HOMOMORPHISMS OF NON-COMMUTATIVE «-ALGEBRAS

SANDRA BARKDULL CLEVELAND

1. Introduction. Let 2 and B be Banach algebras and v a
homomorphism of 2 into B. This paper is a study of the continuity
properties of v which depend only on the structure of ; B is completely
arbitrary. The algebras considered are non-commutative.

If v is a homomorphism of 2 into B, then the function |z|=
[|v(x) ], x € A, is a multiplicative semi-norm on 2. Conversely, every
multiplicative semi-norm on U arises from a homomorphism in this
way. Thus all results on continuity of homomorphisms can be stated
in terms of multiplicative semi-norms.

Section 2 contains material concerning units in A and B and the
relation between homomorphisms and multiplicative semi-norms.

Section 3 is devoted to the proof of the main technical device of
the paper: If {g,} and {f.} are sequences in ¥ with ¢,9,, = 0, n # m,
and f.9.. = 0, n # m, then, under any homomorphism v of 2 into a
Banach algebra B, the sequence {|| ¥(£.9.) II/llf. 111191} is bounded.

In § 4 the separating ideals for v in 2 and B are defined and
several of their properties are exhibited. The separating ideal . for
v in A is the set of # in A for which there is a sequence {x,} in A
with «, — 0 and v(x,) — ¥(x). An application of the main boundedness
theorem (Theorem 8.1) shows that if {x,} is a sequence in . with
%, = 0, n #= m, then v(x,)’ = 0 for all but a finite number of n.

In §5 we restrict attention to the case in which v is an iso-
morphism and 2 is a B* algebra. In this case .&” is the zero ideal.
This fact enables us to show that there is a constant M such that
l|z]| < M||v(x)||, e A. This result is analogous to an important
theorem of Kaplansky [4]: any multiplicative norm on the algebra of
continuous functions vanishing at infinity on a locally compact Haus-
dorff space majorizes the supremum norm. A theorem due to Bonsall
|2] implies the following similar result: if |«| is a multiplicative norm
on the algebra 2 of bounded operators on a Banach space, there is a
constant B such that for Te¥, || T|| £ 8| T|, where || - || is the usual
operator norm. Although our result is similar, our approach is quite
different. Kaplansky’s proof depends heavily on commutativity; Bon-
sall’s on the existence of nonzero finite dimensional operators which,
of course, are not necessarily present in an arbitrary B* algebra.
Notice that if 2 is a Banach algebra with the property that for every

Received November 27, 1962. This work was sponsored by the Air Force Office of
Scientific Research under Contract No. AF 49 (638) 859 and contract No. AE-AFOSR 62~

140. The work in this paper is a portion of the author’s doctoral dissertation at the
University of California at Berkeley (1962) which was directed by Professor W.G. Bade.

1097



1098 SANDRA BARKDULL CLEVELAND

isomorphism v of 2 into a Banach algebra B there is a constant M
with ||z|l < M| v(x)||, then every multiplicative norm on 2 is com-
plete if and only if every isomorphism of 2 is continuous.

We also show in § 5 that if v is an isomorphism of a B* algebra
A into a Banach algebra B then Cl(v()) is the direct sum of the
range of v and the separating ideal for v in 8. This is the desired
generalization of a theorem due to Yood [11] which states that
Cl(y(A)) = v(A) P R when A is a commutative B* algebra. (R is the
radical of Cly()). Yood’s theorem is also true for certain regular
commutative Banach algebras.

It is an open question whether or not there exists a discontinuous
homomorphism of a B* algebra. In § 6 a technique due to Bade and
Curtis [1] is used to show that any homomorphism of a B* algebra
A must be bounded on certain ideals in 2.

2. Preliminaries. Let 2 and B be Banach algebras and v a
homomorphism of 2 into B. There is no loss of generality in assuming
B = Cl(v(A)) since any restrictions on the algebras we consider will
be placed on the domain. If U has a unit ¢, then we may assume
that B has a unit ¢ and that v(e) = ¢’. Since for any Banach algebra
with unit an equivalent norm may be found in which the unit has
norm one and since renorming in this way does not affect continuity
properties, we assume that if any algebra considered has a unit, then
the unit has norm one.

