INTEGRAL EQUATIONS IN NORMED ABELIAN GROUPS

J. R. DoRROH

1. Introduction. Suppose Z is an additive abelian group with
additive identity element N and a “norm” || .|| such that ||N|| =0,
andif z, we Z, then ||z + w|| =< ||z]| + [[w]], || =2 = ||z]|, and [[2][ > 0
unless z = N. Suppose furthermore that Z is complete with respect
to the metric induced by this norm. Let B denote the set of all
transformations from Z into Z. Suppose [a, b] is a closed number
interval, A€ Z, and each of F and G is a function from [a, b] into B.

Under suitable restrictions on F and G, we wish to find a function
Y from [a, b] into Z satisfying the integral equation

(1.1) Y@) = A + S”dG FY,

where F'Y denotes the function from [a, b] into Z defined by [FY](z) =
F(x)Y(x). Notice that parentheses are used in denoting the image
of a number, but not in denoting the image of an element of B. We
wish to express a solution of (1.1) as a product integral

(1.2) Y()=n:1+dG-F)A.

The terms “integral” and “product integral” will be defined in the
next section, but the notation is quite suggestive, taking 1z =z for
zeZ.

A related problem has been treated by J. W. Neuberger [1]. Let
us perform a “change of variable.” That is, let R denote the function

from [a, b] into B defined by R(x)z = rdG- F'z, where Fz denotes

the function from [a, b] into Z defined by sz](x) = F(x)z. Then (1.1)
becomes, at least formally

(1.3) Y@) = A+ [dR- Y.
Under suitable restrictions, Neuberger expresses solutions of (1.8) as
the product integral
(1.4) Y(x) = mi(1 + dR)A ,
or, in Neuberger’s notation
Y(z) = (T, 4), T(p,9) =1+ R(p) — R(q) .
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With sufficient hypothesis, (1.1) and (1.8) are equivalent, but it
can happen that (1.3) has a solution when (1.1) does not, and that
the product integral (1.4) exists when (1.2) does not. Part of the
difference between this paper and [1] lies in the attacking of the
problem (1.1) directly instead of its reduction (1.3). This difference
is not trivial even when the two problems are equivalent. For instance,
error estimates for approximates of 7#Z(1 + dR)A are likely to assume
that the approximate was obtained with an exact knowledge of R.
Certainly, this knowledge is unattainable for a great many (F, Q)
combinations. One can obtain error estimates for approximates of
i1 4+ dG - F)A which involve no such assumption. Also, this paper
employs a weaker substitute for the standard Lipschitz condition.

2. Definitions and notation. If [u, v] is a subinterval of [a, 0],
then a partition of [, v] means a finite increasing number sequence
with first term % and last term ». If 4 is a partition of [u, v], then
the statement that 4’ is a refinement of 4 means that 4’ is a parti-
tion of [u, v] which has 4 as a subsequence. A partition shall mean
a partition of some subinterval of [a,d]. If 4 is a partition, then
|4| means the integer which is two less than the number of terms
of 4, and we write 4 = {4;}}2f*. If x and y are terms of a partition
4, and x < ¥y, then the section of 4 from 2 to y means the maximal
subsequence of 4 which is a partition of [x, y]; that is, if x = 4,,
Yy =4, and p < ¢, then {4,}!_, is the section of 4 from z to y. If
4 is a partition, then the statement that X is an interpolating sequence
for 4 means that X is a finite number sequence {X;}Z, such that
X;eld;, 4;4] for j=0,1,.--,|4]|. If 4 ={4,}%-, is a section of the
partition 4, and X is an intérpolating sequence for 4, then {X;}!Z} is
called the 4'-section of X. If H is a function from [a, b] into B (or
a number set), and 4 is a partition, then 4H; means the transformation
(or number) [H(4;+,) — H(4;)] for 7 =0,1, .-+, | 4].

If H is a function from [a, b] into B, @ if a function from [a, b]
into Z, 4 is a partition, and X is an interpolating sequence for 4, then

(4, X, H, Q) means 3, AH,Q(X,) .

