4, C).

Then, if feHom (11, A), f(Il) has finite rank.

Proof. Assume that the statement is false for some fe Hom (77, A).
Then f(/I) contains a submodule F, of countably infinite rank. Let
F ={xecAla"xc F, for some n}. Then F likewise has countably infinite
rank. We may then apply condition (a) and a result of Nunke ([8],
Lemma 8.3, p. 239) to obtain that F' is projective, and then a result
of Kaplansky ([7], Theorem 2, p. 330) to conclude that F is free. Let
X, &, +++ be a basis of F. Then there exist nonnegative integers v;, v,, ««-
such that y, = a’x, is in F.

Let z, generate the direct summand of C isomorphic to R/a"R, and
let Z, be the image of z, under the natural mapping of C onto C = C/aC.
Define an R-homomorphism 6,: F— C by 60,(z,) = Zutvye Observe that
0(aF) =0, and so 6, induces a homomorphism 0,: Fj/aF — C. Now, it
follows easily from the construction of F' that the sequence 0 — FaF —
AjaF'— AJF'— 0 is exact, and a operates faithfully on A/F. We may
then apply Lemma 3.2 to conclude that this sequence splits. It is then
clear that 6, can be extended to a homomorphism 6: A — C. We empha-
size the fact that 6(x,) = z,.,,.

Since a operates faithfully on Ext (4, C), we may now apply Lemma
3.3 to obtain @ € Hom (4, C) such that the diagram—

AL, ¢
N
0\_

C

is commutative. Observe that, since 0(x,) = Z,+,,, P(2,) = 24+, (mod aC).
That is, the coefficient of z,,, in the expansion of o(x,) is 1 + at, for
some ¢,€ R. Since y, = a’x,, the coefficient of z,,, in the expansion
of o(y,) is a™ + a’»*'t,.

Set g = @f; then ge Hom (1, C), and so we may apply Proposition
2.4 to conclude that c¢g(/1) = 0 for some ¢ + 0 in R. Since each y, is
in f(1I), and z, generates a direct summand of C isomorphic to R/a"R,
it then follows from the preceding paragraph that c(e*» + a’»*%,) is in
a**»R for all n, in which case ¢(1 + at,) is in a"R for all n. Let P
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be any prime ideal in R containing a; then 1 + at, is a unit modulo P*»
for all n > 0, and so ¢e P for all n. Therefore ¢ = 0, a contradiction.
This completes the proof of the theorem.

COROLLARY 3.5. Let R be a Dedekind ring (not a field,) and let
A be an R-module with the property that Ext (4, C) = 0 for any torsion
module C. Then, if feHom (I, A), f(II) is a projective module of
Sinite rank.

Proof. We may apply a result of Nunke ([8], Theorem 8.4, p. 239)
to obtain that A is torsion-free and every submodule of A of finite
rank is projective. The corollary then follows immediately from Theorem
3.4.

The following special case of Theorm 8.4 was first proved by
Rotman ([10], Theorem 3, p. 250) under an additional hypothesis whitch
was later removed by Nunke ([9], p. 275.)

COROLLARY 3.6. Let A be an abelian group such that Ext (A, C) =
0 for any torsion group C. Then A is slender.®

Proof. We need only show that, for any fe Hom (I, 4), f(II) is
slender. By Corollary 3.5, f(Il) is free of finite rank. But it is well-
known that a free abelian group is slender (see [5], Theorems 47.3 and
47.4, pp. 171-172.) The proof is hence complete.
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