ON THE ASYMPTOTIC INTEGRATION OF
ORDINARY DIFFERENTIAL EQUATIONS

PuiLip HARTMAN AND NELSON ONUCHIC

1. Various methods have been employed for the asymptotic inte-
gration of ordinary differential equations, e.g., successive approxima-
tions (cf. [2]), topological arguments involving Waiewski’s or similar
principles (cf. [4], [5], [8]), and fixed points theorems (cf. [3]). The
object of this note is illustrate the application for this purpose of a
simple and general theorem which is based, on the one hand, on
Massera and Schaffer’s [7] use of the open mapping theorem and, on
the other hand, on Tychonoff’s fixed point theorem. This general
theorem is essentially a corrected version of a theorem of Corduneanu
{1].

Below =z, y, - -+ are elements of a finite dimensional Banach space
X of norms ||x||, [|yll, +--. L denotes the space of real-valued funec-
tions @(t) on J: 0 =t < o with the topology of convergence in the
mean L' on bounded intervals. B denotes a Banach space of real-
valued functions @() on 0 <t < o, norm |®|z; which is stronger
than L (in the sense that B is contained in L algebraically and
convergence in B implies convergence in L; [7]). Examples of such
spaces are L? = L?(0, ), 1 < p < o, with norm |® |, or the subspace
Ly of L~ of functions @(t) satisfying @(t) — 0 as t — .

I(X), L*(X), B(X), --- will represent the space of measurable
functions x(t) from J to X such that o(t) = || x(t)|| isin L, L?, B, ---.
In the case L* or B, the norm |@|, or |®|; will be abbreviated to
{®], or x|z C(X) is the space of continuous functions from J to
X with the topology of uniform convergence on bounded intervals.

Consider a homogeneous and an inhomogeneous system of linear

differential equations
1.1) = A(t)x ,
1.2) & = Atz + 9() ,

in which ¢(¢) e L(X), A(t) is an endomorphism of X for fixed ¢ and
is locally integrable on J. If < is a Banach space stronger than
L(X), a &-solution x(t) of (1.1) or (1.2) is a solution z(t)e =r. Let
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X,z denote the set of initial points 2(0)e X of Z-solutions x(?) of
(1.1). Then X, is a subspace of X. Let X,, be any subspace of
X complementary to X, (i.e., X is a direct sum of X4 and Xl_@)
and Po_@ the projection of X onto X,, annihilating X g

A pair (%, ©2) of Banach spaces, each stronger than L(X), is
called admissible for (1.2) or A(t) if, for every g(t)e <&, (1.2) has at
least one <r-solution x(¢); [7], p. 292.

The results below deal with the nonlinear system
1.3) 2 = Alt)x + f(¢, x) .

Let «#, & be Banach spaces stronger than L(X). Let X = 2'%)
be the closed ball {x(t): x(t)e &, |z| o = P} of radius p>0in .
Let S = X,C(X) and S be the closure of S in C(X).

THEOREM 1.1. Let A(t) be locally imtegrable on J. Let A(t),
F (¢, x) satisfy (a) (F, &) is admissible for A(t); (b) x(t) — f(t, x(t)) is
a continuous map of the subset S of the space C(X) into <Z; (c) there
exists a constant r >0 such that |f(t, 2(t))|, = r for z(t)e S; and
(d) there exists a \Mt) e L such that || f(t, 2(t)) || < Mt) for x(t)e S. Let
I NS XW' Then there exist positive constants C, and K, depending
only on A(t), &%, o, Xy (but not on f or &) such that if

(1.4) Gll&ll+ Kr=p,
then (1.8) has at least one solution x(t) e S satisfying
(1.5) Py 5w(0) = &, .

It can be remarked that if S # S, so that S is not closed in C(X),.
then a convenient sufficient condition for (b), (), (d) is the following:
Let &r be a subspace of a Banach space &, stronger than L(X),
such that Sy = C(X) N Jy, is closed in C(X). Then since Sc S,
conditions (b), (c), (d) hold if they hold when S is replaced by S,.

