
ON A CLASS OF MEROMORPHIC FUNCTIONS WITH

DEFICIENT ZEROS AND POLES

S. HELLERSTEIN

Introduction, It has been shown by A. Edrei and W.H.J. Fuchs
[1], that if / is an entire function all of whose zeros lie on the negative
real axis, then / has zero as a Nevanlinna deficient value provided
only that the exponent of convergence of the zeros is finite and greater
than 1. The extension of this result to more general distributions
of the arguments of the zeros and poles of a meromorphic function
was investigated independently in [2] and [3].

In [2], Edrei, Puchs and the present author consider entire functions
whose zeros have a finite exponent of convergence and are distributed
on a finite number of rays. The main result of that investigation is
the following:

THEOREM A. Let f(z) be entire. Assume that all its zeros {aμ}
lie on the radii defined by

reίω°, reiω\ , reiω«< (r > 0)

where the ω's are real.
Then there exists a positive constant K, depending only on the

(ύ's and such that the condition

V L_ = +CO

and the condition

- 1 <+co

for some finite value of ξ, imply

δ(0,/)^ A>0

where A(>0) is an absolute constant.
In [3], A. A. Goldberg shows that given p not an integer, such

that i < p < + oo and given two arbitrary positive numbers a and β
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then there exists a meromorphic function f(z) of order p, all of whose
zeros lie on the rays arg z = a and arg z — a + (π/p) and all of whose
poles lie on the rays arg z = β and arg z = β + (π/p) for which 5(0, /) =
«(«>,/) = 0.

Hence, any theorem for meromorphic functions analogous to Theo-
rem A must place some restriction on the geometrical configuration
of the rays on which the zeros and poles of the function are situated.

The main purpose of this note is to show that the methods of
[2] go further and yield the following generalization of Theorem A
to meromorphic functions.

THEOREM. Let f(z) be meromorphic. Let {aμ} denote the zeros
of f which lie on the radii defined by

( i ) reiω\ reiω\ , reίω™ (r > 0)

and let {δv} denote the poles of f which lie on the radii defined by

(ii) re**1, re^2, , re1^ (r > 0) .

Assume
(iii) that the real numbers 2π, ωlf , ωk, ψl9 , ψn

(O^k^m) are linearly independent over the field of rational numbers
and

(iv) ωk+h - aOth2π + Σ «<.*<*>< (h = 1, 2, - , m - k)

where aQ>h, alth, -- ,ak>h are rational.
Let {α*} denote the zeros of f which do not lie on the radii de-

fined by (i) and {&*} the poles of f which do not lie on the radii de-
fined by (ii).

Then, there exists a positive constant K (depending only on the
ωys and ψys) and an absolute constant B(>0) such that the conditions

(1.2) Σ * + Σ — — <

for some finite value of ξ(>K) and

(1.3) Σ — — + Σ — — < +

/or some Ύ) < JB, imply



ON A CLASS OF MEROMORPHIC FUNCTIONS 117

(1.4) ISS
T(r,f) ~ 1 + A

where A(>0) is an absolute constant.

As an immediate consequence of this theorem and the definition
of deficiency, we find

COROLLARY. The assumptions of the theorem imply

We shall show that Lemma 4 of [2] combined with a suitable
number theoretical lemma which we state and prove in § 3 are suf-
ficient to yield our theorem.

2» Statement of a known lemma. For the convenience of the
reader, we restate Lemma 4 of [2] in a form suitable for use here.

LEMMA A. Let f(z) be a meromorphic functions of genus not
greater than 2.

Assume
( i ) that its zeros {aμ} lie in the region defined by

(ϋ) that its poles {δv} lie in the region defined by

I arg z - π | ίg | - ,

(iϋ) Σ ^ + Σ T ^ Γ = + ~
μ \ a μ \ v | b v |

Then, for all sufficiently large values of r,

(2.1) T(r, /) ^ (1 + A)\N(r, i-) + N(r, /)}

where A(>0) is an absolute constant.

The inequality (2.1) still holds if f(z) is replaced by F(z):

F(z) = e*"f(z)

where S(z) is an entire function (which may reduce to a polynomial).
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3* A number theoretical lemma. In order to apply the methods
of [2], we also require the following generalization of a number theo-
retical argument used in the proof of Theorem A [2, §6].

Conventions. Before we proceed with the statement and proof
of the lemma, we make the following conventions.

In all that follows, we shall use the terms "linear dependence"
and "linear independence" to denote linear dependence and indepen-
dence over the field of rational numbers.