The study of homomorphisms of a Banach algebra 2! is equivalent
to the study of multiplicative semi-norms on U as was pointed out by
Bade and Curtis [1].

DErFINITION 2.1. Let U be a Banach algebra. A multiplicative
semi-norm on A is a function |- | on A to [0, o) satisfying

(i) lz+yl=le|+|yl, z,yeA

(i) |oy| =|=z|lyl, x,yeU

(i) |ax|=|a|lxz]|, xe, a scalar.
If |2| =0 implies # = 0, then | - | is called a multiplicative norm on 2!,

THEOREM 2.2. Let U and B be Banach algebras and v a homo-
morphism of W into B. Then the function |x| = ||v(x)]|], 2, isa
multiplicative semi-norm on A. Conversely, if || - ||, is @ multipli-
cative semi-norm on A, there is a Banach algebra B and a homo-
morphism v of W into B such that ||z ||, = ||v(x)]||, x e A.

Proof. The first assertion is clear. To prove the second notice
that I = {x e : || x|, = 0} is a two-sided ideal in 2 closed with respect
to|| - [i. Moreover, if x and i are congruent modulo 7, then [z — ¥ |/,=0
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and since |||z]l, — |y || =[lz —ylL=0,[|z|,= ||y, Thus A/I is
a normed algebra under the norm || + I|| = |/ «]|,. Let v be the
mnatural map of A into the completion of /I in this norm. Then v
has the required properties.

3. The main boundedness theorems. The main boundedness
theorems are the principal device of the paper. The present form is
due to P. C. Curtis, Jr. The corollary is found in [1].

THEOREM 3.1. Let A and B be Banach algebras, v a homomor-
phism of WintoB. Suppose {f,} and {g.} are sequences wn A satisfying

(i) gng.=0,n#=m

(i1) fugn =0 (9.fn = 0), m + n.

Then
sup, || V(fug) 1L 111 gull < oo (sup, [| 2(g.f) 1/l gull 1 £ ll < o0) .

Proof. We consider only the first part of the theorem as the
proof of the second is completely analogous. Suppose the theorem is
false. We shall show that a certain linear combination of the elements
f:; must be mapped into an element of infinite norm.

If the theorem is false, we may select distinct elements u,;, ¢, j =
1,2, --., from the sequence {g,} such that

Iviu) [l = 477 vl w47 =1,2, -,

where v;; is the element f, corresponding to ¢, = u;;. Define
h; = iuik/zk”uik” 1=1,2, .-
k=1

Then f£; e and vk, =0 for [+ 4i. If 1 =14, vk, = viu:5/27 || ws; ||
Thus v(h;) +0,©=1,2, ---. For each 7 choose an integer j(i) with
279 > ||y(h;) || and define y = 37 Vpiw/2% || Vijur |l It follows from
(ii) that

Yhi = VWi 279 [0 1 Wige || 1=1,2, .-,
Then
@) [ vR) || = ([ v(yh) || > 2779 > 28 [[v(hy) || .
Thus ||v(y) || > 2° for every integer 1.
CoROLLARY 3.2. If {f.} and {g.} are sequences in U satisfying

(1) 9.9, =0,m+*m
(ll) fngn:fn (gnfnzfn)) n=1,2, R
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then sup, || V() 111 9. 11| fall < oo

4. The separating ideals. In this section 2 and B denote arbitrary
Banach algebras and v a homomorphism of 2 onto a dense subalgebra
of B. Our objective is Theorem 4.9. The function 4 is a variant of
the separating function defined by Rickart [7, p. 70]. The separating
ideals were defined and used by Rickart [8] in this work on the unique-
ness of norm problem. They have also been discussed by Yood [9].

DEFINITION 4.1. For ye®B, 4(y) = inf (||z|| + ||y — v(x)||) where
the inf is taken over all z e 2.