Theorem 1.1 is a variant of Corduneau’s Theorem II in [1]. Cor-
duneanu’s theorem does not involve the space C(X) and in place of
(b), has the assumptions:

') 2(t) — f(t, 2(t)) is a continuous map from the subset 3 of &
to &,

(¢/) X is closed in L(X).

However, his proof is incomplete under his assumptions and seems to
use the following condition in place of (b’):

(") a(t) f(t, 2(t)) is a continuous map from the subset ¥ of L(X)
to &Z.

It will be clear below that, in applications, it is more convenient
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to deal with the topology of C(X) rather than L(X).

It can be mentioned that another result (Theorem I) of Corduneanu
gives, not only existence but, also uniqueness for #(f) under conditions
including |f(, 2(t)) — f(&, y(t) |5 = 0| 2(t) — y(t) | g for some constant
d. See § 6 below.

For theorems related to Theorem 1.1 with & = L>(X), see [6].

The proof of Theorem 1.1 which follows closely that of Corduneanu
will be given for the sake of completeness.

Proof of Theorem 1.1. The essential part of the proof is the
following result of Massera and Schiffer, [7], p. 295:

LEMMA 1.1. Let A(t) be as above and (<Z, =) admissible for
(1.2). Let &€ X,5. Then if g(t) e &, (1.2) has a unique Z-solution
2(t) satisfying (1.5). Furthermore, there exist constant C, and K,
depending only on A(t), &, & and X4, such that

(1.6) %]y = Gollé&ll + Klglg .
Thus, if y(t)eS in Theorem 1.1, then
(1.7) o' = At)x + £, y(@))

has a unique < -solution x(f) satisfying (1.5) and (1.6), where g(t) =
S, y(t)). Define an operator T S— <7 by putting «(¢) = Ti[y(®)].
Thus, by (¢), the condition (1.4) implies that T, map S into S.

Let yi(t) €S, gi(t) = f(¢, yi(t), ©i(t) = T[y;(?)] for j =1,2. Then
#,(t) — w,(t) is a =r-solution of (1.2) with g = g, — 9, and P4 (#,(0) —
2,(0)) = 0. Hence

(1.8) le“legéK[gl—gzlg.

Since the map from Sc C(X) to <Z given by y(t) — g(t) = f(, y(¢))
is continuous. It follows that 7,: S— S is a continuous map from
ScCX) to Sc o. _

It will be verified that 7, S— S is a continuous map from
Sc C(X) to ScC(X). This will depend on a standard inequality for
solutions of (1.2),

T T T
@9 el ={r{1e@ 1 ds + [Tl 9 1ds} exo |1 4 1 ds
for 0 <t =< T, cf. [7], p. 288. It will also depend on the fact that
o is stronger than L(X), so that there exists a constant a,(T)
such that

S:Hx(t)lldt S ag(T)|z|, foral zez,
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and that <# is stronger than L(X), so that a corresponding inequality
holds for elements g€ <z with a constant a_(T). Thus, in the nota-
tion of (1.8), for 0 =t = T,

(110) o) — 20
< {T-ay (DK + ag(TH e, — 0.l 5 exp | 1 AG)[|ds .

Hence |9, — 9|5 — 0 implies 2,(x) — #,(t) -0 in C(X). This proves
that T,: S— S, where Sc Sc C(X), is continuous.

It will now be verified that the image T,S of S under 7, has a
compact closure in C(X). It follows from (1.9) that if x(t)e TS,
then ux(t) | < e(T) for 0 <t < T, where o(T) = {T'ay(T)p + a(T)r}
exp So || A(s)||ds. Thus the functions z(t) € T,S are uniformly bounded

on every interval [0, T]. From (1.7) and condition (d), 2(t)c 7,S im-
plies that

o) — 2 | = o(T) | 11 A@1du + (\wdu for 0=sst=T.

Thus the set of functions x(t)e T,S are equi-continuous on every
interval [0, T]. It follows from Arzela’s theorem that 7,S has a
compact closure in C(X).

