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Introduction. Recently in [8] Vaught introduced the interesting
notion of a pair of cardinals (tc(A), tc(R0)) for a model <A, Ro, •> of a
given first-order theory with identity. He proved that if a theory (with
countably many nonlogical constants) has a model with a pair of cardi-
nals {a, β) where ω g β < α, then it has a model with the pair of
cardinals (ωl9 ω0). In this paper we have obtained a number of results
along the same lines (they may be found in detail in §4); roughly
speaking, our results are concerned with increasing one or both of the
cardinals in the pair {a, β).

It turns out that most of our results on pairs of cardinals of a
model are simple consequences of set-theoretical theorems concerning
ultraproducts, ultrapowers, and limit ultrapowers of pairs of cardinals.
We have isolated these set-theoretical theorems in § 2 and § 3, where
they are presented with no reference to model theory.

In the last section of the paper, we give some counterexamples to
certain plausible conjectures analogous to Vaught's and our results. We
conclude the paper by stating a number of open problems. We wish
to make it clear here that we do not claim to have originated all of
these problems; in view of Vaught's result, some of them arise quite
naturally and undoubtedly have been considered before.

1. Preliminaries* We employ the usual symbols ε, g , Π, U, Π>
U, to denote the various familiar set-theoretical notions. The expression
{t I φ(t)} shall denote the set of all elements t such that φ(t) holds.
Ordinal numbers will be denoted by ξ, ξ, η, and natural numbers (finite
ordinal numbers) by m, n, p. The symbols 0,1, 2, •••, denote the first
natural numbers. We suppose the ordinals have been defined so that
each ordinal coincides with the set of all smaller ordinals. Thus in
particular 0 is the empty set. We identify cardinal numbers with the
corresponding initial ordinal numbers. The letters a, β, y, 8, denote
arbitrary cardinals; ω denotes the smallest infinite cardinal; a+ denotes
the smallest cardinal greater than a. For each ordinal ξ, ωζ denotes
the smallest infinite cardinal which exceeds ωζ for each ξ < ξ. The
cofinality of the cardinal a is denoted by cf(a). (See [6] for its definition
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and elementary properties.) The notion of the sum ξ + ξ of two ordinals
I, ξ is assumed to be known. Let a{ be a cardinal for each i e I; Σie/^i
and ΠieA denote, respectively, their cardinal sum and cardinal product.
aβ shall denote the cardinal a to the power β; a- shall denote the cardi-
nal a to the weak power β, i.e., Σy<j8tf

v. Let X, I, and X{ for each
i e I be arbitrary sets. ^ e j^Q denotes the cartesian product of the
sets Xi with iel, and Λ:(X) denotes the cardinal of X. We assume
the reader is familiar with the notions of a filter on /, and an ultrafilter
on J. Let D be an ultrafilter on I. For any functions f,ge &\eiaii
we write f =Dg (read / and g are equivalent modulo D) if {i e I\f(ί) =
g(i)}eD. The statement / =Dg has the intuitive meaning that / and
g are equal almost everywhere. It is proved in [2] that =D is an
equivalence relation on ̂ teiaiΛ For each fe&*eiaif let f\Ό = {g\g =D/},
the equivalence class of / with respect to D. By the (cardinal) ultra-
product of the cardinals ai modulo D, in symbols, ILeΛ/Ά w e mean
the cardinal κ{flD\fe^ϊei(χi} By the (cardinal) ultrapower of the
cardinal a modulo D, we mean the cardinal a1 ID = ILe/α/^ β is said
to be a (cardinal) ξ-limit ultrapower of a if there exist functions 7,
J, ί? with domain f + 1 such that the following hold:

( i ) a = Ύo;

( ϋ ) β = Ύξ;

(iii) for each ζ <; f, Ye is a cardinal, J^ is a set, and Eζ is an ultra-
filter on Jζ)

(iv) for each ξ < ξ, yζ+1 = yJ

ζζlEζ; and

(v) whenever 0 < ζ ^ ξ, yζ = \Jv<ζΎη+i .

By the ultraproduct of pairs of cardinals (ai9 β{) with ie I, in symbols,
Πiei (ocif βi)ID, we mean the pair of cardinals (ILei <*i/A Πiei ft/^)-
Similarly (a, βy/D = (α'/D, ^/Z)). The pair of cardinals (/9, β') is said
to be a ξ-limit ultrapower of the pair of cardinals (a, a') if there
exist functions 7, 7', J, £7, with domain ξ + 1 such that α, 7, J", J57, /3
satisfy conditions (i) — (v) and a', 7', J, E, βf satisfy conditions (i) —
(v). Finally, Sω(I) denotes the set of all nonempty finite subsets of /,
i.e., Sω(I) = {s S I\ 0 < φ) < ω}.