ProPOSITION 4.2. The function 4 has the following properties
(1) 4y, + v) = 4(yy) + 4(Ys), Y, Y. €D
(il) 4d(ay) = |a| 4d(y), y€ B, a scalar
(i) 4) =||lyll,yeB and if y =v(x) for some zec, 4(y) =
Ap(x) = [z ||
The proof is straightforward and is omitted.

DEFINITION 4.3. The separating ideal for v in B, denoted .&’ is
the set of ¥ in B for which 4(y) = 0. The separating ideal .&” for v
in 9 is the set of z in A for which 4(v(x)) = 0.

THEOREM 4.4. . is a closed two-sided ideal in U; &' is a closed
two-sided tdeal in B.

Proof. Parts (i) and (ii) of the proposition show that .&7(&) is
a linear subspace of 2A(MW). If {y.} is a sequence in &’ and ¥y, — ¥,
then by the triangle inequality for 4 and part (iii) of the proposition

AYo) = 4o — Ya) = 1Y% — ¥l — 0.

Thus &’ is closed. A similar argument using the last part of (iii)
shows that .5~ is closed in 2L.

To complete the proof notice that y .5’ if and only if there is
a sequence {x,} in 2 with z, — 0 and v(z,) —y. Suppose y€.&”’ and
w = v()eB. Let {x,} be a sequence in A with 2z, — 0 and v(x,) — ¥.
Then 2,2—0 and v(x,2) = v(z,)v(2) —yw, which implies yw e .&'.
Similarly, wye.o”’. If w is an arbitrary element of B, then w =
lim v(z,) for some sequence {z,} in . For each %, yv(z,) €.&’ and
v(z,)y€.9”’. But yv(z,) — yw and v(z,)y — wy. Since &’ is closed,
yw and wy belong to .&”’. The argument also shows that .&” is a
two-sided ideal in .

ProposITION 4,5, The homomorphism v is continuous if and only
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if &' =(0).

Proof. If .&#' = (0), continuity is immediate from the closed graph
theorem. The converse is obvious.

The next theorem shows that if both separating ideals are factored
out the resulting map is continuous.

THEOREM 4.6. The map V' of Al.S” into B given by
Ve + .&°) = v(a) + &’

18 continuous isomorphism of A/ onto a dense subalgebra of Bl.S"'.

Proof. Since .&” and .o’ are closed two-sided ideals, /< and
B/.<”" are Banach algebras under the usual quotient norm. It is easily
verified that v’ is a well-defined isomorphism whose range is dense in
B|.<”'. To show ' is continuous it suffices to show J = (0) where J
is the separating ideal for v’ in B/.5”’. We shall show that 4(b+ &') =
4(b), beB.

Let @ and 7 denote the natural maps of 2l — /& and B — B[S’
respectively. Since both @ and m are norm decreasing, we have for

beB
4(b + &) = inf (|| p(a) || + || (b — v(a)) |
sinf(lafl + [ — v(@) || = 4() .
To prove the reverse inequality let ¢ > 0 and choose a € with
le@) || + |7 — v(@) || < 4(b + &) + ¢/3 .
Then choose s,€.97, s,e€.9”’, such that ||a + s,|| < ||e(a) || + /3 and
10 —v(a) + s.|] < ||m(d — v(a)) || + /8. Since v(s;) + s,€.5”', we have
A(d) = 4(b + v(sy) + 85) ,
Sla+ s+ 1b—v@) + 8| < 4b+ .+ ¢€.

For any Banach algebra 2 the spectrum of x, denoted ogy(w), is
the set of complex numbers )\ such that A~z has no quasi-inverse in
A. The spectral radius of x, denoted 7y(x), is sup |\| where the sup
is taken over all Aeoy(wr). When no confusion will result, we omit
the subscript 2 and write o(x) or r(x). It is well known that r(x) is
the limit as » — o of ||z"|[Y" [7, p. 10].

PRrOPOSITION 4.7. If 2 has an identity, then . is a proper ideal;
if B has an identity, then .&”’ is a proper ideal.