By Tychonoff’s theorem, the continuous map T,; S— S, where
Sc S and S is closed convex subset of C(X), has a fixed point
#(t)e T,S< S. This proves Theorem 1.1.

2. In applications, condition (a) is one of the most difficult to check.
For the case (#, @) = (LX), L7(X)), Massera and Schaffer [7}
have given necessary and sufficient conditions for (a) in terms of the
solutions of the homogeneous equation (1.1). (These condition will
not be used below but will be stated here because of their relevancy
for this paper.) First, (L'(X), L=(X)) is admissible if and only if
(LYX), Ly(X)) is admissible; [7], p. 33l. For & = L=*(X) or &7 =
Ly(X), let Xog, 170 PO@, have the meaning above and Plgf =1 ~Pog
and let U(t) be the fundamental solution of (1.1) satisfying U(0) = I.
Then (LX), L=(X)) and/or (LYX), Ly(X)) is admissible if and only
if ([7], pp. 331, 334) there exists a constant N, such that

NU@®PpU(s)|| = N, for t=zs=0,

@D | Ut)P,p U~(s) || < N, for s =t 0.

Conditions (b), (¢), (d) are comparatively easy to check under
suitable conditions on <%, & and f(¢, ), which will now be described.
Let B be a Banach space of real-valued functions on J satisfying:
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(i) B is stronger than L;

(ii) if @(t)e B, +(t) is measurable and |[¥(t)| <|®(t)|, then
Y(t)e B and [ (5 = | P[5

(iii) if hoy(t) is the characteristic function of the interval 0<¢< T,
then k. € B;

(iv) B is lean at o ([9], p. 362), i.e., if @(¢) € B, then h,(t)p(t) e B
by (ii) and hy® —® in B as T — oo.

For example the spaces, B=L?, 1<p< c, and B= L7 (but
not B = L~) satisfy (i) - (iv). Another example of a space B satisfy-
ing (i) — (iv) can be obtained as follows: Let () > 0 be a measurable
function on J such that ++(f) and 1/4(f) are locally bounded. Let
Ly denote the Banach space of functions @(f) such that o(t)/v(t) € Ly
with |@|; = |®/¥|.. This space satisfies (i)-(iv). If the function
Mt) satisfies

2.2 0 = \Mt) = 4(8) and ME/y() >0 as t— oo,
then \(t) € L,

Condition (H) on f. Let f(t,z) be a function on the product
space of J: 0 <t <o and the ball ||| = o in X and let f(¢, #) have
values in a subspace Y of X. Let f(¢, ®) be a measurable function
of t for fixed «# and a continuous function of x for fixed ¢, where the
continuity in x is uniform for ¢ on bounded intervals. Let () be a.
measurable function and let

(2.3) If@& )| =M for ¢=0, 2] =p.

The point of assuming that f(f, ) has values in a subspace Y
of X is for applications to higher order equations where f(¢, ) might
be a vector of the form (0, ---, 0, (¢, #)) with values in a subspace
Y of X; cf. §3.

LEMMA 2.1. If <# s a Banach space of the type <& = B(Y),
where B satisfies (i) - (iv), if Z'= LX), and if f(t, ) satisfies
conditon (H) with \(t) € B, then the assumtions (b), (¢), (d) of Theorem.
1.1 hold with r = |\]|p in (e).

This is clear. Hence Theorem 1.1 has the following consequence..

COROLLARY 2.1. Let A(t) be locally integrable on J and let
(F, &) be admissible for (1.2), where <& = B(Y) and B satisfies
(i) - (iv) above and = = L=(X) [or & = Ly(X)]. Let f(t, x) satisfy
assumption (H) where M¢)e B. Let &€ Xy and r = [Mt)[5. Then
if (1.4) holds, (1.3) has a solution x(t) satisfying (1.5) and ||z()|| <



1198 PHILIP HARTMAN AND NELSON ONUCHIC

oland x(t)—0 as t — o].

