
ON THE ASYMPTOTIC INTEGRATION OF
ORDINARY DIFFERENTIAL EQUATIONS

PHILIP HARTMAN AND NELSON ONUCHIC

1. Various methods have been employed for the asymptotic inte-
gration of ordinary differential equations, e.g., successive approxima-
tions (cf. [2]), topological arguments involving Waiewski's or similar
principles (cf. [4], [5], [8]), and fixed points theorems (cf. [3]). The
object of this note is illustrate the application for this purpose of a
simple and general theorem which is based, on the one hand, on
Massera and Schafϊer's [7] use of the open mapping theorem and, on
the other hand, on Tychonoff's fixed point theorem. This general
theorem is essentially a corrected version of a theorem of Corduneanu

ίU
Below x, y, are elements of a finite dimensional Banach space

X of norms | | # | | , | | t/ | | , •••. L denotes the space of real-valued func-
tions φ(t) on J: 0 gL t < co with the topology of convergence in the
mean L1 on bounded intervals. B denotes a Banach space of real-
Yalued functions φ{t) on 0 S t < co, norm \φ\B, which is stronger
than L (in the sense that B is contained in L algebraically and
convergence in B implies convergence in L; [7]). Examples of such
spaces are Lv — 1/(0, oo), l ^ p ^ c o , with norm 1 φ | p or the subspace
L~ of L°° of functions φ(t) satisfying φ(t) —> 0 as t —> co.

L(X), LP(X), B{X), will represent the space of measurable
functions x(t) from J to X such that φ{t) = )| x(t) \\ is in L, Lv, B,
In the case Lp or JB, the norm \<p\p or φ\B will be abbreviated to
•I # \v or \x\B. C(X) is the space of continuous functions from J to
X with the topology of uniform convergence on bounded intervals.

Consider a homogeneous and an inhomogeneous system of linear
differential equations

<1.1) x' - A(t)x ,

<1.2) x' - A(t)x + g(t) ,

in which g(t) e L(X), A(t) is an endomorphism of X for fixed t and
is locally integrable on J. If £& is a Banach space stronger than
L(X), a ^-solution x(t) of (1.1) or (1.2) is a solution x(t) e &. Let
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XO0 denote the set of initial points x(0) e X of ^-solutions x(t) of
(1.1). Then Xo^ is a subspace of X. Let Xx^ be any subspace of
X complementary to Xo^ (i.e., X is a direct sum of XQ^ and Xι@)
and PO0 the projection of X onto Xo^ annihilating X ^ .

A pair (&, ^ ) of Banach spaces, each stronger than L(X), is
called admissible for (1.2) or A(t) if, for every g(t)e^, (1.2) has at
least one ^-solution x(t); [7], p. 292.

The results below deal with the nonlinear system

(1.3) x' = A{t)x + f{t, x) .

Let ^ , & be Banach spaces stronger than L(X). Let Σ = 2 ^
be the closed ball {a?(ί): α ? ( ί ) e ^ , \x\^Sp} of radius ^ > 0 in ^ _
Let Sf = ^ n C(X) and S be the closure of S in C(X).

THEOREM 1.1. Let A(t) be locally integrable on J. Let A(t),
f(t, x) satisfy (a) {&, &r) is admissible for A(t); (b) x(t) —>f(t, x(t)) is-
a continuous map of the subset S of the space C(X) into <5&\ (c) there
exists a constant r > 0 such that \ f{t, x{t)) \<%ίkr for x{t) e S; and
(d) there exists a λ(t) e L such that \\f(t, x{t)) \\ ^ X(t) for x(t) e S. Let
ξ0 G X0̂ r Then there exist positive constants Co and K, depending?
only on A(t), &, &, Xλ^ (but not on f or ξ0) such that if

(1.4) CQ\\ξQ\\ + Kr^p,

then (1.3) has at least one solution x(t) e S satisfying

(1.5) Po^(O) - ξ0 .

It can be remarked that if S Φ S, so that S is not closed in C{X)r

then a convenient sufficient condition for (b), (c), (d) is the following:
Let ^ be a subspace of a Banach space 8% stronger than L(X),.
such that Sg = C(X)f]Σgp is closed in C(X). Then since SczSg,
conditions (b), (c), (d) hold if they hold when S is replaced by S%.