Proof. First notice that for x e, oy(v(x)) is contained in oy(z),
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For, if Az has a quasi-inverse y €2, then clearly v(y) is a quasi-
inverse in B of A7'(v(x)). Thus rgx(x)) = ry®) < ||z, e A.
If ¢ is any element in the centre of 2B, then by the remark
above,
r(c) = rglc — v(@) + rg(v@) = [lc —v@) || + =] .

Thus for ¢ in the centre of B we have ry(c) = 4(c).

Suppose that U has an identity e and ec.&”. Since v(e) is in the
centre of B, ry(v(e)) = 4(v(e)) = 0. But ry(v(e)) = 1. Hence & is a
proper ideal. The same argument proves the statement about .&7’.

Proposition 4.7 is used by Yood [9, Th. 3.5] to show that &’ is
contained in the Brown-McCoy radical of 8. It is also used in the
following theorem which is due to Yood [10, Th. 3.10].

THEOREM 4.8. Let p be an indempotent in UA. If v(p) # 0, then
pe.s.

Proof. Suppose p is an indempotent in 2 and y(p) # 0. Let
A = pAp and B’ = v(p)Bv(p). Then A’ and B’ are Banach algebras
and v(2’) is dense in B'. Let v’ be the restriction of v to A'. Then
V' is a homomorphism of U’ onto a dense subalgebra of B'.

Suppose pe&. Let {x,} be a sequence in U with x,— 0 and
v(z,) — v(p). Then px,p— 0 and v(pz,.p) — v(p). Thus p belongs to
the separating ideal for v’ in 2U'. But p is the identity in ’. This
contradicts Proposition 4.7.

REMARK. If A is a W* or AW* algebra, every closed two-sided
ideal in A is the closure of the two-sided ideal generated by its pro-
jections. (See [3] and [5]). Thus if p is a projection in A which
belongs to .57, then by. the theorem p belongs to the kernel of v.
Hence .&” is contained in the closure of the kernel of v. The reverse
inclusion clearly holds. It follows immediately that if v is an iso-
morphism of a W* or AW* algebra, then .&” is the zero ideal. We
shall prove this later (Theorem 5.1) for any B* algebra but it will
require more work. The next theorem is the erucial step.

THEOREM 4.9. Let U and B be Banach algebras, v a homomor-
phism of A into B, <& the separating ideal for v in A. If {g,} s
a sequence in & with ¢,9., = 0, n + m, then v(g,)* = 0 for all but a
finite number of k.

Proof. Suppose on the contrary that v(g,)’ # 0 for infinitely many
k. By a suitable renumbering we may assume v(9,)°# 0 for k =
1,2 -
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Since g,€.9”, there exists for each n a sequence {z,;} in A with
lim;2,;, = 0 and lim;v(z,;) = v(9,). For each =, lim;z,;9, =0 and
lim; v(2,;9%) = v(9,)° # 0, and hence for n =1,2, ---,

10(2a300) I/l 2439 || — 00 a8 §— oo .

For each » pick j(n) such that

” v(znf(n)gzt) “/” ZnimGn “ >n ” [ “ .

Let f. =2z, jm9., " =1,2, ---. The sequences {f.}, {g9.} satisfy the
following conditions.

(i) g.9n=0,n%m

(i) fu89a=0,m%m

(D) [ v(fag) I full ] gnll > n.

But this contradicts the main boundedness theorem.

5. Isomorphisms of B* algebras. In this section we restrict
attention to the case in which U is a B* algebra and v is an isomor-
phism of 2 into a Banach algebra B. By a B* algebra we mean a
Banach *-algebra A with ||z |]* = ||zz* ||, x € 2.

THEOREM 5.1. If v is an isomorphism of a B* algebra U, then
& =(0).

Proof. Suppose . + (0). Since a closed two-sided ideal in a B*
algebra is a =-ideal [7, p. 249], we may assume that .&” contains non-
zero self-adjoint elements. Notice that .7 cannot contain a sequence
of orthogonal self-adjoint elements. For if {g,} is suech a sequence,
then by Theorem 4.9 v(g,)’ = 0 for all but a finite number of n. Since
v is an isomorphism, ¢% = 0 and thus 7(g,) =0 for all but a finite
number of n. But in a B* algebra 7(x) = ||z || for « normal [7, p. 240].
Hence g, = 0 for all but a finite number of nu.