To conclude this section, we shall prove a preliminary result con-
cerning the products of cardinals.

LEMMA 1.1. Let 1Φθ and let a{ be infinite cardinals with iel.
For each iel, let Ji = {jel\aά ^ α j . Then ILesω<u Hiesα* = ΠieΛ ( J i )

Proof. Let A = {a^iel} and, for each a e A, let Ha = {i e I\ a—a}
and Sa = {s e Sω(I) \ ΐlies a{ = a}. It is easily seen that
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Π Π a t = Π «K ( S Λ )

sesω(i) ies a,eΛ

On the other hand

Π«ί ( J i ) = Π ^ Π a*iJi)

Let ae A and je H*. It is clear that Ha C J^ and J y = J{ for each
i e Hω. Thus

/*) _ aκ[Jj)

To prove the lemma, it is sufficient to show that

It is obvious that tc(Jό) ̂  ιc(SΛ), and hence

Since α is infinite and Sα C Sω{Jό), we have

The lemma is proved.

2 Cardinalities of ultraproducts We first state a lemma which is
an easy consequence of [2, Th. 1.17], and whose proof shall be omitted
here.

LEMMA 2.1. Let IΦO and let ai be cardinals with iel. Then
there exists an ultrafilter D on Sω(I) such that

Π « ^ Π (il
iei sesω(i) \%es

LEMMA 2.2. Let I Φ 0 and let a{ be infinite cardinals with iel.
Then there exists an ultrafilter D on SωSω(I) such that

Π (Πα<)= Π (π
sesω(i) \iβs / tesωsω{i) \set

Proof. By Lemma 2.1 there exists an ultrafilter D on SωSω(I) such
that

(1) π ( π « ^ π (π
sesωu) \ies / tesωsω(i) \sβt

It is clear that

( 2 ) π (ππA^ π
tes

ω
s
ω
{i) \set ies // tes

ω
s

ω
a) \set ie
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Since each a{ is infinite and t is finite, we have

(3) π (ππ<o= π in
tesωsωu) \set iβs / tesωsω(i) \ie\jt

Let Js = {t 6 SωSω(I) \\Jt = s}. By the general associative law for cardi-
nal products,

(4) Π Π aA= Π Π Π«,
tesωsω(i) Vΐeuί / sesω(i) tejs ies

Since each s is finite, J s is finite. Again, using the fact that each a{

is infinite, we have

(5) Π Π Π « < = Π Π*<
s€£ωU) ί€J s i6s sβSωd) ΐ€s

Putting (l)-(5) together we obtain the conclusion of the lemma.

LEMMA 2.3. Let a be infinite and let β > 0. Then there exists
an ultra filter D on β such that aβ = aβ/D.

Proof. If β is finite, then cleary aβ = α:β/jD for every ultrafilter D
on β. Suppose β is infinite. By Lemma 2.1 there exists an ultrafilter
E on Sω(/3) such that

ocβ^ Π (ocκis))IE.

Since each s is finite, ακ ( s ) = α, and hence

Since /3 is infinite, there is a one-to-one correspondence from Sω(β) onto
jS, from which we can obtain an ultrafilter D on β such that aβ ̂  <xβ/i).
It is clear that aβ/D ^ aβ, and therefore the conclusion of the lemma
holds.

LEMMA 2.4. Let a be infinite. Then a™ξ is a ξ-limit ultrapower
of a.

Proof. Let τ 0 = oc. For each ξ S ξ, let yζ = a^c, Jζ = ̂ , and Eζ

be an ultrafilter on Jζ such that 7 ^ / ^ = 7 ^ = aωc. Evidently, for
ξ <£, Ύζ+i = ̂ -^+1 = uωζ and hence 7^+i = ΎJ

ζ

ζIEζ. Suppose that 0 < ξ ̂  ξ.
Then 7ζ = α ^ = Σ^<^ ω > ? = Un<£<*βh' = Un<f 7,+i. The proof is complete.

3* Classes of pairs of cardinals* Let M be a class of pairs of infi-
nite cardinals.
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THEOREM 3.1. Suppose M is closed under ultraproducts. If IΦ 0
Sω(I)}SM, then(Πse^mΠ e A,Πse*ω(i)Π;esft) e M.