In addition, given a set S of real numbers we shall use the term
"S* is a maximal linearly independent subset of S" to mean the
following:

( i ) the elements of S* are linearly independent over the field
of rational numbers,
and

(ii) any element of S is a linear combination with rational coef-
ficients of the elements of S*.

LEMMA 1. Let Sλ be the set of real numbers

2π, ωlf ω29 •• ,ωm

and S2 the set consisting of the real numbers

Assume
( i ) that the set of real numbers 2π9ω19 —-9ωk9 (0 ^ k ^ m) is

a maximal linearly independent subset of Slf

(ii) that the real numbers

2TΓ, O)l9 O)2, ' ' ' i (*)kt ψli tyϊy ' ' ' t ψn

are linearly independent.
Then

given ε(>0) there exists an increasing sequence of positive integers
{Ls}^! and sequences of positive integers {M8ti}?=l9 (i = 1, 2, , m);
{NsJ}Zi (j = 1, 2, , n); such that for s = 1, 2, 3, - •

(3.1) I Lsω, - 2πMsΛ | < ε, (i = 1, 2, , m) ,

(3.2) I Lsfj - (2NStj + l)τr I < ε, (j = 1, 2, , n) ,

and all s ^ s0

(3.3) % i <£ 2 .
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Proof. We assume k < m and prove the lemma for this case only.
If k = m, it will be clear that one part of our argument yields the
desired result.

By assumption (i), o)k+Jh (h = l,2, , m — k) is a linear combination
with rational coefficients of 2π,ω19ω2, ---,ωk. Hence, there exist a
positive integer T and integers Ahti, (h = 1,2, ,m — k), (i = 0,l, ,fc),
such that

(3.4) TωM = 2πAh Σ- = 1, 2, •• ,m — k) .

Set

(3.5)

(3.6)

and

(3.7)

= 1,2, • ,m —

Q = max {T, Au A3,

T = 2'(2J + 1)

where / and J are nonnegative integers.
Assumption (ii) of our lemma and the equidistribution theorem of

H. Weyl [4] imply that there exists a positive increasing sequence of
integers {Ba}?=1, and sequences of integers {CSti}7=i, (i = 1, 2, , fc),
and {DS(i}Γ=i, ( i = 1, 2, , n), such that for each s = 1, 2,

(3.8)

(3.9)

2πCs,{ I < S-

21

\l — 1, ^ ,

(3 = 1, 2,

and {i?s}Γ=i has a positive density; that is

(3.10) lim — = d > 0 .

From (3.8) and (3.7) we have for each s = 1, 2, 3,

(3.11) I BsTύύi -

(3.12)

From (3.4), (3.8), (3.5), and (3.6), we deduce that for s = 1, 2, 3,

BsTωk+h - 2πBsAn,0 - 2π g A^C..,

=£ Γ max {| B/o{ - 2πCsA |}Ί ± | Λ,. I
L* = l,2,..-,/c J t = l

< - ^ Q = ε (fc = l , 2 , 3 , . . r m - A ; ) .
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Furthermore, (3.7) and (3.9) imply that for each s = 1, 2, 3,

(3.13) I B.Tψs - 2πTDSιj - π(2J + 1), < ε .

We now show that for s ^ s0,

(3.14) ^ ± i ^ 2 .

If this were not so, we would have for infinitely many values of s:

2 Bs B8+1'

_1 s_ s + 1 s

2 Bs B,

and by (3.10)

which is impossible.
We set Ls = BST. The inequalities (3.11), (3.12), (3.13) and (3.14)

show that the sequence {Ls}Γ=i satisfies all the assertions of our lemma
(with an obvious choice of the corresponding sequences {MSti}, and {Ns>j}).

4. Proof of the theorem. From the hypotheses of our theorem,
it follows that if we set ε = π/60 in Lemma 1, there exist sequences
{Ls}T=lf {MSti}Zlf (i = 1, 2, , m), {NsJ}Zlf (j = 1, 2, , n) such that
(3.1), (3.2) and (3.3) hold with ε = π/60.

Now choose K = LSQ and note that LSQ depends only on the ω's
and ψ's. Since the zeros {αμ} and poles {δv} of / satisfy conditions
(1.1) and (1.2), it follows that there exists an integer q ^ K such that

(4.1 ϊ V -*• _i- v 1 — ι_ oo
μ-

and

(4.

(4.

