
ON DIRECT SUMS AND PRODUCTS OF MODULES

STEPHEN U. CHASE

A well-known theorem of the theory of abelian groups states that
the direct product of an infinite number of infinite cyclic groups is not
free ([6], p. 48.) Two generalizations of this result to modules over
various rings have been presented in earlier papers of the author ([3],
[4].) In this note we exhibit a broader generalization which contains
the preceding ones as special cases.

Moreover, it has other applications. For example, it yields an easy
proof of a part of a result of Baumslag and Blackburn [2] which gives
necessary conditions under which the direct sum of a sequence of abelian
groups is a direct summand of their direct product. We also use it to
prove the following variant of a result of Baer [1]: If a torsion group
T is an epimorphic image of a direct product of a sequence of finitely
generated abelian groups, then T is the direct sum of a divisible group
and a group of bounded order. Finally, we derive a property of modules
over a Dedekind ring which, for the ring Z of rational integers, reduces
to the following recent theorem of Rotman [10] and Nunke [9]: If A
is an abelian group such that Extz(A, T) = 0 for any torsion group Γ,
then A is slender.

In this note all rings have identities and all modules are unitary.

1. The main theorem* Our discussion will be based on the fol-
lowing technical device.

DEFINITION 1.1. Let ^ be a collection of principal right ideals
of a ring R. J?" will be called a filter of principal right ideals if,
whenever aR and bR are in ^ " , there exists c e aR Π bR such that cR
is in ^ .

We proceed immediately to the principal result of this note.

THEOREM 1.2. Let Aa), A{2), ••• be a sequence of left modules over

a ring R, and set A = ΠΓ=i A(<), An = ΠΓ^+iA(ί). Let C = Σ . Θ C
where {Ca} is a family of left R-modules and a traces an index set I.
Let f: A—*C be an R-homomorphism, and denote by fω: A—*CΛ the
composition of f with the projection of C onto CΛ. Finally, let SΓ
be a filter of principal right ideals of R. Then there exists aR in
^ and an integer n > 0 such that fJaAn) gΞ ΓibRβsf bCa for all but a
finite number of a in I.

Proof. Assume that the statement is false. We shall first construct
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inductively sequences {xn} £ A, {anR} £ ^ , and {αj £ I such that the
following conditions hold:

( \ \ n T? —1 n J?
\ 1 ) Q>nJΛ> =. Q'n+l-K'

( i i ) xneanAn.

(iii) fajxn) Φ 0 (mod an+1CaJ .

(iv) fajxk) = 0 tor k<n .

We proceed as follows. Select any aλR in ^ . Then there exists
a± e I such that faJjiiAJ ς£ f]bBesf bCai, and hence we may select bR in
J^~ such that /^(αiAj) ς£ 6CΛl. Since ^ ~ is a filter of principal right
ideals, there exists a2eaλR[\bR such that a2R&J^, in which case
/^(ttiAO <£ α2CΛ l. Hence there exists a?! e α ^ such that fΛl(Xi) Φ 0
(mod a2Ca). Then conditions (i)-(iv) above are satisfied for n = 1.

Proceed by induction on w; assume that the sequences {xk} and {αA}
have been constructed for k < n and the sequence {α î?} has been con-
structed for k ^ n such that conditions (i)-(iv) are satisfied. Now, there
exist β19 , βr e I such that, if a Φ β19 , βr9 then fa(xk) = 0 for all
fc<^. We may then select anφβ19 9βr such that fΛn(anAn)(£ Γ\ϋRe& bC*^,
for, if we could not do so, then the theorem would be true. Hence
there exists bRej^~ such that fΛn{anAn) qL bCv Since J^ is a filter
of principal right ideals, there exists an+1 e anR Π bR such that an+1R
is in &~9 in which case fΛn(anAn) ςt an+1Can. Thus we may select xn e anAn

such that foon{xn) Ξ£ 0 (mod an+1CMn). It is then clear that the sequences
{xk} and {ak} for k ^ n and {αfei2} for k ^ n + 1 satisfy conditions (i)-(iv),
and hence the construction of all three sequences is complete.