If [u, v] is a subinterval of [a, b], then the statement that J is the
integral S dH-Q means Je Z, and for each ¢ > 0, there is a partition
4 of [u, v] such that

|J—2(,X"H Q)| <e

if 4’ is a refinement of 4, and X’ is an interpolating sequence for 4’.
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We define SudH -Q = N, and notice that the existence of S”dH ‘Q
implies that ’

(a0 o+ [

for u <z <w.

If each of H and Q is a function from [a, b] into B, Pe Z, 4 is
a partition, X is an interpolating sequence for 4, and we write P, = P
and

P.= [1 + AHkQ(Xk)]Pk
for k=0,1, ---, 4|, then we get

Pou= P+ 3 AHQX)P,
= [+ 4HQX)] -+ [1 + 4HQX)] - [1 + AHQX)IP,

and in particular, we denote P, ., by 7(4, X, H, @P. If [u,v] is a
subinterval of [a, b], then the statement that J is the product integral
71 + dH- Q)P means that Je Z, and for each ¢ > 0, there is a parti-
tion 4 of [u, v] such that

”J_ E(A’, X’r Hy Q)P” <e

if 4’ is a refinement of 4 and X’ is an interpolating sequence for 4’.
7*(1 + dH- Q)P means P.

3. Integrals. Suppose MC Z, KC Z, Ac M, F(x)z € K for x € [a, b]
and ze M, and F(x)z = F(a)A for x<|[a,b] and z¢ M. Suppose that
the collection {F'(x)z}(x € [a, d]) is equi-uniformly continuous on M.
That is, there is a nondecreasing function E from [0, «) into [0, )
with E(0) = E(0+) = 0 such that

3.1 | F(z)z — Feyw| = E(|z — wl)

for xzela, b] and 2z, we M. Let E denote one such function. Suppose
U is a nondecreasing function from [0, o) into [0, o) with U(0) =
UO+)=0,k is a continuous real valued function which is non-
decreasing on [a, b], and

3.2) | Dz — Dw|| = [h(v) — h(u)| U(||z — w])

for u,vela, d], D=[G(®) — Gu)], and z, we K. Let W denote the
composite function U[E]. No’gice that W is nondecreasing and W(0) =
W(0+) = 0. Suppose that |\ dG - Fz exists for all z€ M, and, as in
the introduction, let R denote ‘the function from [a, b] into B defined by



1146 J. R. DORROH
R(z)z = SxdG Fz.

THEOREM 3.1. If Y is a continuous function from [a,d] into M,
then deR- Y exists. Moreover, if C is an equicontinuous collection
of fuﬂctions Sfrom [a,b] into M, then the approximating sums for
deR- Y converge uniformly for all YeC.

Proof. Let us first show that if [u, v] is a subinterval of [a, b],
D= R®w) — R(u), and 2z, we M, then
(3.1.1) [| Dz — Dw|| = [k(v) — RW)]W(||z —w]]) .
It follows from the definition of R that

Dz = SZdG +Fz and Dw = S:dG -Fw .

It 4 is a partition of [u, v], X is an interpolating sequence for 4, 3z
denotes (4, X, G, F'z), and Yw denotes X(4, X, G, Fw), then

1Dz — Dw|| = 1| Dz — Sz + | 2w — Dwl| + | 32 — Zw]|,
152 — Sw || £ 35 || 46,F(X,)z — 4G,F(Xpwl|

and, applying the inequalities (8.2) and (38.1), in that order, we get.

[

132 — Sw|| < S, (4h)U(| F(X))z — F(Xw]))

0

|0 (h)ULE(|z — w )] = [k(v) — )] W (|2 — w]]) .

— oy
|

I

=
J

This establishes the inequality (3.1.1).

Suppose C is an equicontinuous collection of functions from [a, b}
into M,e > 0,0 >0, [k(Dd) — h(@)]W(©) <e,d >0,||Y(v)— Yu)|| <o
for |[u —v| < ¢ and YeC, 4 is a partition of [a, b)] with mesh less.
than ¢’, and X is an interpolating sequence for 4.