Let ze¢ &“, 2 =a*, £+ 0. We show that o(x) must be finite.
The closure of all polynomials in % (without constant term) is a com-
mutative B* algebra €. Since .&¥ is a closed two-sided ideal, € & ..
€ may be regarded as the algebra of continuous functions vanishing
at infinity on the locally compact Hausdorff space o(x) ~ {0}, [6, p. 232].
If o(x) is infinite, a sequence {\,} of its points may be separated by
a sequence of disjoint open sets {U,}. Using local compactness we
choose V, open with V, compact and 1, e V, =V, S U, n=12, ---.
For each n let £, be continuous, 0 < f, < 1, fu(V,) =1, and f.(~U,) = 0.
Then f.f.=0,n #+ m. But for each =, f,€€ and hence in &7, f, is
self-adjoint, and f, = 0. This contradicts the fact that & cannot
contain a sequence of orthogonal self-adjoint elements. Thus o(x)
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must be finite.

Let Meo(x). Since o(x) is finite, the function f which is one at
A and vanishes on g(x) ~ {\} is continuous and so belongs to .&”. But
f?=f and f # 0. This contradicts Theorem 4.8. Hence .&” = (0).

THEOREM 5.2. Let C(X) be the algebra of all real or complex
valued continuous functions vanishing at infinity on a locally compact
Hausdorff space X. If |-| is a multiplicative norm on C(X), then
for feCX), |IfIl = |f| where || - || ts the usual sup norm.

Proof. See Kaplansky [4].

LEMMA 5.3. If + is a continuous isomorphism of a B* algebra
A, the range of + 1is closed.

Proof. Suppose ||y(2)|| < M||z]||, ceA. Consider the self-adjoint
element xx*. Applying Kaplansky’s theorem to the commutative sub-
algebra generated by zz* we have ||xz*|| < || v(x2*)||]. Combining
this with the B* condition we have

WX | = [Joa* || = [|v@e*) || < [[¥v@) [ [y@) || = Mla* || |v@) ] .

Thus for x e, |[a* || = [[z|| = M|| (=) ||.

Now if b, = ¥(x,)erange + and b,— b, then ||z, —2,| =
M| y(x,) — ¥(x,)||. Hence {x,} is Cauchy in %A and so for some
x €N, x, — x,. By continuity +(x,) — ¥(x,) = b,.

THEOREM 5.4. If v is an isomorphism of a B* algebra U, then
there exists a constant M such that ||z| < M||v(®)]||, € 2A.

Proof. Since & = (0), the map v’ is a continuous isomorphism
of A onto a dense subalgebra of B/.5”’ and V'(a) = v(a) + &' = n(v(a))
where 7 is the natural map of B onto B/.5”’. By the lemma range
V' is closed and hence v’ is onto. By the open mapping theorem u’
has a continuous inverse and there exists a constant M such that

izl = M@l = Mm@ = Milv@ |,

since 7 is norm decreasing.

THEOREM 5.5. If v s an tsomorphism of a B* algebra A, then
B = ClyA) = vA) D ..

Proof. Let b,e®B, b, = limb, where b, = v(z,). By the preceding
theorem ||z, — %, || = M||v(x,) — v(z,)|. Thus {z,} is Cauchy in .
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Let , — 2, in A. Then we have z, — 2, — 0 and v(x, — %) — b, — Y(,).
This shows that b — v(x,) €.&”’. Thus every element of B is the sum
of an element in the range of v and an element of .&”’. Moreover,
the decomposition is unique since .&¥ = (0).

6. Finite singularity sets. It is an open question whether or not
there is a discontinuous homomorphism of a B* algebra. Theorem 6.1
shows that if every isomorphism of a B* algebra is continuous, then
every homomorphism of a B* algebra is continuous.