Now write xk = (xk

]), where αsĵ e A(<). Since xkeakAk, xk

l) = 0 for
k > i9 and x{i) — YJζ^xf is a well-defined element of AUΊ. Also, since
anR a ^»+i^ 2 " , it follows that there exists y™ e A(ί) such that x(ί) =

χ(ί) _|_ . . . + a «) + an+1y
{

n

ί}. Therefore, setting a? = ($(ί)) and yn = (i/i0),
we see that x = χx+ + xn + αn+1^/w for all n*zl.

It follows immediately from inspection of conditions (iii) and (iv)
above that a{ Φ as if i Φ j . Hence there exists n such that fΛn(x) = 0.
Writing x — xλ + + xn + αw+1j/n as above, we may then apply fΛn

and use condition (iv) to conclude that fΛJxn) = —a,n+ifan(yn) = 0 (mod
βn+iCa^), contradicting condition (iii). The proof of the theorem is hence
complete.

In the following discussion we shall use the symbol | X | to denote
the cardinality of the set X

COROLLARY 1.3 ([3], Theorem 3.1, p. 464). Let J? be a ring, and
A = ΓLej R{*\ where Rw ^R as a left .K-module and | J\ ^ ^ 0 . Suppose
that A is a pure submodule of C — Σ e Θ Cβ9 where each Cβ is a left R-
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module and \Cβ\ ^ | J\.x Then R must satisfy the descending chain
condition on principal right ideals.

Proof. Since J is an infinite set, it is easy to see that A ^ Πΐ°=i A{i),
where A{i) ^ A, and so without further ado we shall identify A with
ΐlT=iA{i). L e t / : A ^ C b e the inclusion mapping, and fβ:A-+Cβ be
the composition of / with the projection of C onto Cβ. Finally, set
A — TT°° 4 ( ί )

Suppose that the statement is false. Then there exists a strictly
descending infinite chain aλR Ξ2 <*>*& =2 of principal right ideals of R.
These ideals obviously constitute a filter of principal right ideals of R,
and so we may apply Theorem 1.2 to conclude that there exists n ^ 1
and &,-•-,& such that fβ(anAn) £ an+1Cβ for β Φ βu . . . , βr.

Now let C = Cβl 0 0 Cβr; then the projection of C onto C
induces a ^-homomorphism #: anCjan+1C —• anC'lan+1C

f, where Z is the
ring of rational integers. Also, the restriction of / to An induces a Z-
homomorphism h: anAJan+1An —> anClan+1C. An is a direct summand of A,
which is a pure submodule of C, and so An is likewise a pure submodule
of C. Hence h is a monomorphism. We may then apply the conclusion
of the preceding paragraph to obtain that the composition gh is a mono-
morphism. In particular, \anAJan+1An\ ^ \anC'lan+1C'\ ^ | C'\.

Observe that \Cf\ ^ \J\, since J is infinite and \Cβ\ ^ | J\ for all
/3. However, since anR Φ an+1R, anR/an+1R contains at least two elements;
therefore | anAJan+1An \ = | anAjan+1A \ ̂  2 | J | > | J\. We have thus reached
a contradiction, and the corollary is proved.

2 Applications to integral domains. Throughout this section R
will be an integral domain. If C is an i2-module, we shall denote the
maximal divisible submodule of C by d(C). In addition, we shall write
RωC — Π uC, where a traces the nonzero elements of R.

Our principal result concerning modules over integral domains is
the following theorem.

THEOREM 2.1. Let {Aw} be a sequence of R-modules, and set A =
ΠΓ=i^ ( ί\ A-n = ΠΓ=«+iA(<). Let C = Σ * © C * , where each CΛ is an R-
module. Let f: A—> C be an R-homomorphism, and fa: A-^Ca be the
composition of f with the projection of C onto Ca. Then there exists
an integer n^l and aeR, a Φ 0, such that afa,(An) £ RωCcύ for all
but finitely many a.

Proof. Let j ^ ~ be the set of all nonzero principal ideals of R.
Since R is an integral domain, it is clear that ^ is a filter of principal
ideals. The theorem then follows immediately from Theorem 1.2.