Suppose 4’ is a refinement of 4, X’ is an interpolating sequence:
for 4', and YeC. Foreach»=0,1, ---,| 4], let 47 denote the section
of 4' from 4, to 4,,, and let X? denote the 4”-section of X’. Then

124, X, R, Y) = 2(4, X", R, Y) || = i 4R, Y (X,) — 2(47, X*, R, Y) |l;

4]

47)
=

M

| 47R; Y (X,) — 47R; Y (X7) ||

0 5=
4

= (@RYW(| V(X)) — Y(XD[ <e.

b4 ) =0

k-

I
.,
)

=

It
o
[
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THEOREM 3.2. If Y is a continuous function from la, b] into M,
then Ssz - FY = SzdR <Y forall xea,bl. Moreover, if the approxi-
mating; sums for qudG- Fz converge uniformly for all ze M, and
C is an equicontinu(;us collection of functions from [a,b] into M,
then the approximating sums for deG- FY converge uniformly for
all YeC.

Proof. Let us prove the second statement. Suppose the approxi-
mating sums for S dG - Fz converge uniformly for all ze M, C is an
equicontinuous collection of functions from [a, b] into M, and &> 0.
Suppose d > 0, [2(b) — R(@)]W(©) <&, 0 >0,||Y(v) — Ym)||<d for
|v —u| <0 and YeC, 4 is a partition of [a, b] with mesh less than

o', and X is an interpolating sequence for 4. We see from the argu-
ment for Theorem 3.1 that

b
SadR- Y — 54, X, R, Y)” <e¢

for all YeC.

For each p = 0,1, ---,| 4|, let 47 denote a partition of [4,, 4,1,]
such that, if 4’ is a refinement of 47, X' is an interpolating sequence
for 4', and z€ M, then

Sjp+ldG. Fz - 34, X', G, F?) ” <el(d]+1).

»

Notice that

rpﬂdG - F2 = AR,z
4

»

for ze M and p=0,1, ---, | 4].
Let 4’ denote the refinement of 4 which has 4” as its section
from 4, to 4,,, for p=0,1, ---,|4|. We wish to show that

gbdR. Y — 34, X", G, FY) || < 8

if 4" is a refinement of 4, X' is an interpolating sequence for 4",
and YeC.

Suppose 4" is a refinement of 4’, X" is an interpolating sequence
for 4”, and YeC. For each p=0,1,..-,|4|, let a® denote the
section of 4” from 4, to 4,,,, let 5* denote the a’-section of X", and
let 2, = Y(X,). Notice that a? is a refinement of 4* for p =
0,1, ---,4].
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b
Ld R-Y — 34", X", G, FY) “

4§‘

deR- Y - 3(4, X, R, Y)”
+ :2:'5 || 4Rz, — Z(a®, B, G, Fz,) ||
+ g | 2(a?, B?, G, F'z,) — 2(a?, B, G, F'Y) ll

<2+ 55 |G F (B, — G FE)Y ()|

=0 j=

=< 2¢ + [h(d) — (@)W () < 3.

Only a slight modification of this argument is required to establish
the first statement of the theorem.

REMARK. The first statement of Theorem 3.2 establishes the
equivalence of the integral equations (1.1) and (1.83). The following
example shows how markedly the problems may differ under a slightly
altered hypothesis. In particular, the inequality (8.1) cannot be re-
placed by the weaker statement that, for each x¢<][a,b], the trans-
formation F'(x) is continuous on M. In this example, the hypothesis
of Theorem 3.2 is satisfied except for the above mentioned replacement.
Moreover, || Fi(x)z|| is bounded, F'z is a step function for all ze M,
[Gw) — Gw)]z|| = 2|v —u| for ze K and u, ve]a,d], and R(x)z = »
for x € [@, b] and z€ M (Z is the set of all real numbers in this example
so that x e Z if x€|a, b]).