Theorem 1.1 is a variant of Corduneau's Theorem II in [1], Cor-
duneanu's theorem does not involve the space C(X) and in place of
(b), has the assumptions:

(b') x(t) —>f(t, x(t)) is a continuous map from the subset Σ of &
to ^

(e') Σ is closed in L(X).
However, his proof is incomplete under his assumptions and seems to
use the following condition in place of (b'):

(b") x{t)f(t, x(t)) is a continuous map from the subset Σ of L(X)
to <£T.

It will be clear below that, in applications, it is more convenient
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to deal with the topology of C(X) rather than L(X).
It can be mentioned that another result (Theorem I) of Corduneanu

gives, not only existence but, also uniqueness for x(t) under conditions
including | / ( ί , x(t)) - f(t, y(t)) \#^θ\ x{t) - y(t) \@ for some constant

ΰ. See § 6 below.
For theorems related to Theorem 1.1 with & = L°°(X), see [6].
The proof of Theorem 1.1 which follows closely that of Corduneanu

will be given for the sake of completeness.

Proof of Theorem 1.1. The essential part of the proof is the
following result of Massera and Schaίfer, [7], p. 295:

LEMMA 1.1. Let A{t) be as above and (&, &) admissible for
{1.2). Let ξ0 e Xo^. Then if g(t) e &, (1.2) has a unique ^solution
x{t) satisfying (1.5). Furthermore, there exist constant Co and K,
depending only on A(t), &, & and Xlc%, such that

Thus, if y(t) e S in Theorem 1.1, then

<1.7) x1 = A(t)x + f(t, y(t))

has a unique ^-solution x(t) satisfying (1.5) and (1.6), where g(t) =
f(t,y(t)). Define an operator To: S-> & by putting_#(£) = T0[y(t)].
Thus, by (c), the condition (1.4) implies that TQ map S into S.

Let ys(t) e S, gs(t) = /(ί, ^(ί)), ^(ί) - T0[Vj(t)] for j = 1, 2. Then
#i(t) — »a(t) is a ^-solution of (1.2) with g = gx — g2 and P0^(»i(0) —
JX2(0)) = 0. Hence

<1.8) I xx - x2 \φ ^ KI g± - g2 \# .

Since the map from SaC(X) to &_ given by y(t)-*g(t) =f(tfy(t))
is continuous. It follows that To: S —> S is a continuous map from
^ c C ( I ) to ScLSf.

It will be verified that Γo: S-^S is a continuous map from
SdC(X) to SaC(X). This will depend on a standard inequality for
.solutions of (1.2),

ds} exp J j | A(β) || ds<1.9) || x(t) || ^ {r-1!Jl Φ ) II efo + j J | ̂ (s) || ds} exp J j

for 0 ^ ί ^ T, cf. [7], p. 288. It will also depend on the fact that
3f is stronger than L{X), so that there exists a constant a
such that

j | ^ for all xe&,
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and that & is stronger than L{X), so that a corresponding inequality
holds for elements ge & with a constant a^(T). Thus, in the nota-
tion of (1.8), for 0 ^ t ^ T,

(l.io) ii *!(«)-*,(«) II

^ {T-'aβ{T)K + aJT)} \ Ol - g2 |^ exp j

Hence \9i — QΛ& —>O implies_ α â?) — α?a(ί) —> 0 in C(X). This proves
that To: S-*S, where S c S c C ( I ) , is continuous.

It will now be verified that the image T0S of S under To has a
compact closure in C(Z). It follows from (1.9) that if x(t) e T0S,
then || x(t) || £ c(T) for 0 ^ ί ^ T, where c(Γ) - {T~λa^{T)p + aΛT)τ\

II A(s) \\ds. Thus the functions x(t) e T0S are uniformly bounded
o

on every interval [0, T], From (1.7) and condition (d), x(t) e TQS im-
plies that

|| χ(t) - x(s) || ^ c(T) Γ|| A{u) \\ du + [\(u)du for O ^ s g ί g Γ .

Thus the set of functions x{t) e T0S are equi-continuous on every-
interval [0, T], It follows from Arzela's theorem that TQS has a
compact closure in C(X).