1 A is a pure submodule of C if A (Ί aC = aA for all a€R.
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COROLLARY 2.2 (see [4].) Same hypotheses and notation as in Theorem
2.1, with the exception that now each CΛ is assumed to be torsion-free.
Then there exists an integer n ^ 1 such that fa(An) g d(Ca) for all but
finitely many a. In particular, if each CΛ is reduced (i.e., has no di-
visible submodules) then fa(An) = 0 for all but finitely many a.

Proof. This follows immediately from Theorem 2.1 and the trivial
observation that, since each CΛ is torsion-free, RωCcύ — d(Ca).

Next we present our proof of the afore-mentioned result of Baumslag
and Blackburn concerning direct summands of direct products of abelian
groups ([2], Theorem 1, p. 403.)

THEOREM 2.3. Let {Aw} be a sequence of modules over an integral
domain R, and set A = JlT=1 A

{i), C = ΣΠ=i θ A{i) (then C is, in the
usual way, a submodule of A.) If C is a direct summand of A, then
there exists n ^ 1 and a Φ 0 in R such that aA{ί) £j d{A{i)) for i > n.

Proof. Assume that C is a direct summand of A, and let /: A —* C
be the projection. Then the composition of / with the projection of C
onto A{ί) is an epimorphism f{\ A—*A{i). We then obtain from an easy
application of Theorem 2.1 that there exists n ^ 1 and a Φ 0 in R such
that afi(A) S RωA{i). Since each ft is an epimorphism, it follows that
aA(ί) g RωA(i) for i > n.

Now let z e RωAH), where i > n. If b Φ 0 is in R, then there exists
x e A{i) such that abx — z. Hence, setting y = ax, we have that y e RωA{ί)

and by = z. It then follows that RωA{i) is divisible, and so RωA{i) C
d(A{i)). Therefore aA{i) g RωA{ί) g d(A{ί)) for i > n, completing the
proof of the theorem.

We end this section with a proposition which will be useful in the
proof of some later results.

PROPOSITION 2.4. Let {Aw} be a sequence of finitely generated
modules over an integral domain R, and set A = ΐ[T=iA(i). Let C =
Σ * θ CΛ, where each Ca is a finitely generated torsion iϋ-module. If
/: A —• C is an 12-homomorphism, then there exists ce R such that cf(A) =
0 but c Φ 0.

Proof. As before we let ^~ be the filter of all nonzero principal
ideals of R. Clearly RωCai = 0 for all a, and so we may apply Theorem
2.1 to obtain a φ 0 in R and an integer n > 0 such that afa(An) = 0
for all but finitely many a, where An = IL°°=«+i AH) and fa: A—>Ca is
defined as before. Say this condition holds for a Φ au « , ^ r ; then,
since each CΛ is finitely generated and torsion, there exists af Φ 0 in R
such that a'CΛi = 0 for i = 1, , r, in which case aaf(An) — 0. Since
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each A{i) is finitely generated and C is a torsion module, there exists
α" Φ 0 in R such that a"f{A[i)) = 0 for i g n. Set c = ααV; then
c =£ 0 and, since A = A{1) © 0 Ain) 0 An, it is clear that cf(A) = 0,
completing the proof of the proposition.

3 Applications to Abelian groups This section is devoted to a
discussion of the results of Baer, Rotman, and Nunke mentioned in the
introduction.

THEOREM 3.1 (see [1], Lemma 4.1, p. 231). Let {A{i)} be a sequence
of finitely generated modules over a principal ideal domain R, and set
A — ΠΓ=iΆ(<)- If C is a torsion B-module which is an epimorphic image
of A, then C is the direct sum of a divisible module and a module of
bounded order.

Proof. For each prime p in R, let Cp be the p-primary component
of C and Cp be a basic submodule of Cp (see [5], p. 98;) i.e., C'p is a
direct sum of cyclic modules and is a pure submodule of CP9 and
CP\C'P is divisible.2 Set C" = Σ P 0 C£; then, since C = Σ P 0 Cp, C" is a
pure submodule of C and C/C is divisible. Also, C" is a direct sum of
cyclic modules.