Proof. We first show that

(1) for each t e SJ3.(I), ( π Π «<, Π Π ft) e M .
\seί t€s s€ί i€s /

Since aiy βt are all infinite and ty s are finite, we have

π π α < = .π><>
and

Π Π ft - Π ft .
set ies ieuί

Since \Jte Sω(I), (1) follows. Now, the conclusion of the theorem follows
from (1) and Lemma 2.2.

THEOREM 3.2. Suppose M is closed under ultraproducts. Suppose
further that I φ 0, {(aif β{) \ i e 1} £ M, and for every i, j e I, ai < aά

implies ft ^ βj. Then

π ( j ) π^, s 6 Π 7 π,

Proof. By Theorem 3.1 it is sufficient to prove that

(1) (Π ocif Π ft) e M for each s e Sω(I) .
\i€s iβs /

L e t se Sω(I). L e t s± — {jes \ ΐ l i e s a i = a3) a n d s2 — {jes\ I L e s f t = ft}
Since s is finite, sλ Φ 0 and *a =£ 0. We show that s± Γi s2Φ 0. Assume
sλ Π s2 = 0. Let j 6 s2 and fc e s2. Since αA < α y, we have ft ^ ft. On
the other hand, ft < ft, and this is a contradiction. Let j es1 n s2;
then

(Π^,Πft)-feft )6M,
\i€s i€s /

and (1) holds. The theorem is proved.

COROLLARY 3.3. Suppose M is closed under ultraproducts. Let
ac> βζ> ζ < & be such that {(aζ, βζ) \ ζ < ξ) £ M, and whenever η < ζ < ξ,
Oίη < otζ and ft < βζ. Then
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Proof. By Lemma 1.1 and Theorem 3.2.

COROLLARY 3.4. Suppose M is closed under ultraproducts. Let
a0, a19 a2, , β0, βlf β2, , be strictly increasing sequences such that
{(«., β%)\neω}S M. Then (ΪL<ωan, IL<ωβn)e M.

Proof. By Corollary 3.3.

THEOREM 3.5. Suppose M is closed under ultrapowers. If {a, β) e M,
then (αγ, β*) e M.

Proof. By Lemma 2.3.

THEOREM 3.6. Suppose M is closed under ξ-limit ultrapowers. If
{a, β)eM then (a&, β?ξ) e M.

Proof. By Lemma 2.4 and its proof.

The results obtained so far in this section in Corollary 3.3 and
Theorems 3.5 and 3.6 can be stated more simply if we assume the
Generalized Continuum Hypothesis. The reason for this is because the
operations of cardinal powers and cardinal products become more trans-
parent. For the remainder of this section, we assume the Generalized
Continuum Hypothesis.

THEOREM 3.7. Suppose M is closed under ultrapowers. Let {a, β) e M.
Then the following hold:

( i ) // cf(a) = cf(β), then (a+, β+)eM.

(ii) If cf(a) > cf(β), then (α, β+) e M .

(iii) // cf(a) < c/(/S), then (α+, β)eM.

Proof. It is known that a < ay if and only if cf(a) ̂  7. By the
Generalized Continuum Hypothesis, we see that αc / ( α ) = a+. Hence the
conclusions of the theorem follow from Theorem 3.5.

EXAMPLES. Suppose M is closed under ultrapowers. If (ωω, ω)eM
then (ωω+1, ω±) e M. If (ω2, ω) e M then (ω2, ωx) e M. If (ωω, ωλ) e M then
(ωβ+1, ωx) e M.

THEOREM 3.8. Suppose M is closed under ξ-limit ultrapowers.
Let (α, β) e M. Then the following hold:

( i ) If a < 7 and β < 7, then (7, 7) e M .
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(ii) // β < 7 ^ cf{ά), then {a, y)eM .

(iii) If a<ΊS cf(β), then (7, β)eM.

Proof. By the Generalized Continuum Hypothesis, if 7 ^ cf(a) then
α l = a, and if 7 > a, then α£ = 7. The conclusions follow from
Theorem 3.6.

EXAMPLES. Suppose M is closed under £-limit ultrapowers. If
(ωl9 ω)eM then (ωω, ωω) e M. If (ωω+1, ωλ) e M then (ωω+1, ωω) e M.

THEOREM 3.9. Suppose M is closed under ultraproducts. Then
the following hold:

( i ) If cf(a) = cf(β) and for every 7 < <x, δ < β, there exist 7', δ'
such that 7 < 7' < a, δ < δ' < β, and (7', δ') e M, then (α+, β+) e M.

(ii) If cf(a) < /3 α îcί for every 7 < α, theere exists 7' swc/& ίλαί
7 < 7' < α and (7', /3) e Af, then (a+, β) e M.