For the purposes of asymptotic integration or the study of asymp-
totic equivalence, the following particular cases of Corollary 2.1 are

of interest.

THEOREM 2.1. Let A(t) be locally imtegrable on J. Let f(t,x)
satisfy assumption (H). Assume either (i) that \Mt) € L' and (L(Y), =),
where or= L=(X)[or & = Ly(X)], is admaissible for A(t) or (ii) that
there exists a locally bounded measurable fumction +(t) >0 on J
satisfying (2.2), such 1/y(t) is locally boumded, and such that for

every 9(t)e L(Y) for which

(2.4 g@O)/¥()—0 as t— o,

(1.2) has a = -solution x(t). Let & € Xy4. Then there exist positive
constants C, and K with the property that if ||&,|| is so small and
T so large that,

2.5) Coll&ll + ngx(t)dt <p
or
(2.6) Collell + Ex@)pt) <p for t=T,

according as (i) or (il) 7s assumed, then the differential equation
(1.3) has a solution x(t) for t = T satisfying ||x(t)|| < o [and x() || —
0 as t— ] and

2.7 Pog U (T)(T) =& .

It is clear that if condition (i) holds, then (ii) holds, but it is con-
venient to isolate condition (i). Theorem 2.1 follows by applying
Corollary 2.1 to the situation where f(¢, ), M(t) is replaced by
ho(t)f(t, ), hp(t)\(t), respectively, where h,(t) is the characteristic

function of the half-line ¢t = T.
Conditions of smallness on ||&,|| in Theorem 2.1 can be eliminated

by requiring that condition (H) hold for every fixed o > 0 where,
however, A\(t) can be allowed to depend on p.

3. Before giving more complicated applications of Theorem 2.1,
it might be well to illustrate its use in a simple case. Consider a
scalar second order equation

(3.1) w' = h(t; U, ’bb') ’

where A(t, u, v) is continuous for ¢ = 0 and arbitrary (u,v). Let a,b
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be constants and consider the question whether (8.1) has a solution,
for large t, such that

3.2 wt) —at—b—0 and () —a—0 as t— oo,
Introduce the change of variables u — w,

3.3) w=at+ b+ w,

so that (3.1) becomes

3.4) w" = h(t,at + b + w, @ + W)

and (3.2) becomes w, w' — 0 as t — co. It follows from Theorem 2.1
that (3.1) has a solution wu(t), for large ¢, satisfying (38.2) if there
exists a o > 0 and a function A(¢) such that

(3.5) [h(t,at + b+ u,a +v)| =NE) for |ul,|v]|=p,
(3.6) S“tx(t)dt <o
cf. [3].

Generalizations to an nth order equation ™ = A(t, u, %', - - -, u"™"),
are obvious.

4, Very often the question of an asymptotic integration of (1.3)
can be put into the following form: Let R(t) be a given family of
non-singular endomorphisms of X which are absolutely continuous with
respect to t and let ce X be a constant vector. Does (1.3) have a
solution x(¢), for large t, of the form

4.1) © = R()y
where ¥y = y(f) — ¢ as t — « ? The differential equation for () is
4.2) ¥y = R@OIAGRE) — R’y + RO f (¢, B()y) .

The change of variables

(4.3) 2=y —¢

transforms (4.2) into

“.49) ? = RT'(t)[AQ)R(E) — R'(O)]z + h(t, 2, ¢),
where

(4.5) h(t, z,¢) = R'[AR — R'lc + R7'f(t, Rz + Rc) .

The problem now becomes: Does (4.4) have a solution z(t) for large
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t such that 2(t) — 0 as t — o ? Clearly, Theorem 2.1 is adapted to
answer such questions.

It must be pointed out that if the answer is in the affirmative,
then the assertion ‘/(4.1) and ¥ — ¢ =o(l) as ¢ — o’’ need not be
very informative unless estimates for ¥y — ¢ = o(1) are obtained. For
example, if R(t) is the 2 x 2 matrix R(t) = (r;), where r,, = (—1)*¢e"*
and r,,=¢" for k=1,2, and ¢ = (1,0), then one can only deduce
2(t) = o(e’), but not an asymptotic formula of the type x(t) = (—1 +
0(1),1 4+ o(1))e™*.