By Tychonoff's theorem, the continuous map To: S-+ S, where-
S c S and S is closed convex subset of C(X), has a fixed point
x(t)e T0ScS. This proves Theorem 1.1.

2 In applications, condition (a) is one of the most difficult to check.
For the case ( ^ , &) = {L\X)y L°°{X)), Massera and Schaffer [7J
have given necessary and sufficient conditions for (a) in terms of the
solutions of the homogeneous equation (1.1). (These condition will
not be used below but will be stated here because of their relevancy
for this paper.) First, {L\X), L°°{X)) is admissible if and only if
(L\X), L?(X)) is admissible; [7], p. 331. For & - L°°(X) or & =
L0~(X), let XO0, X1@, Po@ have the meaning above and P1Sΰ = 1 -Pol-
and let U(t) be the fundamental solution of (1.1) satisfying U(0) — L
Then (L\X), L~(X)) and/or (L\X), L?(X)) is admissible if and only
if ([7], PP. 331, 334) there exists a constant NQ such that

| | U(t)PoSfU-\8) \\SN0fort^s^0,
{ II U(t)P U-\s) II ^ NQ for s ^ t ^ 0 .

Conditions (b), (c), (d) are comparatively easy to check under
suitable conditions on ^ , <%r and f(t, x), which will now be described.

Let B be a Banach space of real-valued functions on J satisfying:
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( i ) B is stronger than L;
(ii) if φ(t)eB, ψ(t) is measurable and \φ(t)\ S>\φ(t)\, then

ψ(t)6B and \Ψ\B^\Φ\B\

(iii) if hoτ(t) is the characteristic function of the interval 0^t<^Tr

then hoτ G 5;
(iv) B is lean at α> ([9], p. 362), i.e., if φ(t) e B, then hQT{t)φ{t) e B

by (ii) and hQTφ—>φ in B as T—> oo.
For example the spaces, B = Lp

f 1 ^ p < oo, and B = L£ (but
not J5 = L°°) satisfy (i) - (iv). Another example of a space 5 satisfy-
ing (i) - (iv) can be obtained as follows: Let ψ(t) > 0 be a measurable
function on J such that ψ(t) and l/ψ(t) are locally bounded. Let
LψQ denote the Banach space of functions φ(t) such that φ(t)/ψ(t) e L~
with I φ \B — I φlψ\oo. This space satisfies (i) - (iv). If the function
λ(ί) satisfies

(2.2) 0 ^ λ(ί) ^ ψ(t) and X(t)jψ(t) -> 0 as ί — oo ,

then λ(ί)eL;0.

Condition (H) o?ι /. Let /(£, a?) be a function on the product
space of J: 0 < ί <co and the ball || x || ^ p in Xand let f(t, x) have
values in a subspace F of X. Let /(£, a?) be a measurable function
of £ for fixed x and a continuous function of x for fixed ί, where the
continuity in a? is uniform for t on bounded intervals. Let X(t) be a.
measurable function and let

(2.3) ll/(ί,α)ll^λ(ί) for t^Of\\x\\^p.

The point of assuming that f(t, x) has values in a subspace Y
of X is for applications to higher order equations where f(t, x) might
be a vector of the form (0, , 0, h(t, x)) with values in a subspace
Y of X; cf. § 3.

LEMMA 2.1. If & is a Banach space of the type & = B{Y)r

where B satisfies (i)-(iv), if &— L°°(X), and if f(t, x) satisfies
conditon (H) with \(t) e B, then the assumtions (b), (c), (d) of Theorem
1.1 hold with r = |λ |Λ in (c).

This is clear. Hence Theorem 1.1 has the following consequence.

COROLLARY 2.1. Let A(t) be locally integrable on J and let
(&, £&) be admissible for (1.2), where & = B(Y) and B satisfies
(i) - (iv) above and & = L~(X) [or & = L^(X)}. Let f(t, x) satisfy
assumption (H) where \(t) e B. Let ξ0 e Xo^ and r = | X(t) \B. Then-
if (1.4) holds, (1.3) has a solution x(t) satisfying (1.5) and \\x(t)\\ ^
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p[and x(t)-^0 as t—*<»].