Suppose C is a Cantor set lying in the closed number interval
[0, 1], containing 0 and 1, and having the property that C N [0, x] has
positive length for all x > 0. Let the complementary segments of C
be arranged in a sequence {S,};—,. For each =, let a, denote the left
end of S,, b, the right end of S,, and m, the midpoint (a, + b,)/2.
Let h, denote the function from [a,, b,] onto [0, 1] defined by

h.(x) = (* — a,)/(m, — a,) for a,=x=<m,,

and .
h.(x) = (b, — ©)/(b, —m,) for m,=x=Db,.

Let 7 denote the Euclidean plane, and let I, denote the closed
vertical interval in « with ends (m,, a,) and (m,, b,). Let f denote
the function from 7 onto [1, 2] defined by

f@,y)=1 if (x,y) is in no I,,
and
f@,y)=1+h(y) if (x,y)el,.
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f is bounded, f(x,y) is continuous in y for each z, and f(x, y) is
a step function in « for each y. If y is a number, and <0, 1], then

[f¢ it ==,
0
because f(t, y) = 1 except for at most one number ¢.BIf y is a real

valued function defined on [0, 1], then f(¢, ¥(f)) = 1 ‘except for at most
countably many numbers ¢, so that

| vtyit = o
for all ¢ €0, 1], provided the integral exists. Therefore, if
u@) = | £t yonar

for all x € [0, 1], it follows that y(x) = « for all x € [0, 1]. But Sxf(t, t)dt
0

does not exist if © > 0, because f(t, t) has oscillation 1 at all teC.

Take Z to be the set of all real numbers, M = [0, 1], K = [1, 2],
[a, ] = [0, 1], G(x)z = a2, F'(x)z = f(x,2), and A =0. Then R(x)z =«
for all z€la,b]. Take Y(x) = « for all x€[a, b]. Then

Y(@) = A + S:dR- Y = S:ldt =
for all x € (a, b], but
S:dG \FY = S:f(t, t)dt
does not exist if « > a.

THEOREM 3.3. If M is compact, then the approximating sums
b
JSor S dG - Fz converge uniformly for all ze M.

Proof. Suppose M is compact, € >0, 6 > 0, and [h(b) —h(a)] W(9)<e.
Let M’ denote a finite subset of M such that, if ze€ M, then there is
a we M’ such that ||z — w]|| < . Let 4 denote a partition of [a, b]
such that, if 4’ is a refinement of 4, X’ is an interpolating sequence
for 4’, and we M’, then

b
SadG .Fw— 3, X', G, Fw) H <e.

An observation of the inequality (8.1.1) and an observation of the
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argument used in obtaining this enequality reveals the fact that

b
SadG . Fz— 34, X', G, F?) ” < 8¢

if 4’ is a refinement of 4, X’ is an interpolating sequence for 4’, and
ze M.

b
THEOREM 3.4. If we remove the condition that g dG - F'z exists

for all ze M, and suppose that the collection {F'z}(z € M )az's an equicon-
tinuous collection of functions from [a, b] into K, then mot only does
b

it follow that the integral S dG - F'z exists for all ze M, but also that

the approximating sums for this wntegral converge uniformly for all
ze M.

Proof. Suppose that the collection {F'2}(z € M) is equicontinuous.
Suppose € > 0,6 > 0, [~(d) — h(a)]U@©) <&, 6’ >0, || F(u)z — F(v)z|| <o
for |u —v| < 90" and 2€ M, 4 is a partition of [a,d] with mesh less
than ¢’, and X is an interpolating sequence for 4. Then

124, X, G, Fz) — 2(4', X', G, F2) || < ¢

if 4’ is a refinement of 4, X’ is an interpolating sequence for 4’, and
ze M.