As an illustration of this procedure, there will now be indicated
a derivation of an analogue of a theorem of Hartman and Wintner [5].
This theorem, in the linear case, is a generalization of a result of
Dunkel [2].

The theorem will deal with a nonlinear system

(4.6) 2 =Cx + f(t, ) .

A fixed coordinate system is assumed for X, so that = = («*, -+, 2"),
where n = dim X, C is a constant matrix, f(¢, #) is continuous on
J x X. (Actually, it will be sufficient to consider f(¢, x) defined and
continuous on a product set J x Q,, where 2, is any open set in X
chosen so that the statement of Theorem 4.1 becomes meaningful.)
For convenience, it will be assumed that X is a vector space over
the complex number field but, with suitable interpretations, the result
and its proof are valid if X is a vector space over the reals.

It will be assumed that C is in a Jordan normal form C = diag
J@), -+, J(2)), where J(J) is an k(j) by k(j) Jordan block with the
eigenvalue \(Jj) on its diagonal and, if 2(J) > 1, 1 on the subdiagonal.
Correspondingly, write « = (%,, -+ -, #.), where x; = (x}, ---, #}?) is an
h(j)-tuple. With a similar renumbering of the components of f(¢, ) =
(f1 **y fu), (4.6) becomes

@7 =¥ =NJas + [ 2 = Mwk + ak 4 fF for k=2, -+, h(J),
for j=1, -, ¢t or
(4.8) w; = J(gx; + fi(t,w) for j=1, -, 1.

Let « denote one of the numbers Re\(1), +++, Rer(¢) and let an
index j, 1 £ j = 1, be denoted by p, g, or r according as Re\(j) <,
=, or > a. The set of indices p and/or r can be vacuous. Put

4.9) hy = mqax h(q) .

The linear system ' = Cx has solutions of the form x, = e*?*P,(?),
x; = 0 for j + q, where P,(t) is an h(g)-tuple each component of which
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is a certain polynomial. The question to be discussed is when does
(4.6) have a solution which approximates this solution of 2’ = Cx in
a certain sense. Because of the fact that certain remainder terms.
may become larger than certain ‘‘principal’”’ terms, the question will
be formulated more precisely as follows:

Let j, be an integer and B an arbitrary number subject to

(4.10) 0=jo=h,—1 and B+ jo=h,

(so that 8=1). Let k =1(q), k(q) be the least and greatest values
of k, if any, satisfying

(411) 1 =1Ug) = k(g) = min ((9), 8) and h(g) — Ua) = Jo .

Let ¢, I(q¢) = ¢ < k(q), be numbers. Solutions x(t) of (4.6) are sought
with the asymptotic behavior

£k = AOUIEYH(h — D + £ il — DY

4,12 .

“12) ;= et Py; if j+#gq,

where

(4.13) yi—ci for lq) =<1 = k(g), y: — 0 otherwise,

as t— o, In (4.12), X, is the sum over the indices ¢ satisfying
I(q) < % < min (k(g), k) and 3,, is the sum over the other indices ¢ on
range 1 <1 < k.

Actually, unless estimates are furnished for wi(t) — ¢i = o(1) as
t — oo, the asympotic formulae (4.12) - (4.13) do not distinguish clearly
between ‘‘principal terms’’ and ‘‘remainder terms.”” A more desirable
conclusion is obtained by replacing (4.13) by

4.14) yi—c =o' P for U(g) =i = k(g) and y} = 0(1) otherwise .
In this case, (4.12) and (4.12) imply

@t = I, citr (b — i) -+ o(t*P)} for k=1, .-+, h(g),

4.15 .
( ) x; = o(e*tP) for j+#gq.

Since © = k(g) = B in Y}, it is seen that the principal terms are given by
2. Roughly, the number of principal terms increase and the remainder
terms become smaller as B and/or j, increases.