For the purposes of asymptotic integration or the study of asymp-
totic equivalence, the following particular cases of Corollary 2.1 are
of interest.

THEOREM 2.1. Let A(t) be locally integrable on J. Let f(t, x)
satisfy assumption (H). Assume either (i) that X(t) e L1 and {L\Y),&),
where 22= L°°(X)[or &= L~(X)], is admissible for A(t) or (ii) that
there exists a locally bounded measurable function ψ{t) > 0 on J
satisfying (2.2), such l/ψ(t) is locally bounded, and such that for
every g(t) e L( Y) for which

(2.4) g(t)lψ(t) -> 0 as t -> CXD ,

(1.2) has a 2$-solution x(t). Let ζoeXo^. Then there exist positive
constants Co and K with the property that if ||fo|| is so small and
T so large that,

(2.5) C0\\ξ0\\ +

or

(2.6) CO || f0 II + K\(t)lf(t) Sp for tϊtT,

according as (i) or (ii) is assumed, then the differential equation
(1.3) has a solution x(t) for t^ T satisfying \\ x(t) \\ ̂  p [and x(t) \\ -»
0 as t —> oo ] and

(2.7) P0^U-\T)x(T) = ξ0 .

It is clear that if condition (i) holds, then (ii) holds, but it is con-
venient to isolate condition (i). Theorem 2.1 follows by applying
Corollary 2.1 to the situation where f(t, x), \{t) is replaced by
hτ{t)f{t, %), hτ(t)X(t), respectively, where hτ{t) is the characteristic
function of the half-line t ̂  T.

Conditions of smallness on ||fo|| in Theorem 2.1 can be eliminated
by requiring that condition (H) hold for every fixed p > 0 where,
however, X(t) can be allowed to depend on p.

3. Before giving more complicated applications of Theorem 2.1,
it might be well to illustrate its use in a simple case. Consider a
scalar second order equation

(3.1) u" = h(t, u, u') ,

where h(t, u, v) is continuous for t ̂  0 and arbitrary (u, v). Let a, b
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be constants and consider the question whether (3.1) has a solution,
for large t, such that

(3.2) u(t) - at - b -> 0 and u'(t) - α -> 0 as t -> oo .

Introduce the change of variables u—*w,

(3.3) u = at + b + w,

so that (3.1) becomes

(3.4) w" = fc(ί, αί + b + wy a + w')

and (3.2) becomes w, wr —>0 as ί —» oo. It follows from Theorem 2.1
that (3.1) has a solution w(ί), for large ί, satisfying (3.2) if there
exists a ^ > 0 and a function λ(t) such that

(3.5) I Λ(ί, αί + 6 + u, a + v) | ^ λ(ί) for | w (, | v \ ̂  p ,

(3.6) Γίλ(ί)dί < co

Cf. [3].

Generalizations to an wth order equation u{n) — h(t, u, u', ,u(Λ~1)),
are obvious.

4* Very often the question of an asymptotic integration of (1.3)
can be put into the following form: Let E(t) be a given family of
non-singular endomorphisms of X which are absolutely continuous with
respect to t and let e e l be a constant vector. Does (1.3) have a
solution x(t), for large ί, of the form

(4.1) x = R{t)y

where y = y(t) -^c as ί->co? The differential equation for y(t) is

(4.2) yf = R-\t)[A{t)R{t) - R'(t)]y + R~\t)f(t, R(t)y) .

The change of variables

(4.3) z = y -c

transforms (4.2) into

(4.4) zf = R-\t)[A{t)R{t) - R'(t)]z + h(t, z, c) ,

where

(4.5) h{t, z, c) = R~\AR - R']c + R"1/^ R* + Re) .

The problem now becomes: Does (4.4) have a solution z(t) for large
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t such that z(t) - ^ 0 a s ί - > o o ? Clearly, Theorem 2.1 is adapted to
answer such questions.