THEOREM 6.1. If there is a discontinuous homomorphism of a
B* algebra, there is a discontinuous isomorphism of & B* algebra.

Proof. Suppose v is a discontinuous homomorphism of a B* algebra
A. Let .&” be the separating ideal for v in 2. .&” is a =-ideal and
N/ is a B* algebra. The same arguments used in Proposition 4.2
and Theorem 4.4 show that v($”) is a closed two-sided ideal in ().
Thus v(A)/v(S”) is a normed algebra under the usual quotient norm.
Let B be the completion of v(A)/v(”) in this norm. Let @ be the
map of A/’ into B defined as follows. @(a) + .&° = v(a) + V().

If a € &7, then v(a) e v(&) and so @(0) = 0. Thus @ is well-defined.
It is clearly a homomorphism. If @(a + &) = 0, then v(a) € ¥(&”) and
ae€.5”. Hence @ is an isomorphism. The range of @ is clearly dense
in B,

Let A be a B* algebra and v a homomorphism of ¥ into B. We
assume that % has a unit ¢ and that B = Cly(A). The remainder of
the paper is devoted to proving that v is bounded on certain ideals
in A. The method is essentially the same as that used by Bade and
Curtis [1].

Let € be any commutative B* subalgebra of 2 which contains e.
€ is isometrically isomorphic to C(82), the algebra of all continuous
functions on a compact Hausdorff space 2 [6, p. 232]. For fc€ the
carrier of f, denoted car f, is the closure of the set of w e 2 for which
f(w) #= 0.

LEMMA 6.2. Let V be any open subset of 2 and IR(V) (IL(V))
be the right (left) ideal in A generated by {g>5€: carg<&S V}. Then
IR(V)={ga:9¢cC€,carg=V, and acq} and IL(V)=1{ag:9€C,
carg= V, and ac.}

Proof. Clearly IR(V) consists of finite sums of elements of the
form ga where g€ @, carg =S V and ac?. It is enough to show that
any such combination belongs to the set on the right. Let y =
9.0, + 9.0, with a; €, ¢,¢€, and carg; = V, ¢ = 1, 2. By normality of
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2 choose g @ such that ¢ is one on the union of ear g, and car g, and
g vanishes on a neighborhood of 2 ~ V. Then carg&S V, g9; = g,
¢=1,2. Thus gy =¥. The proof for IL(V) is the same.

THEOREM 6.3. There exist finite sets F, and F, in 2 and a
constant M such that ||v(w)|| < M||u]||, ue IR(2 ~ Fy) and |[v(v) || <
M|v|], ve IL(R ~ F,).

Proof. We shall show that there exists a finite set F, in Q2 and
a constant M, such that |[v(u)|| < M, ||u||ueIR(2 ~ Fy). It can be
shown in an analogous way that there exists a finite set F, in 2 and
a constant M, such that [[v(v)|| = M, ||v]|, ve IL(2 ~ F,;). Then we
take M = max (M,, M,).

Suppose we have shown that there exists a finite set F in 2 and
a constant K such that

(*) @) |l = Kllgllllgall,acU,geC cargc 2 ~ F.

Let ac¥, fe@, and carf=2 ~ F. Now f may be written as
U, — Uy + % (U; — u,) where caru; S 2 ~ F, u; is positive, and ||u;|| <
i, t=1,2,8,4. Since u, is positive, u; = h?! where h;c @, carh,; =
Q~F, and ||k | =||u;ll,2=1,2,8,4. Then we have

v(fa) = 3 ap(ua) = 3y av(bio)

where the «; are the obvious scalars. Then
[[v(fa)ll = KH@H = Wh:|l* = 4K || fll el .

Now suppose u € IR(2 ~ F'). By the lemma % = ga where ac ¥,
ge€@, and carg<S 2 ~ F. By normality choose # €& such that % is
one on a neighborhood of car g, 2 vanishes on a neighborhood of F,
and 0 =h =1, Then carhS 2 ~ F and hu = hga = ga = u. Apply-
ing the above inequality to # and w and using the fact that ||u || =1
we have

)| = vy || = Miik|Hlwll = M|l .