THEOREM. 3.5. Suppose ¢ >0,Y, and Y, are two continuous
functions from [a, b] into M, and

H Y, —A— Ssz-FY,-

l < ¢&/2
for all xela,bl,j =1,2. Then
[ w@ds < hte) — (@
if xela,b] and y = || Yy(z) — Yi(®)|| > 0.
Proof. If a <x <b,4 is a partition of [a, %], X is an inter-
polating sequence for 4,3, denotes X(4, X, G, F'Y)), and %, denotes
24, X, G, F'Y,), then

| Yi(x) — Yi@) (| < & + “ S:dG- FY, — S:dG- FY,

et 5, - (a6 Fr.| + 15 - 21,

(o7, 5]

and



INTEGRAL EQUATIONS IN NORMED ABELIAN GROUPS 1151

12— %l = g}(dhj) W Y(X;) — Yi(X)) ) .
Therefore,
1Y) = Y@ =+ | W(I Y= Vildh
for all xela, b]. Let
D@) =+ | W Y. - Y. l)dh
for all x€(a,b]. Then, if a <u < v =0, it follows that
05 D) — D) = | W %, - Vilhd = | WiD)dn

so that D is continuous and nondecreasing.

Suppose z € [a, b], and || Yy () — Yy(x)|| > . Then D(x) >¢, and
x> a. Let ¢ denote a number in the open interval (a, %) such that

D(c) >e. Then D(t) >¢ and W[D(t)] > 0 for all tefe, z]. If [u, v]
is a subinterval of [¢, #], it follows that

D(v) — D(w) = [h(v) — Mu)] W(D(v)),
and
[D(v) — Dw)]/ W(D(v)) < h(v) — h(u) .
If 4 is a partition of [¢, ] then
5 ADY WD) S Mw) — ),
so that
() — h(c) = S:a/ W[D])dD = SZ::[” W(s)lds .
The conclusion follows readily.
COROLLARY. Suppose the improper integral Sl[l/ W (s)]ds diverges.

Then there are mot two contimuous functions Y from [a,b] into M
such that Y(z) = A + g dG - FY for all zea, b].

Proof. If Y, and Y, are two such functions, ¢ [a, b], and y =
|| Yy(x) — Yy(x)[| > 0, then
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[ WElds = k) — hia)

for all ¢ > 0, a contradiction. For an earlier theorem of this type
see W. F. Osgood [2], page 344.

4, Product integrals. Suppose that, for some z,€ K, the function
Gz, from [a, b] into Z is continuous and of bounded variation. Then,
if K is bounded, it follows from inequality (8.2) that G is of bounded
variation with continuous total variation in the following sense. There
is a continuous function V (called a variation function, see [1], page
530) from [a,bd] x [a,d] into [0, ) such that V(p, q) = V(q, ),
Vip,p)=0,V(p,7)=V(p,q) + V(g,7) fora=p=qg=r=b, and

(4.1) HG(v) — Gz || = V(u, v)

for u,vela,b] and z€ K. Let us now require that K be bounded and
denote by V one such variation function. It is of interest in con-
nection with the corollary to Theorem 8.5 to notice that now, if Y is

a function from [a, b] into M such that Y(x) = A + “dG - FY for all

wela,b], then || Y(v) — Y(u)|| < V(u, v) for all u, 'vea[a, b]. Suppose
r>0,zeMif ||z— Al <7, and V(a,bd) <.

THEOREM 4.1. Suppose Pe M,a S u<v=b,zeMifl|lz— P|| =
V(u, v), 4 is a partition of [u, v], X is an interpolating sequence for

4,P,= P, and P, =[1 + 4G, F(X)]P, for k=0,1, -++,|4|. Then
(i) P.eM for k=0,1,---,|d]| + 1,
(i) |[Pn— Pl < V(4u, 4,) for m,n =0,1, ---,|4]| + 1, and

(iii) if J=7u1 + dG- F)P, then ||J — P|| £ V(u, v).

Proof. || P, — R = ||4GF(X)R | = V(dy, 4). If E<|4]+1,
and || P, — Bl = V(4,, 44), then

| Peir — Boll = || Powa — Pi|| + || P, — Byl
= || 4G, F(X)P, || + || P, — B
= V4, Ak+l) =+ V(Am 4,) = V(Ao; Ak+1) .

Therefore, || P, — B|| = V(dy, 4:) < V(u,v) so that P,e M for
k=0,1,---,]4| + 1. This establishes (i), and (ii) and (iii) follow
quite readily.