It must be pointed out that if the answer is in the affirmative,
then the assertion "(4.1) and y — c = o(l) as ί—>oo" need not be
very informative unless estimates for y — c — o(l) are obtained. For
example, if E(t) is the 2 x 2 matrix R(t) = (rίk), where rkl = (—l)*e~*
and τk2 = e* for fc = 1, 2, and c = (1, 0), then one can only deduce
α?(ί) = 0(6*), but not an asymptotic formula of the type x(t) = (—1 +
o(l), 1 + o(l))β-\

As an illustration of this procedure, there will now be indicated
a derivation of an analogue of a theorem of Hartman and Wintner [5].
This theorem, in the linear case, is a generalization of a result of
Dunkel [2].

The theorem will deal with a nonlinear system

(4.6) x' = Cx + f(t, x) .

A fixed coordinate system is assumed for X, so that x — (a?1, , xn)y

where n — dim X, C is a constant matrix, f(t, x) is continuous on
J x X. (Actually, it will be sufficient to consider f(t, x) defined and
continuous on a product set J x Ωx, where Ωx is any open set in X
chosen so that the statement of Theorem 4.1 becomes meaningful.)
For convenience, it will be assumed that X is a vector space over
the complex number field but, with suitable interpretations, the result
and its proof are valid if X is a vector space over the reals.

It will be assumed that C is in a Jordan normal form C = diag
(/(I), •••, J(/f)), where J(j) is an h(j) by h(j) Jordan block with the
eigenvalue X(j) on its diagonal and, if h(j) > 1, 1 on the subdiagonaU
Correspondingly, write x = (x19 , xμ), where xό — (x), , x){j)) is an
&( j)-tuple. With a similar renumbering of the components of f{t, x) =
(/i, •••,/*), (4.6) becomes

(4.7) x)' - X(j)x) + //, x)f = λ(j>*. + a^-1 + // for k = 2, . , h(j) ,

for i = l, •••,/* or

(4.8) x'j = JU)Xi + Lit, x) f o r i = l , ••-,/*.

Let α denote one of the numbers -Beλ(l), •••, Be\{μ) and let an
index j , 1 ^ i ^ μ, be denoted by p, q, or r according as ReX(j) <r

= , or > a. The set of indices p and/or r can be vacuous. Put

(4.9) h* = max /&(#) .

The linear system xf = Cίc has solutions of the form xq = eκiq)tPg(t)r

Xj — 0 for j Φ q, where Pq(t) is an /^(g)-tuple each component of which
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is a certain polynomial. The question to be discussed is when does-
(4.6) have a solution which approximates this solution of x' = Cx in
a certain sense. Because of the fact that certain remainder terms,
may become larger than certain "principal" terms, the question will,
be formulated more precisely as follows:

Let i 0 be an integer and β an arbitrary number subject to

(4.10) 0 S Jo ̂  h* - 1 and β + j 0 έ K

(so that β ^ 1). Let k = l(q), k(q) be the least and greatest values,
of k, if any, satisfying

(4.11) 1 S l(q) ύ k(q) ^ min (h(q), β) and h(q) - l(q) £ j0 .

Let c\, l{q) g i ^ k(q), be numbers. Solutions x(t) of (4.6) are sought
with the asymptotic behavior

xq eiΣ^-ψJik - 1)! + t
x 3 = e ' ψ - t y s i f j Φ q ,

where

(4.13) y\ -> c\ for l(q) ^ i ^ k(q), y) -> 0 otherwise ,

as t—>oo. In (4.12), ^ is the sum over the indices i satisfying-
l(q) ^ i g min (k(q), k) and Σu is the sum over the other indices i on
range 1 ^ i ^ Λ.

Actually, unless estimates are furnished for y\(t) — c\ = o(l) as.
t —• co, the asympotic formulae (4.12) - (4.13) do not distinguish clearly
between "principal terms" and "remainder terms." A more desirable
conclusion is obtained by replacing (4.13) by

(4.14) y\ - c\ = o(t^β) for l(q) ^ ί ^ fc(g) and y) = o(l) otherwise .

In this case, (4.12) and (4,12) imply

!<>&-'Ifr - i)\ + o(tk'β)} for k = 1, .iA i ^ χ* e{Σ!<>&Ifr i)\ +(4.15)
xd = o(e*ψ-β) for j Φ q .

Since i ^ &(g) ^ /3 in Σl9 it is seen that the principal terms are given by
ΣΣ. Roughly, the number of principal terms increase and the remainder
terms become smaller as β and/or j0 increases.