We now apply the fundamental result of Szele ([5], Theorem 32.1,
p. 106) to conclude that Cp is an endomorphic image of Cp for each
prime p, from which it follows that C is an endomorphic image of C.
Since by hypothesis C is an epimorphic image of A, we then see that
there exists an epimorphism /: A —> C\ By Proposition 2.4, there exists
c Φ 0 in R such that cC — cf(A) — 0; i.e., C has bounded order. Since
C" is a pure submodule of C, we may apply Theorem 7 of [6] (p. 18)
to conclude that C is a direct summand of C. Since C/C is divisible,
the proof is complete.

For the case in which R is the ring of rational integers, the as-
sertion of Theorem 3.1 follows from the work of Nunke [9].

In the remainder of this note, R will be a Dedekind ring which is
not a field. If A and C are iϋ-modules, we shall write Ext (A, C) for
Extβ(A, C). The following two lemmas are well-known, but to our
knowledge have not appeared explicitly in the literature.

LEMMA 3.2. Let a Φ 0 be a nonunit in R, and let A and C be R-
modules. Assume that aC = 0, and a operates faithfully on A (i.e.,
ax = 0 for xeA only if x = 0.) Then Ext (A, C) = 0.

2 The definition and properties of basic submodules used here, as well as the theorem
of Szele applied in the following paragraph, are in [5] given only for the special case in
which R is the ring of rational integers. However, it is well-known that these results can
be trivially extended to modules over an arbitrary principal ideal domain.
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Proof. Since a operates faithfully on A, we obtain the exact
sequence—

0 > A -^U A > Ala A > 0

where ma is defined by ma{x) — ax. This gives rise to the exact coho-
mology sequence—

Ext (A, C) i Ext (A, C) > 0

where m*(%) = au for u in Ext {A, C). But, since aC = 0, we have
that mt — 0, and so it follows from exactness that Ext (A, C) — 0, com-
pleting the proof.

LEMMA 3.3. Let a Φ 0 he a nonunit in R, and A, C be R-modules.
Assume that a operates faithfully on A. Then the following statements
are equivalent:

(a) a operates faithfully on Ext (A, C).
(b) The natural mapping Horn (A, C)—> Horn (A, C/aC) is an epi-

morphism.

Proof. Consider the exact sequence—

0 >Ca >C^^C >C/aC >0

where Ca = {x e C/ax = 0} and ma is defined as in Lemma 3.2. This
sequence may be broken up into the following short exact sequences:

0 >Ca >C-^->aC >0

0 >aC-^->C >ClaC >0

where v is the inclusion mapping and μ differs from ma only by the
obvious contraction of the range. Since aCa — 0 and a operates faithfully
on A, we obtain from Lemma 3.2 that Ext {A, Ca) = 0, and so the relevant
portions of the resulting cohomology sequences are as follows:

0 > Ext {A, C) - ^ Ext {A, aC) > 0

Horn (A, C) > Horn (A, C/αC) > Ext (A, aC) - ^ Ext (A, C) .

Since ma — vμ, we have that ma* — v*μ*, where ma*: Ext (A, C)—>
Ext (A, C) is defined by ma*(u) = au for u in Ext (A, C). Hence (a)
holds if and only if ma* is a monomorphism. But this is true if and
only if v* is a monomorphism, since μ* is an isomorphism. But it is
clear from the second exact sequence above that v* is a monomorphism
if and only if (b) holds. The proof is hence complete.
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In the remainder of this section we shall set Π = ΠΓ=i^(ί)> where

THEOREM 3.4. I^et R be a Dedekίnd ring, and a Φ 0 be a nonunit
in R. Set C = Σ?=i Θ R/anR- Let A be a torsion-free R-module satis-
fying the following conditions:

(a) Every submodule of A of finite rank is protective.
(b) a operates faithfully on Ext (A, C).

Then, if fe Hom (77, A), f(Π) has finite rank.

Proof. Assume that the statement is false for some fe Hom (77, A).
Then /(77) contains a submodule Fo of countably infinite rank. Let
F = {x e A\anx e FQ for some n}. Then F likewise has countably infinite
rank. We may then apply condition (a) and a result of Nunke ([8],
Lemma 8.3, p. 239) to obtain that F is protective, and then a result
of Kaplansky ([7], Theorem 2, p. 330) to conclude that F is free. Let
xu x2, be a basis of F. Then there exist nonnegative integers vu v2,
such that yn = aVnxn is in Fo.

