COMMON FIXED POINTS FOR COMMUTING
CONTRACTION MAPPINGS

RALPH DEMARR

Kakutani [1] and Markov [2] have shown that if a commutative
family of continuous linear transformations of a linear topological space
into itself leaves some nonempty compact convex subset invariant,
then the family has a common fixed point in this invariant subset.
The question naturally arises as to whether this is true if one considers
a commutative family of continuous (not necessarily linear) transfor-
mations. We shall show that it is true in a rather special, but non-trivial,
case, thus giving some hope that further investigation of the general
question will yield positive results. The ‘main result of this paper is
the following.

THEOREM. Let B be a Banach space and let X be a monempty
compact convex subset of B. If F is a nonempty commutative family

of contraction mappings of X into itself, then the family F has a
common fixed point in X.

Note 1. A mapping f: X — X is said to be a contraction mapping
if ||f(x) —f@)Il = |l —y|l for all z,ye X.

Note 2. If the norm for B is strictly convex, then the above
theorem is almost trivial since in this case each contraction mapping
has a fixed-point set which is nonempty, compact, and convex. In the
general case, however, the fixed-point set of a contraction mapping
is not convex. An example illustrating this fact is constructed as
follows. Let B be the space of all ordered pairs (@, b) of real numbers,
where if ¥ = (a, b), then ||z|| = max {|a|, |b]}. Define X = {x:||z|] < 1}
and f: X — X as follows: if z = (a, b), then f(x) = (|b], b). It is easily
shown that f is a contraction mapping and that * = (1,1) and y =
(1, —1) are fixed points for f. However, 1/2(x 4+ y) = (1, 0) is not a
fixed point for f.

In the proof of the theorem we shall make use of the following
two lemmas.

LEMMA 1. Let B be a Banach space and let M be a nonempty
compact subset of B and let K be the closed convex hull of M. Let

o be the diameter of M. If p > 0, then there exists an element u € K
such that
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sup{l/le —ul:zeM}<p.

Proof. Since M is nonempty and compact, we may find x,, x,€ M
such that ||z, — || = p. Let M,C M be maximal so that M, D {x,, =}
and ||# — y||=0 or p for all z,ye M,  Since M is compact and we
are assuming 0 >0, M, must be finite. Let us assume M,={x,, %, -+, ®,}.
Now let us define

1

2, cK.
om + 1

Ma

u =

B
1

Since M is compact, we can find y,€ M such that ||y, — ul|l =
sup {||* — u||: x€ M}. Now

1

n+1llyo—xklléﬂ

n
Ny — ull = X5
=0

because ||y, — 2,|| < pforall k =0, 1, - - -, m. Therefore, if ||y, — u|| =
0, then we must have ||y, — %,||=0>0forallk =0,1, ---, n, which
means that y, € M, by definition of M,. But then we must have y, =
x, for some k=0,1,---,n, which is a contradiction. Therefore,

Yo — ull < p.

LEMMA 2. Let X, be a nonempty convex subset of a Banach space
and let f be a contraction mapping of X, into itself. If there is a
compact set M cC X, such that M = {f(x): x€ M} and M has at least
two points, then there exists a nonempty closed convex set K, such that
f@eK NX, forallze K, N X,and M N K{ + ¢. (K is the complement
of K,.)

Proof. If we take K as the closed convex hull of M, then by
Lemma 1 there exists an element u € K such that

o, =sup{llx —ul:zeM}<p,

where o is the diameter of M. Since M has at least two points, we
have o > 0, so that our use of Lemma 1 is valid.

For each xe M let us define U(x) ={y:||ly — =]| = p}. Since
u € U(x) for each .2 € M, we have K, = (N.ex U(®) # ¢. It is clear that
K, is closed and convex. For any ze€ K, N X, and any z€ M we have
ze U), i.e., ||z —2|| < p,. Since M = {f(y): y € M}, there must exist
y € M such that 2z = f(y). Since f is a contraction mapping, we have

If@) — 2|l = [f@) — Sl =l —yll = 0.5

i.e., f(®) € U(z). Since this is true for any z € M, we have f(x) € K, N X,.
We have shown that f(x)e K, N X, for all xe K, N X..
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Since M is compact, there exist x,, ;€ M such that ||z, — || =
0 > p,. Thus, we see that x, does not belong to U(x,) D K|, i.e.,
e MN K/ # ¢.

Proof of the theorem. One may show by using Zorn’s lemma that
there exists a minimal nonempty compact convex set X, < X such that
X, is invariant under each fe & . If X, consists of a single point,
then the theorem is proved. We shall now show that if X, consists
of more than one point, then we obtain a contradiction.

We may use Zorn’s lemma again to show that there exists a
minimal nonempty compact (but not necessarily convex) set M c X,
such that M is invariant under each fe.&# . We will now show that
M = {f(x): x € M} for each fe # . Since each fe.&# 1is continuous
and M is compact, f(M) must also be compact. For all fe & we
have f(M)c M. Let us assume that for some ge &#  we have g(M) =
N = M. Now for any xe N there exists y€ M such that x = g(y).
Since all functions in &% commute, we have for all fe & f(x)=
Ffla) = 9(f(y)) € N because f(y)e M. Thus, we have (N CNc M
for all fe & But since N is a nonempty compact subset of X, which
is invariant under each fe & and since NC M and N #+ M, we have
contradicted the minimality of M. Consequently, our assumption that
M + N is false. We may assume that M has at least two points;
otherwise, the theorem is proved.

We may now apply Lemma 2 to each fe . & Referring to the
notation of Lemma 2, we see that the set K, N X, is invariant under
each fe & Since K, is closed, we see that K, N X, is a nonempty
compact convex subset of X,. Since X,NK/DMnN K/ + ¢, we see
that K, N X, # X,. Thus, we see that if X, has more than one point,
then we obtain a contradiction to the minimality of X,.
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