Let (4.1) be identified with (4.12). This is essentially the change
of variables introduced in [4]. For computational purposes, note that
the map x = R(t)y in (4.12) can be factored as follows: x = Q(t)D(t)yr

where x = Q(t)w is given by

(4.16) Xj = ej{j)twj if j = q , xό = e^Wt if j Φ q
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and w — D(t)y is the (diagonal) map

w; = j/ϊ if l(q)^k^k(q),

<4.17) w\ = ί*-fy* if fc < ϊ(g) or & > k(q) ,

wy = ί1"^ if i =£ ? .

It is then readily seen that R(t) is nonsingular and that the
inverse map y = JB" 1 ^)^ is given by

y\ = e-^Σi-iyt^xlKk - 1)1 if
i

ί-iyίP-'a '/ίA; - i)I if * < ί(«) or k >k(q) ,
i=l

Vj = e^ψ-'-Xj if i ^ β .

From (4.12), it follows that, for large t, the norm of R(t) is
majorized and minorized by a constant multiple of eatP, where 7 =
max (Λ* — /3, Λ(g) — Z(g)) and the max refers to q. Thus (4.10) shows that
\\R(t)\\e~att~j° is bounded from above and below by positive constants
as t—>oo. Similarly, || Jf2^x(ί) ||e**t1Hί remains between two positive
constants. Thus, there are positive constants N, N'f Nlf Nί such that
for large t

<4.19) N' S II Λ(t) II β-β tt"Λ ^ JV, iV/ ̂  || Λ-^t) || β- ί1^ ^ iVx .

Since e J ( i ) ί is a fundamental matrix for x) — J(j)xj9 the factori-
zation R = QD given above makes it easy to calculate the differential
equation for y. It is of the form

<4.20) if = C0(t)y + R-\t)f(t, R(t)y) ,

where the linear part yf — C0(t)y is

»J' = 0 if l(q)^k^k(q),

(4.21) y\' = (β- k)t-ψq if k< l(q) or k > k(q) ,

yr^[J{3)-ccih + {β-i)t-1ih\y^ if i = ?,

and 7A is the h(j) by ^(i) unit matrix.

Let c = (cly , cμ) G X be the vector where cj, Z(g) ^[fc ̂  k(q),
are the given constants and c) = 0 otherwise. The change of variables
(4.3) reduces (4.20) to

<4.22) zf = C0(ί)2 + R-\t)f(tt R(t)z + Λ(ί)c) ,

since C0(ί)c = 0. Recall that x = i2(% is given by (4.12), and so
v = B(t)c is the vector i; = {vlf , vμ) with components

(4.23) < = βλ ( f f ) ίΣi**"^ί/( f c - ί ) ! a n d ^ = 0 i f
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It is readily verified that {L\X), L™(X)) is admissible for C0(t),
if these spaces refer to ί ^ 1, rather than t ^ 0. In order to check
this, it is sufficient to consider the three lines of (4.21) separately.
The desired conclusion for the first two lines is obvious. In order to
deal with the last line, consider

(4.24) y) = [J(j) - alh + (β - l ) * - 1 ! ^ + gs(t) ,

where g^t) e L1 for H ί ^ c o , A fundamental matrix for the homo-
geneous part of (4.24) is U&t) = ί*-^™-"7^; cf. the last parts of
(4.16), (4.17). There are positive constants No, y such that

II Uά{t)Uf{s) II ^ Noe-y{t-s) for t ^ s ^ 1 if Λβλ(i) < α

and

WUfflUfWW^Nifi*'-* for B ί ^ s if i&λ( j )>t f .