Let (4.1) be identified with (4.12). This is essentially the change
of variables introduced in [4]. For computational purposes, note that
the map © = R(¢)y in (4.12) can be factored as follows: = = Q(t)D(t)y,
where x = Q(t)w is given by

(4.16) 2; =" Vw; if j=¢q, x;=e¢"w;, if j+#q
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and w = D(t)y is the (diagonal) map

wi=y; if Ug) =k =k,
“4.17) wi=tPyt if kE<l@) or k> k@),
w; =¢Py; if j#gq.
It is then readily seen that R(f) is nonsingular and that the
inverse map ¥y = R~'(f)xz is given by

yh = NS (—1yitl(k — 1)) i Ue) = k =(a),

@18) i = NS (—1ytiwif(e — i)l if k<Uq) or k>kg),
Y; = e‘“‘tﬂ"lw,- if j *4q.

From (4.12), it follows that, for large ¢, the norm of R(t) is
majorized and minorized by a constant multiple of e*'t”, where v =
max (h, — B, k(g) — l(¢)) and the max refers to g. Thus (4.10) shows that
|| R(t) |le=*¢t " is bounded from above and below by positive constants
as t— oo, Similarly, || B7'(t)|le*'t"® remains between two positive
constants. Thus, there are positive constants N, N’, N;, N/ such that
for large ¢

419) N =|[RB@®lle™t*=N, N =|R7(@)[e"t"*=N,.

Since ¢’ is a fundamental matrix for z; = J(Jj)x;, the factori-
zation R = QD given above makes it easy to calculate the differential
equation for y. It is of the form

(4.20) ¥y = Gty + R7Q)f (¢, R(t)y) ,
where the linear part 4’ = Cy(t)y is

yg =0 if Uo) =k = k(9),
(4.21) Yo =B -kt 'yt if k<lq) or k>k(g),
v, =1J(G) —al,+ B —-Dt'Lly; if j=4q,

and I, is the A(j) by h(j) unit matrix.

Let ¢ = (¢y, -+, ¢,) € X be the vector where cf, I(q) =(k =< k(q),
are the given constants and ¢ = 0 otherwise. The change of variables
(4.3) reduces (4.20) to

(4.22) 2 = Cy(t)z + R (t)f(t, R(t)z + R(t)c),

since Cyt)c = 0. Recall that & = R(t)y is given by (4.12), and so
v = R(t)c is the veetor v = (v, - -+, v,) with components

(4.23) vk = 0t S tkici/(k — 1)! and v; =0 if j#q.
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It is readily verified that (IA(X), Ly(X)) is admissible for Cy(t),
if these spaces refer to ¢ = 1, rather than ¢ = 0. In order to check
this, it is sufficient to consider the three lines of (4.21) separately.
The desired conclusion for the first two lines is obvious. In order to
deal with the last line, consider

(4.24) y; =[J(9) — al, + (8 — D¢ 'Ly, + 9,0 ,

where g;(t)e L' for 1 <t < . A fundamental matrix for the homo-
geneous part of (4.24) is U,(t) = tP-eWW-ol1, cf, the last parts of
(4.16), (4.17). There are positive constants N,, v such that

U@ U7 s) || = N2 for t=s=1 if Re)(y) <«

and
U, U7 s) || £ Nt for 1<t=<s if Rexj) >a«a.
Thus, according as Re\(j) < « or Re\(j) > «, (4.24) has the solution

5i®) = | UOUF@0@ds or 4(t) =—| T U(s)g,)ds

which tends to 0 as ¢ — oo; ef. (2.1).
Theorem 2.1 will be shown to imply the following:

THEOREM 4.1. In the system (4.6), let C = diag (J(Q), ---, J(1)),
where J(7) is an h(J) by h(j) Jordan block with \(j) on its diagonal.
Let a = Re\(j) for some § and let j be denoted by p,q,r according
as Rex(j) <, =, 0r > a and define h, by (4.9). Let j, be an integer
and B a number satisfying (4.10). Let I(q), k(q) be the least and
greatest integers, if any, satisfying (4.11). Let f(t, ) be continuous
Sfor t =0 and all x. Let ce X be a constant vector with components
k=014 j=p,7ro0r j=q and k< Uq) or k> k(q). Let there exist
a number o >0 and a function \Mt), 1 <t < o, such that

@25) (MOt < o and [R5 ROz + E)o) || < MO
for izl =p,
where © = R(t)y is given by (4.12). Finally, let
' m = Zh(p) + I(h(q) — k(Q)) .
Then there exists an m parameter family of solutions x(t) of (4.6)

satisfying the asymptotic formula (4.15).

The conclusion of this theorem can be stated in a different form:
if T > 0 is sufficiently large and the m numbers |%%| and |yk],
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k> k(q), are sufficiently small, then there exists a solution x(f) of
{4.6) for t = T satisfying the asymptotic formula (4.15) and the partial
set of initial conditions ¥%(T) =% if j=» and j=4¢q, k> k(Q) in
the y-coordinate system defined by (4.18) for ¢ = T.

In view of (4.19), the last part of (4.25) is the same as

4.26) et f(t, Rtz + R(t)o)[| = Mt) for [[zll=p.

‘The proof of Theorem 4.1 will show that this condition ecan be relaxed
to the following pair of conditions

4.27) || R0 f (¢, Bz + RiE)o) || = M¢) for [[z][=p,
(4.28) e *tP* | fit, R(t)z + R(t)e)| = Mt) for ||z]|=p, 1=k =kg .
Note that if f(¢, ) has a majorant of the form

(4.29) rE o)l = vy@llll,

then (4.19) shows that (4.25) holds for all choices of the constants
<, Ug) =k = K(g), if

(4.30) Smtﬁ’”O*‘qp(t)dt <.

When (4.29) is replaced by
(4.31) [1fE 2) || = +@Oe(lz]]) ,

where @(¢) is a nondecreasing function of ¢, ¢ > 0, then a sufficient
condition for (4.25) is that

(4.32) SSH R7@ || v(@) 20 + l[eD | B @) [)dt < o

for some p > 0. If, in addition, y(f) is a nonincreasing function,
(4.32) holds if a >0,

(4.33) ra‘2 | Tog & [P+ (a log 0)p(bo)do < oo
for some @ < 1/a and b > N|j¢|]; or if @ < 0,
(4.34) S+oo—“ |log 0 | v(a | log @ p(bo)do < oo
for some a < —1/a and b > N||¢]|; or if a =0,
(4.35) S”o—1+ﬁ/fo¢(alffo)¢(ba)da < w

for some b > N|c].
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If ¢(0) =1, then (4.31) becomes
(4.36) 1S, %) || < ()
and (4.32) is implied by

(4.37) re‘“ttﬂ“ln/f(t)dt <.

The inequality (4.36) is, of course, required only for (¢, ) of the form
(t, x) = (¢, R(t)z + R(t)c), ||z|| < p for some p and ¢ = 1. This set of
(t, x) is contained, for example, in

{t,©): t=1 and [[z]| < Ne”'t™(p + [|¢])} .

Proof of Theorem 4.1. The considerations preceding the state-
ment of Theorem 4.1 show that if the assumption in the last part of
(4.25) is relaxed to (4.27) and if (4.15) in the conclusion is relaxed to
(4.12)-(4.13), then the corresponding result is a consequence of
Theorem 2.1.

It has to be shown that if x(¢) is a solution of (4.6) for large ¢
satisfying (4.12) - (4.13), then (4.14) also holds. It is seen from
(4.20) and the first part of (4.21) that, for I(¢9) < k < k(q),

vi®) = of — [ TR=©)76, Ree)lids,
where [R™'f]* indicates the (¢gk)th component of R~!f. Since y = R~
is given by (4.8),

k

i) = of — | o0 S(—1ys sl — ),

1=1

where the argument of f! is (s, R(s)y(s)). By (4.28)
|yit) —c| < e Sws"—"x(s)ds < ett# Smk(s)ds
t t

for large t since y(s) — ¢ as s — . This gives the first part of (4.14)
and completes the proof of the theorem.