THEOREM 4.2. Suppose Y (x) = ni(l + dG - F)A for all xe€][a, d].
Then Y(v)=n,(1+dG+ F)Y (u) for asu<v=b, sothat || Y (v)— Y (u)|| <
V(u, v), and Y is a continuous function from [a,b] into M.
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Proof. It follows from (iii) of Theorem 4.1 that || Y(x) — A|| <
V(a, ) < r, so that Y(x)e M for xca,b]. Suppose a = u < v = b.

If ||lz— YW = V(u,v), then ||z —A| = V(a,v) <7, so that
zeM. If |P—Y@)||<r— V(a,v), and ||z — P|| < V(u, v), then
|z — Al < 7, and ze M.

If 4 is a partition of [u, v], then let H, denote the function from
[0, ) into [0, =) which is obtained in the following manner. Let

H\0) =6 + (dh)) W(9) ,
let
H,1,(0) = Hy(0) + (4h,) W[H,(5)]

for k=1, ---,|4|, and let H, = H,,,,. Notice that H, is nonde-
creasing and H,0) = H,(0+) = 0, since H, is the composition of |4 |
functions having these properties.

If 4 is a partition of [u, v], X is an interpolating sequence for 4,
P—Ywl| <r— V(,v), Y= Y(u), b,= P, and

Yk+1 = [1 + AGkF(Xk)] Yk y
Py = [1 + 4G, F(X,)]P,

fork=0,1, ---, | 4], then (i) of Theorem 4.1 assures us that P, Y, e M
for k=0,1, ---,|4| + 1. Moreover, if d, = || P, — Y, ||, then we get
Oprs = 0i + (4R ) W(QO,) ,

so that

Oy =174, X, G, F)P — 7(4, X, G, F) Y (u) || = H.(0,) .

Suppose € > 0, and let 4 denote a partition of [a, v] such that %
is a term of 4, and

| Y(v) — =4, X', G, F)A|| < ¢/2

if 4’ is a refinement of 4, and X’ is an interpolating sequence for 4’.
Let a denote the section of 4 from a to u, and let 8 denote the
section of 4 from u to v. We wish to show that

I Y(@) —m@, X', G, -)Y(w) || < e

if 8’ is a refinement of B and X’ is an interpolating sequence for &',
Suppose B is a refinement of 8,0 >0,0 <r — V(a,v), and
Hy (6) < ¢/2. Let o' denote a refinement of a such that

I Y(w) — n(e, X', G, F)A|| <9

if X' is an interpolating sequence for a’. Let 4’ denote the refinement
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of 4 which has &' as its section from a to w and B’ as its section
from w to v. Let X’ denote an interpolating sequence for 4’, let X*
denote the} a’-section of X’, and let X*? denote the B’-section of X'.
Then

1 Y@) — =&, XP, G, F)Y(u) ||
= ” Y(’U) - 77'-(18,1 XB, G’ F)n(a” Xm’ G; F)A H
+ |78, X, G, F)n(’, X°, G, F)A — (8, X%, G, F)Y(w) || <e,

since
(s, X8, G, Fyn(d', X*, G, F)A =4, X', G, F)A .

Thus Y(v) = 7y(1 + dG - F)Y(u), and by (iii) of Theorem 4.1 we
have || Y(v) — Yw) || £ V(u, v).

THEOREM 4.3. Suppose Y(x) = ni(l + dG - F)A for all xe|[a, b].
Then Y(x) = A + S dG - FY for all z¢[a, b].

Proof. Suppose a<x=<b,e>0,0>0,[h(x)— h(a)|] W(O)<e, ¢ >0,
and V(u,v) < d/8 if |u — v| < 0.

Let 4 denote a partition of [a, ] with mesh less than ¢’ such
that

if 4’ is a refinement of 4 and X’ is an interpolating sequence for 4’.

For each k=1, ...,|4| + 1, let 4* denote a partition of [a, 4,]
such that, if 4’ is a refinement of 4*, and X’ is an interpolating
sequence for 4', then

| Y(4,) — =4, X', G, F)A|| < min [e, 5/3] .