Thus, according as ReX(j) < a or ReX(j) > a, (4.24) has the solution

or y,(t) -

which tends to 0 as t —> «D; cf. (2.1).
Theorem 2.1 will be shown to imply the following:

THEOREM 4.1. In the system (4.6), let C = diag(J(l), ---,J(μ)),
where J(j) is an h(j) by h(j) Jordan block with X(j) on its diagonal.
Let a = Re X(j) for some j and let j be denoted by p, q, r according
as ReX(j) <, =, or > a and define h* by (4.9). Let j0 be an integer
and β a number satisfying (4.10). Let l{q), k(q) be the least and
greatest integers, if any, satisfying (4.11). Let f(tf x) be continuous
for t ^ 0 and all x. Let ceX be a constant vector with components
c) — 0 if j — p,r or j = q and k < l(q) or k > k(q). Let there exist
a number p > 0 and a function λ(ί), 1 ^ t < oo, such that

(4.25) \\(t)dt < oo and \\ R~\t) || | |/(ί, R(t)z + R{t)c) || ^ λ(t)

/or P l l ^ p ,

where x = J?(ί)^/ is #ή>ew δ?/ (4.12). Finally, let

m - 2Λ(p) + ^(fc(ί) ~ k(q)) .

Then there exists an m parameter family of solutions x(t) of (4.6)
satisfying the asymptotic formula (4.15).

The conclusion of this theorem can be stated in a different form:
if Γ > 0 is sufficiently large and the m numbers \y%\ and \yk

qQ\>,
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k > k(q), are sufficiently small, then there exists a solution x(t) of
(4.6) for t ^ T satisfying the asymptotic formula (4.15) and the partial
set of initial conditions y){T) = y% if j — p and j = q, k> k(q) in
the ^/-coordinate system defined by (4.18) for t = T.

In view of (4.19), the last part of (4.25) is the same as

<4.26) e^ψ-1 | |/(t, R(t)z + R(t)c) || ^ λ(t) for p || g p .

The proof of Theorem 4.1 will show that this condition can be relaxed
to the following pair of conditions

< 4 . 2 7 ) || R-\t)f(t, R{t)z + R(t)c) \\ ^ λ ( ί ) f o r \\z\\£p,

< 4 . 2 8 ) e-«ψ-k \fg

k(t, R ( t ) z + R ( t ) c ) \ ^ λ ( ί ) f o r \\z\\^ptl^k^ h(q) .

Note that if /(t, a?) has a majorant of the form

<4.29)

then (4.19) shows that (4.25) holds for all choices of the constants
Sk^ k(q)f if

<4.30) ί

When (4.29) is replaced by

where φ{σ) is a nondecreasing function of σ, σ > 0, then a sufficient
•condition for (4.25) is that

<4.32)

for some p > 0. If, in addition, ψ(t) is a nonincreasing function,
<4.32) holds if a > 0,

{4.33) ί°V21 log σ |*+*>-ty(α log σ)φ(bσ)dσ < oo

for some α < 1/α and 6 > JV|| c ||; or if a < 0 ,

(4.34) I σ~21 log σ \ ψ{a \ log σ \)φ{bσ)dσ < co
J+o

lor some α < —lja and 6 > JV|| c \\; or if a — 0,

<4.35) ίO°σ~

for some 6 > JV||c||
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If φ(σ) = 1, then (4.31) becomes

(4.36) | | /( ί , x)\\ ^ ψ(t)

and (4.32) is implied by

(4.37) ί V"V-ty( ί )d ί < oo .

The inequality (4.36) is, of course, required only for (ί, x) of the form
(ί, x) = (ί, jB(t)« + JR(ί)c), || 2 || ^ p for some p and t ^ 1. This set of
(ί, a?) is contained, for example, in

{(ί, a?): t ^ 1 and || a? || ^ Neattj°(p + \\c ||)} .

Proof of Theorem 4.1. The considerations preceding the state-
ment of Theorem 4.1 show that if the assumption in the last part of
(4.25) is relaxed to (4.27) and if (4.15) in the conclusion is relaxed to
(4.12)-(4.13), then the corresponding result is a consequence of
Theorem 2.1.

It has to be shown that if x(t) is a solution of (4.6) for large t
satisfying (4.12)-(4.13), then (4.14) also holds. It is seen from
(4.20) and the first part of (4.21) that, for l{q) ^ k ^ k{q),

y\(t) = o\ - ^[R-\s)f(s, R(s)y(s))]k

qds ,

where {R~fYq indicates the (qk)th component of R~λf. Since y = R~Ύx
is given by (4.8),

yq\v) Vq

where the argument of fk is (s, R(s)y(s)). By (4.28)

f°° Γ°°
I yq{t) — cq I ̂  e \ sk~βX(s)ds ^ etk~β \ \(s)ds

Jί Jί

for large t since y(s) —>c as s —> CΌ. This gives the first part of (4.14)
.and completes the proof of the theorem.