It can be remarked that one of the keys to Theorem 4.1 is the
change of variables © = R(t)y of (4.12) from [4]. Corduneanu’s theo-

rem is only one of many ways of dealing with the resulting equation
(4.20).

6. Addendum. The object of this section is to make a remark
about Corduneanu’s Theorem I in [1]. In this theorem, X is permit-
ted to be a Banach space of finite or infinite dimension. In case
dim X = oo, it is assumed that X, is closed and has a closed com-
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plement X, 4 in X. It turns out that one can establish an analogous
existence theorem without the assumption that X, is closed or has
a closed complement (but specification of a condition of the type
P,%(0) = &, and corresponding uniqueness is lost).

The notations above will be used. Here, ‘‘locally integrable’’
means ‘‘locally Bochner integrable’”” and X again denotes the ball
{(): x(®)e =, |zlpb =p} in D, p>0.

THEOREM 6.1. Let X be a Banach space (dim X < o) and A(t)
locally integrable on J. Let A(t), f(t, x) satisfy (@) (&, &) s ad-
massible for A(t) and (b) x(t)— f(t, x(t)) is a continuous operator
from ¥C o to <& satisfying

(6.1) |f(t 2(8) —f(¢ b)) |5 = 0|2 — 2alg, where 0<6<1,

SJor all z,(t), ,(t) € X and some constant 6. Let m = |f(t,0)|5. Then
there exists a constant K, depending only on A(t), <& and <, such
that if

(6.2) Em/l—6)=p,
then (1.3) has at least one <r-solution x(t)c .
The proof will depend on a procedure due to L. M. Graves [Duke

Mathematical Journal, vol. 17 (1950), pp. 114-111] and results of
Massera and Schaffer [7].

Proof. By Theorem 2.2 in [7], condition (a) implies that there
exists a constant K, depending only on A(f), <# and <, such that
if g(t)e <&, then (1.2) has at least one <r-solution «(t) satisfying

(6.3) ], < Klgl, .

In order to find a solution for (1.8), form a sequence of successive
approximations x,(t), x,(t), --+ as follows: Let z,(f) = 0. Let x,(t) be
a <r-solution of (1.2), when g(t) = f(¢, 0) € <&, satisfying

(6.4) ||y = K|f(¢,0)| 5 = Km .

Note that Km < p, so that z,(t)e 2. If x(t), ---, %,_.(t), where n =2,
have been defined and are elements of X, define x,(t) by letting
2,(t) — x,—.(t) be a solution of (1.2), with

9(@t) = f(t, @aa(t)) — f(E, ©ua(t))
satisfying (6.3). Thus, by (6.1),

[ @0 — Bpi| gy S KO | @y — Bps|g for n=2.
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Hence, by induction,
(6.5) |y — %yos|gy = KO*'m for n=1.

Note that «, = », + (¥, — @) + +-+ + (¥, — @,-,) has a norm satisfying
@l = KmS0' < Kmi(l—0) < p.
=0

Thus #,.(t)e 2 and so x,(t) can be defined for all n =1,2, ---.
Since x,(t) satisfies
2 = At)x, + f (¢, z,) ,
and x,(t) — x,-.(t) satisfies
(@, — #,) = AQ)@, — @) + [ (&, B0m) — F(E, Toms)

for n = 2, it is clear that

(6.6) ©l, = AT, + f (&, ) .

Furthermore,

(6.7) 2(t) = lim @,(t) = @, + Sy, — ©,-)
n—oco J=2

exists in & and is an element of X. Since (b) implies that f(¢, ._,)
— f(t, 2(t)) in <& as n— oo, it follows from Lemma 2.1 in [7] that
2(t) is a < -solution of (1.3). This proves Theorem 6.1.
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