S:dG \FY — 34, X', G, FY) ” <e

Let 4’ denote a refinement of 4 which has as a term every number
which is a term of any 4% for k=1, ---,|4| + 1, and let X’ denote
an interpolating sequence for 4.

Let A, = A, and let

Ak+1 = [1 + A,GkF(XI:)]AIc

for k=0,1,..+,|4'"|. For each £=0,1, --+,]|4’], let m(k) denote
the greatest integer m such that m < k and 4), is a term of 4. Then
for each k=0,1, .-+, | 4’|, we have

A, — YX)I = 1A — Anio || + | Ay — Y(doiwy) |l
+ | Y(dnw) — Y XD < Vdnw, 42) + 0/3) + V(dnw, Xi) < 9.



INTEGRAL EQUATIONS IN NORMED ABELIAN GROUPS 1155

Therefore
REEFEA 0 BB RN
+ 5 | 4G F (XA, — 4GF(X)Y (XD

+ “ s, X', G, FY) — S:dG - FYH
< e+ [hx) — H@)]WE) + ¢ < 86,

since

147]
AM/]+1 = A + I.;) AleF(Xl:)Ak .

DEFINITION. If 4 is a partition of [e,d], X is an interpolating
sequence for 4, and Y is the funection from [a, b] into M defined by
Y(a) = A, and

Y(z) = {1 + [G(x) — G(4)]F(X,)} Y (4)

for xe[4d,, 4441], 6 =0,1, .-+, | 4|, then Y is called the approximate
solution constructed from (4, X, G, F, A). Such a function Y is a
continuous function from [a, b] into M and satisfies || Y(v) — Y(u) || <
V(u, v) for u, v € [a, b].

If ¢ > 0, then the statement that 4 is an e-approximate partition
of [a, b] for (G, F, A) means 4 is a partition of [a, b], and, if 4" is a
refinement of 4, X' is an interpolating sequence for 4’, and Y is the
approximate solution constructed from (4', X’, G, F, A), then

H Yo)— 4 — S:dG-FYll <e for all we[a, b] .

THEOREM 4.4. Suppose ¢ > 0, and the approximating sums for
b
SdG-Fz converge uniformly for all ze M. Then there is an &-

a

approximate partition of [a, b] for (G, F, A).

Proof. Let C denote the collection of all functions Y from [a, b]
into M such that || Y(v) — Y(u)|| < V(u, v) for all w,ve M. Then C
is an equicontinuous collection. Suppose § > 0, [~(b) — h(a)] W(0) < ¢/4,
0’ >0, and V(u,v) < min[d, /4] if |u —v|<d. Let 4 denote a
partition of [a, b] with mesh less than ¢’ such that, if 4’ is a refinement
of 4, X’ is an interpolating sequence for 4’, and Y e C, then

1
LdG .FY — 3«4, X', G, FY) H <eld.
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We shall show that 4 is an e-approximate partition of [a, b] for
(G, F, A). Suppose 4" is a refinement of 4, X' is an interpolating
sequence for 4’, and Y is the approximate solution constructed from
', X’, G, F, A). Then
k
Y(dip) = A+ j§=lo 4G F(X5) Y(45)

for k=0,1, ---,|4"|. Also, YeC.
For k=1,.--,|4"| + 1, we have

H A+ S:"dG \FY — Y(4))

|

g"’“da CFY — S 4G, F(X) V()
o J=0

=|

S""‘da FY - S 4G, F(X) V(X))
a J=0

+ '20 | 4'G;F(X)) V(X)) — 4'G:F(X}) Y(4)) ||
= (¢/4) + [A(4) — R(@)] W(0) < ef2.

Suppose a < ¥ = b, and k is an integer such that x¢e[4}, 4;.4].
"Then

1 Y(4h) — Y(@) || = V{4, ) < e/4,

.and

rdG \FY — ﬁ""dG - FY” < V(dl, &) < ¢4,
80 that

HA—I— Ssz.FY— Y(x)H<s.