It can be remarked that one of the keys to Theorem 4.1 is the
change of variables x = R(t)y of (4.12) from [4]. Corduneanu's theo-
rem is only one of many ways of dealing with the resulting equation
<4.20).

6 Addendum* The object of this section is to make a remark
about Corduneanu's Theorem I in [1]. In this theorem, X is permit-
ted to be a Banach space of finite or infinite dimension. In case
dim X— co, it is assumed that Xo@ is closed and has a closed com-
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plement X^ in X. It turns out that one can establish an analogous
existence theorem without the assumption that Xo^ is closed or has
a closed complement (but specification of a condition of the type
PQ@x(0) = ς0 and corresponding uniqueness is lost).

The notations above will be used. Here, ' 'locally integrable"
means ' 'locally Bochner integrable" and Σ again denotes the ball
{x(t): x(t) e gί, I x \D ̂  p} in D, p > 0.

THEOREM 6.1. Let X be a Banach space (dim X ^ oo) and A(t)
locally integrable on J. Let A(t), f(t, x) satisfy (a) ( ^ , <&) is ad-
missible for A(t) and (b) x(t) —»/(ί, x(t)) is a continuous operator
from ί c ^ to & satisfying

(6.1) \f(t9x1(t))-f(t9X2(t))\^^θ\x1-x2\^y where 0 < 0 < 1 ,

for all xx(t), x2(t) e Σ and some constant θ. Let m = |/(ί, 0) \#. Then
there exists a constant K, depending only on A{t), & and 2$', such
that if

(6.2) Kml(l - θ) g p ,

then (1.3) has at least one 2$-solution x(t)eΣ.

The proof will depend on a procedure due to L. M. Graves [Duke
Mathematical Journal, vol. 17 (1950), pp. 114-111] and results of
Massera and Schaffer [7].

Proof. By Theorem 2.2 in [7], condition (a) implies that there
exists a constant K, depending only on A(t), & and £^, such that
if g(t) e &, then (1.2) has at least one ̂ "-solution x(t) satisfying

(6.3) \x\^^K\g\^.

In order to find a solution for (1.3), form a sequence of successive
approximations xo(t), xx(t), as follows: Let xo(t) == 0. Let xλ{t) be
a ^--solution of (1.2), when g(ί) = / ( ί , 0)e&, satisfying

(6.4) \x1\^^K\f(t90)\sp = Km.

Note that Km < p, so that xx(t) e Σ. If xQ(t), , xn^(t)§ where n ̂  2,
have been defined and are elements of Σ, define xn(t) by letting
xn(t) — xn-λ{t) be a solution of (1.2), with

g(t) = /(ί, »,.,(«)) - f(t, xu^(t)) ,

satisfying (6.3). Thus, by (6.1),

\xn-Xn-Λw^Kθlx^-x^lw for n^
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Hence, by induction,

(6.5) I xn - xn-λ \g ^ Kθn~ιm for n ^ 1 .

Note that xn = x1 + (x2 — xx) + + (xn — xn-τ) has a norm satisfying

n£ - θ) £ p .\ £
^ 3 = 0

Thus xn(t) e Σ and so xjt) can be defined for all n = 1, 2, .
Since xx(t) satisfies

xί = AίQa?! + /(ί, a?0) ,

and xn(t) — xn-i(t) satisfies

(xn - xn.,y = A(t)(xn - xn-λ) + f(t, xn^) - f{t, xn^)

for n ^ 2, it is clear that

(6.6) xf

n = Aίtjaj. + /(ί, α?^) .

Furthermore,

(6.7) x(t) = lim a?w(ί) = a?x + Σ(^y - Xj-i)

exists in & and is an element of Σ. Since (b) implies that /(ί, »,,_!)
—•/(*, a?(t)) in ^ as n—* oo, it follows from Lemma 2.1 in [7] that
8(ί) is a ^-solution of (1.3). This proves Theorem 6.1.
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