•2)

Define

,3)

Clearly

h by

Σ

the

, 1 + y
J Ί « J ' + 1 v

inequalities

<J

1

v 1

Tj

and in view of (3.3)
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Q < 2

Consider the auxiliary function

(4.4)

where S(z) is an arbitrary entire function,

(4.5) π,{z) = Π (l - -Z-) exp (-|- + -J^- + +

and

(4.6) π,(z) = Π fl - 4~) e χ P f-I- + TST- + *' ' +
qbl

where in view of (4.1) and (4.2), at least one of the two products
(4.5) and (4.6) is canonical.

We show next that (4.4) holds for a function of the form /, and
finally that this implies the validity of (4.4) for /.

Put Lh — L and consider the function

(4.7) F(z) - /(z)/(ω*) f(ω^z)

where ω = e(2ίCi)/I.
It is an easy consequence of the relations (4.4)^(4.7) that

Π (l - JL) exp ( 4 )
(4.8) F(z) = G{zL) = e'^g(zE) = e*^ — % ^ l S t i

where R is entire and ί/ is a meromorphic function of genus not greater
than one. In fact, our assumptions imply that the genus of g is
actually one. In order to see this we observe first that for all μ
and v

For, if this were not so, we would have for some μ and v

Hence, for some integer N

Lfk = LQ)J + 2Nπ ,

which, in view of conditions (iii) and (iv) of the theorem, is impossible.
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Therefore, cancellation of zeros and poles of g cannot occur. It
follows then from (4.1), (4.2) and the inequality L ^ g < 2 L , that the
genus of g is indeed one.

Setting zL = ξ

(4.9) G(ξ) =

But L = Lh was so chosen that there exist positive integers Mi9

(i = 1, 2, , m) and iV,, ( i — 1, 2, , n) so that

?(*-•£•)«»(•&•)'

(4.10) I Lω, - 2ττM, | < | - (i = 1, 2, . , m)

and

(4.11) I Lψ3 - (2Nd + l)π | < ^ ( i = 1, 2, , Λ) .

Hence G(£) is a meromorphic function satisfying the hypotheses
of Lemma A, and consequently

(4.12) T(r, G{ζ)) ̂  (1 + A)[N(T, J ^ ) + N(r, G(ξ))} (r ^ r0) .

We observe now, that the fundamental definitions of the theory
imply [2, p. 147] that for any meromorphic function W(z)

(4.13) N(r, W{zL)) = N{rL, W(z))

and

(4.14) T(r, W{zL)) = r ( ^ , T7(2» .

Since G(f) = G(^z) - F{z), we deduce from (4.12), (4.13) and (4.14)

that

(4.15) T(r, F(z)) ^ (1 + A){N(T, ^ - ) + N(r, F(z))} (r S> r0) .

Now, the definition of ω, conditions (i)-(iv) of the hypothesis and
the definitions (4.4)-(4.6) prevent the possibility of cancellation between
the zeros of one of the functions f(co3z) (j = 0,1, 2, , L — 1) and
the poles of another of these functions.

Hence, by (4.7) and the basic definitions of Nevanlinna's theory,
it follows that

(4.16) N( ?



ON A CLASS OF MEROMORPHIC FUNCTIONS 123

and

(4.18) T(r,F(z)) = LT(rJ(z)).

From (4.15), (4.16), (4.17) and (4.18) we readily deduce

(4.19) T(r, /(*)) i> (1 + A){N(T, ~J-λ + N(r, /(*))} .

The inequality (4.19) together with the definition of deficiency
imply

(4.20) δ(0, /) S> — ^ — , S(«>, /) 2> - A - .

Hence, by Theorem 4 of [1], it follows that the lower order λ of
f(z) satisfies

(4.21)

Since ^4(>0) is an absolute constant, the same is true of B.
We now return to f(z). Assume that (1.3) holds for some η<B;

B defined by (4.21).
Then, in view of the assumptions of the theorem, we may repre-

sent f(z) in the form

(4.22) f(z) = h(z)fo(z)

where h(z) is a meromorphic function of order less than B and fQ(z)
is defined by (4.4) with a suitable choice of S(z), (4.5) and (4.6).
Hence it follows that (4.19) holds with / replaced by /0; moreover,
the lower order of f0 exceeds the order of h.

Then, by elementary inequalities of Nevanlinna's theory

T(r,h?t)~T(r,?t),
ί A OQ\ -^' V * "'JO/ •*•' V f Jo) I ΛΛ \
y±.ΔO) —— — — "T" O\±)

T(r,hf0) T(r,f0)

and

(4.24)
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The inequality (1.4) is now an immediate consequence of (4.19)
applied to fo(z), together with the relations (4.22), (4.23) and (4.24).
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