(iii) If cf(β) < α and for every δ < β there exists δ' such that
δ < δ' < β and (a, δf) e M, then (a, β+) e M.

Proof. By the Generalized Continuum Hypothesis, the cardinal
product of any c/(α:)-termed sequence of cardinals whose union is a is
a+. The conclusions follow from applications of this remark and Corol-
lary 3.3.

EXAMPLES. Suppose M is closed under ultraproducts. If
{(ωω+n, ωn) Ineω) £ M, then (α>ω+ω+1, ωω+1) e M. If {(ωw+1, ω1)\neω}^ M,
then (ωω+1, ωx) e M.

4. Applications to model theory. We shall now give a brief intro-
duction to those portions of the theory of models which are pertinent
to this section.

By a similarity type, or briefly a type, we mean a function T whose
domain is a cardinal different from 0 and whose range is included in ω.
Let T be a type such that Γ(0) = 1 and let δ be the domain for T. A
system 21 = (A, i2e>e<β is said to be a structure of type T if A Φ 0, and,
for each ξ < 3, Rξ is a Γ(|)-ary relation over A.

Let L(T) be the first-order predicate logic with identity symbol = ,
an infinite sequence of individual variables ^ vlf v2y , a Γ(f)-placed
predicate symbol Pξ for each ξ < δ, the usual symbols for propositional
connectives and quantifiers, and no predicate or functional variables or
individual constants. We assume the definitions of formula and sentence
are known, as well as the notion of a sentence of L(T) holding in a
structure of type T. A class K of structures of type T is said to be
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an elementary class if there exists a set Γ of sentences of L(T) such
that a structure 21 belongs to K if and only if every sentence of Γ
holds in SI. A class K of structures of type T is said to be element-
arily closed if whenever 2Ie/£ and every sentence of L(T) holding in
2ί holds in 33, then 23 e K (or, equivalently, K is a union of elementary
classes). Notice that every elementary class is elementarily closed.

By the pair of cardinals for a structure <(A, iίe>e<δ we mean the
pair (κ(A), /c{R0)). We let M(K) = {(a, β) \ a, β are infinite and there
exists 2ί e K such that (a, β) is the pair of cardinals for 21}. Notice
that if (a, β) e M{K), then a^β.

The following lemmas are easy consequences of known results in
the literature (see [2] and [4]).

LEMMA 4.1. If K is an elementary class, then M(K) is closed
under ultraproducts, ultrapowers, and ξ-limit ultrapowers.

LEMMA 4.2. If K is elementarily closed, then M{K) is closed under
ultrapowers and ξ-limit ultrapowers.

In view of these two lemmas, we have the following model-theoretic
applications of the results of §3:

(A) If K is an elementary class, then all results 3.1-3.9 of § 3
apply to M(K).

(B) If K is an elementarily closed class, then the results 3.5-3.8
of §3 apply to M(K).

Lemmas 4.1 and 4.2, and thus the statements (A) and (B), can be
somewhat improved. This is done by substituting the notion of an
elementary class by the more general notion of a pseudo-elementary
class (i.e., PC, see [2] and [7]) in Lemma 4.1, and substituting the
elementarily closed class by the more general union of pseudo-elementary
classes in Lemma 4.2. Moreover, for any structure 21, the class K of
all structures which are isomorphic to elementary extensions of 21 has
the property that M(K) is closed under both ultraproducts and £-limit
ultrapowers. Therefore both (A) and (B) are valid for such classes K.

We shall now state some earlier theorems formulated in terms of
pairs of cardinals which will give some idea of how our results (A) and
(B) stand with respect to what was previously known concerning M(K).
These earlier results differ from ours in that they depend on d, the
domain of the similarity type T.

(C) (Lowenheim-Skolem-Tarski) Let K be an elementarily closed
class. Let (a, β) e M(K) and let 7 be an infinite cardinal such that
δ^j. Then (7, 7) e M(K). Furthermore, if β^y^a, then (7, β) e M(K).

(D) (Vaught [8]) Let K be an elementarily closed class. Let 3 ^La)
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and let a Φ β. If (a, β e M(K) then (ω19 ω0) e M(K).

The following is a corollary of (A) and (C).

(E) Assume the Generalized Continuum Hypothesis. Let K be an
elementary class. If 8 ^ a, cf(a) < β, and for every 7 < a there exists
7' such that 7 < Y < a and (7', β) e M{K), then (a, β) e M(K).

Results similar to (E), but depending on (A) alone, follow from
Theorems 3.7-3.9.