Let zn generate the direct summand of C isomorphic to R\anR, and
let zn be the image of zn under the natural mapping of C onto C = CjaC.
Define an ϋ!-homomorphism Θ^F—^C by #i(ίcn) = zn+vn- Observe that
θ^aF) = 0, and so θx induces a homomorphism θ2: F/aF —* C. Now, it
follows easily from the construction of F that the sequence 0 —> FjaF —>
AjaF-^AjF—^0 is exact, and a operates faithfully on A\F. We may
then apply Lemma 3.2 to conclude that this sequence splits. It is then
clear that θ2 can be extended to a homomorphism θ: A —* C. We empha-
size the fact that θ(xn) = zn+v

Since a operates faithfully on Ext {A, C), we may now apply Lemma
3.3 to obtain cpeHom(A, C) such that the diagram—

\i
C

is commutative. Observe that, since θ(xn) = zn+^n, <p(xn) = zn+Vn (mod aC).
That is, the coefficient of zn+Vn in the expansion of φ{xn) is 1 + atn for
some tn e R. Since yn = aVnxn, the coefficient of zn+^n in the expansion
of φ(yn) is αVw + av^+1tn.

Set ^ = φf\ then sreHom(77, C), and so we may apply Proposition
2.4 to conclude that cg(Π) = 0 for some c Φ 0 in iϋ. Since each yn is
in /(77), and zn generates a direct summand of C isomorphic to R/anR,
it then follows from the preceding paragraph that c(a^ + aVn+1tn) is in
an+VnR for all n, in which case c(l + atn) is in anR for all ^. Let P
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be any prime ideal in R containing a; then 1 + atn is a unit modulo Pn

for all n > 0, and so c e Pn for all n. Therefore c = 0, a contradiction.
This completes the proof of the theorem.

COROLLARY 3.5. Let R be a Dedekind ring (not a field,) and let
A be an R-module with the property that Ext (A, C) = 0 for any torsion
module C. Then, if fe Horn (Π, A),f(Π) is a protective module of
finite rank.

Proof. We may apply a result of Nunke ([8], Theorem 8.4, p. 239)
to obtain that A is torsion-free and every submodule of A of finite
rank is projective. The corollary then follows immediately from Theorem
3.4.

The following special case of Theorm 3.4 was first proved by
Rotman ([10], Theorem 3, p. 250) under an additional hypothesis whitch
was later removed by Nunke ([9], p. 275.)

COROLLARY 3.6. Let A be an abelian group such that Ext (A, C) —
0 for any torsion group C. Then A is slender.3

Proof. We need only show that, for any /eHom(/7, A), f(Π) is
slender. By Corollary 3.5, f(Π) is free of finite rank. But it is well-
known that a free abelian group is slender (see [5], Theorems 47.3 and
47.4, pp. 171-172.) The proof is hence complete.

REFERENCES

1. R. Baer, Die Torsionsuntergruppe Einer Abelschen Gruppe, Math. Annalen, 135
(1958), 219-234.
2. G. Baumslag and N. Blackburn, Direct summands of unrestricted direct sums of
Abelian groups, Arkiv Der Mathematik, 1O (1959), 403-408.
3. S. Chase, Direct products of modules, Trans. Amer. Math. Soc, 97 (1960), 457-473.
4. , A remark on direct products of modules, Proc. Amer. Math. Soc, 13 (1962),
214-216.
5. L. Fuchs, Abelian Groups, Publishing House of the Hungarian Academy of Sciences,
1958.
6. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1954.
7. 1 Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc,
72 (1952), 327-340.
8. R. Nunke, Modules of extensions over Dedekind rings, 111. Math. J., 3 (1959), 222-241.
9. , Slender groups, Bull. Amer. Math. Soc, 67 (1961), 274-275.
10. J. Rotman, On a problem of Baer and a problem of Whitehead in Abelian groups,
Acta. Math. Sci. Hung., 12 (1961), 245-254.

PRINCETON UNIVERSITY

8 For the definition of a slender Abelian group we refer the reader to [9].