THEOREM 4.5. If M is compact, then
(i) there is a continuous function Y from [a,b] into M such

that Y(x) = A + rdG-FY for all wela, b], and
(ii) of there is only one such function Y from [a, b] into M, then
Y(x) = n2(1 + dG - F)A for all x<]a, b].

Proof. Suppose M is compact. For each n=1,2,.--, let 4"
-denote a (1/n)-approximate partition of [a, b] for (G, F, A), let X" denote
an interpolating sequence for 4", and let Y, denote the approximate
solution constructed from (4", X", G, F, A). Since the Y, form an
-equicontinuous collection, some subsequence of {Y,};, converges uni-
formly to a continuous function Y from [a, b] into M. Let Y denote
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one such function. Then Y(x) = A + xdG « F'Y for all xze{a, b].

Suppose x € [a, b], and Y(x)is not the f;roduct integral 7:(1+dG- F)A.
Then # > a. For each n, require that the above defined 4" have =z
as a term, and let a" denote its section from a to z. There is a
positive number ¢ such that, if » is a positive integer, then there is
a refinement &’ of a” and an interpolating sequence 8’ for &' such that

|| Y() — n(a’, B, G, F)A|| = ¢

Let ¢ denote one such positive number, and for each =, let a'™
denote such a refinement of a*, £ such an interpolating sequence for
a'™, 4’ a refinement of 4" which has &’ as its section from a to x, X"
an interpolating sequence for 4’ which has A" as its a’"-section, and
H, the approximate solution constructed from (4", X'", G, F, A).

Some subsequence of {H,}7_, converges uniformly to a continuous
function H fr?m [a, b] into M. Let H denote one such function. Then

Hit)= A + S dG - FH for all tela,b]. Since
H,(x) = n(a’", B, G, F)A
for all n, it follows that || H(x) — Y(x)|| = e.

THEOREM 4.6. Suppose that the approxrimating sums for deG P2

converge uniformly for all ze M, and that the improper integral
1

S [1/ W(s)lds diverges. Then wi(l + dG - F)A exists for all x¢<|a, b].
0

Proof. Suppose a < x# <b, and ¢ > 0. Let 6 denote a positive
number such that y < ¢ if

[l We)lds < hx) — h@)] -

Let 4 denote a (6/2)-approximate partition of [a, b] for (G, F, A)
which has # as a term, and let a« denote the section of 4 from a to
x. Suppose B is an interpolating sequence for a, @’ is a refinement
of a, and A’ is an interpolating sequence for «'. Let

y =lln(a, B, G, F)A — n(a', £, G, F)A|| .

It follows from Theorem 3.5 and the definitions of «, 8, &, and
B’ that either ¥ = 0, or

[/ welds = o) - @),

so that y < e.
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REMARKS. Limits on the difference
|75l + dG - F)A — (4, X, G, F)A ||

may be obtained by observing the arguments for Theorems 4.4 and
4.6, together with whatever theorem or theorems from § 3 might be
appropriate to the problem at hand. In case the approximating sums

b
for S dG - Fz do not converge uniformly, then the theorems requiring

this~ condition can still be applied to the reduced problem (1.3). Let
I denote the function from [a, b] into B defined by I(x)z =z for ze M
and I(x)z = A for z¢ M, replace F by I, take K = M, replace G by
R, replace U by W, and take E(s) = s for all s = 0. This still covers
more problems than [1] because of the weaker substitute for the
Lipschitz condition.

BIBLIOGRAPHY

1. J. W. Neuberger, Continuous products and monlinear integral equations, Pacific J.
Math., 8 (1958), 529-549.
2. W. F. Osgood, Beweis der Euwistenz einer Lisung der Differentialgleichung dy/dx =
flz, y) ohme hinzumahme der Cauchy Lipschitz’ chen Bedingumg, Monatsh. f. Math. u.
Phys., 9 (1898), 331-345.

THE UNIVERSITY OF TEXAS AND
LOUISIANA STATE UNIVERSITY