The following is a corollary of (B) and (C).

(F) Assume the Gereralized Continuum Hypothesis. Let K be an
elementarily closed class, and let (a, β) e M(K). If β ^ 7' ^ 7 ^ a and
δ ^ 7, then (7, 7') e M(K).

Proof. If β = 7', then (7, 7') e M(K) by (C). On the other hand,
if β < 7', then it follows from the Generalized Continuum Hypothesis
that βt = 7'. Therefore by Theorem 3.6 and (B), (α#, 7') e M(K). Since
7' ^ 7 ^ α&\ we conclude from (C) that (7, 7') e M(K).

5 Some negative results and open problems* In §4 we presented
some positive results on M(K) when K is an elementary class. In this
section we shall give some negative results stating that certain other
plausible conjectures about M(K) where K is elementary have counter-
examples. We conclude this section by stating some natural open
problems.

One can easily construct an example of an elementary class K such
that {a, β) e M(K) if and only if ω ^ β = a.

We shall now give an example of an elementary class K such that
(α, β) e M(K) if and only if ω ^ β ^ a ^ 2β. (This example is due to
R. M. Robinson and was privately communicated to R. L. Vaught, from
whom the authors learned of it.)

Let 8 = 2, T(0) = 1, and Γ(l) = 2. Let K be the elementary class
characterized by the sentence

Vx,y[xΦV-*3 z{P0(z) A η {Px{x, z)« > Px{y, z))}] .

Thus, if <A, Ro, #!> e K, the mapping f{a) = {b \ R0(b) and Rλ{a, b)} is a
one-to-one mapping of A into the set of all subsets of Ro. From this
we see that M(K) is the desired class of pairs of cardinals.

From this example we easily see that the following hold. Let
β0 = β and, for each n < ω, let βn+1 = 2βn. Then for each n there
exists an elementary class K such that (a, β) e M{K) if and only if
o) ^ β ^ a ^ βn.

We may also easily give an example, when ω ^ β ^ a, of a type
T (with δ = a) and elementary class K such that (α', /3;) e M(K) if and
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only \t a^a',β<L β', and β' S a'.
For the last collection of examples we need the following restatement

of a lemma in [4].
A cardinal β is said to be nonmeasurable if every countably complete

ultrafilter on β is principal. A structure 31 = <A, iJf>e<« of type T is
said to be complete (see [5]) if, for every finitary relation R on A, we
have Re{Rξ \ξ < δ}. Notice that if 21 if complete, then δ ^ 2κU).

LEMMA 5.1. Suppose SI is complete, K is the smallest elementary
class containing 51, a = /c(A) ω 5g β = /c(R0). Then the following hold:

( i ) Suppose a is nonmeasurable and (a', βf) e M(K). Then either
α' = a and β' = β, or a' ^ aω and βr ^ βω.

(ii) Suppose β is nonmeasurable and (af, β') e M(K). Then either
β' = /3, or a' ^ aω and βf ^ /3ω.

THEOREM 5.2. Suppose ω ^ β ^ a. Then the following hold:
( i ) Suppose a is nonmeasurable, and β < βω. Then there exist

a type T and an elementary class K such that (af', β) e M(K) if and
only if af — a.

(ii) Suppose β is nonmeasurable and a < aω. Then there exists
a type T and an elementary class K such that {a, β') e M(K) if and
only if β' = β.

(iii) Suppose a is nonmeasurable, a < aω, and β < βω. Then there
exist a type T and an elementary class K such that (a, βr) e M(K) if
and only if βr = β, and (a', β) e M(K) if and only if a' = a.

Proof. By Lemma 5.1.

Open problems. Let K be an arbitrary elementary class and δ ^ ω.
I. Does (ωξ+ω+ζ, ωξ) e M{K) and ω ^ β ^ a imply {a, β) e M(K)Ί

II. Does (ωξ+V9 ωζ) e M(K) imply (ωζ+η, ωζ) e M(K)Ί
III. Does (a, β) e M(K) imply (2*, 2P) e M(K)Ί
IV. Does \{ωn, ωQ)\n<ω}Q M(K) imply (ωω, ωQ)e M(K)1
Γ. Does (ωω, ω0) e M(K) imply (ωω+1, ω0) e M(K)Ί

Does (ωω+1, ωλ) e M(K) imply (ωω+2, ω,)e M(K)Ί
IΓ. Does (ω l f ω0) e M(K) imply (ω2, ωλ) e M(K)t

Does (α>3, ω2) e M(K) imply (α>2, ωλ) e M(K)1
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