Thus v is bounded on IR(2 ~ F'). To prove the theorem it suffices
to prove (x¥). The proof will be broken up into a number of lemmas.
Let & be the family of open subsets E of 2 with the property

sup [[v(@’@) I/l gl lgal] = My < o

where the sup is taken over all a e and all ge€ with carg S E.
We shall show that @ contains a maximal open set.
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LeEmMMA 6.4. If {E,} is a sequence of disjoint open sets in £,
then for suffictently large n, E,c®.

Proof. Suppose the lemma is false. Then there is a disjoint
sequence of open sets {FE,} and sequences {a,} in %, {g,} in € with
carg, S E, and ||v(¢%a.) || > M| 9.l ]| 9ntn|l. Since the E, are dis-
joint, ¢,.9, =0,n # m. Set f,=¢g.a,,n=1,2,---. Then g,f, =0,
n # m. This contradicts the main boundedness theorem.

LEMMA 6.5. If E, E,c® and G is an open set with G S E,, then
E . UuGe@.

Proof. Since 2 is normal, we can choose u,c€€ such that 0 =
u, < 1, u, is one on a neighborhood of 2 ~ E, and zero on a neighbor-
hood of G. Let u, =1 — u,. Since u, and u, are nonnegative, each
has a square root in € and carVv'w,Secarwu,, i =1, 2.

Let acU,gecC, and carg< E,UG. Then car (gVu)SE;, =
1,2. Since E; €@,

[[v(g’a) || = [|v(g*w,a) || + || v(g*us@) ||
< M| gVu || 1 (@Vu)all + My |l gV %, || 1] (gV us)a ||
= {M Ju || + Myllu, |} g1l | ga |

LEMMA 6.6. If E, E,c® and G is open with G< E,U E,, then
Ge®.

Proof. The closed set F=GN(2~ E)SE, By normality
choose U open with FE US US E, Then G S E, U U which belongs to
& by Lemma 6.5.

LeMMA 6.7. & s closed under finite unions.

Proof. Let K, E,¢® and suppose E, U FE,¢G. If F is closed
and FS E, UE, then G=(E,UE)~F¢®. For choose U, V open
with

FCUcC U< VS VSEUE,.

Then Ve® by Lemma 6.6. If Ge®, then by Lemma 6.5, E, U E,&
GUUe®. ‘

Since E,U E,¢®, we can choose a,€ U, g, € €, such that car g,=
E, U FE, and ||v(gia) || > 1l9.]l|9.@.]||. Pick U, open such that car g, =
UCSUCSE UE, ThenG,= (E,UE)~ U ¢®. Hence we can choose
a,eU, g€ € with carg, =G, and [[v(gia,) || > 2]| 9.l || g:a:]|. Contin-
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uing inductively we obtain sequences {a,} in 2, {g,} in € with
(i) 9.9.=0,m#=m
(i) 9.(9.a.) = 0,n #*= m
(i) [[v(@a) | >nllg.llllguanll,n=1,2,---.

This contradicts the main boundedness theorem.

LEMMA 6.8. & s closed under arbitrary unions.

Proof. Let E,=\UE,, where E,c®. Suppose E,¢®. If F is
closed and F& E,, then E, ~ F'¢ ®. For by compactness F' is covered
by the union of a finite number of the E,. This union E, belongs to
® and thus if E,~ Fe®, E,=(E,~F)U E, €®.

Repeating the construction of the last proof we obtain a contra-
diction.

LEMMA 6.9. There exists a finite set F in 2 and a constant K
such that

[v(@’a)|| = Kllgllllgall,acUA, gecC, carg=S 2 ~F .

Proof. Since & is closed under arbitrary unions, the union of
all sets in @ is a maximal open set G in &. If F=02 ~ G were
infinite, a sequence of its elements could be separated by a sequence
{E,} of disjoint open sets. For large n, E,c€®. Thus G would con-
tain a point of its complement. Hence F must be finite and the
lemma is proved.

Let Z be the center of . Z is a commutative B* subalgebra
of A containing the identity and we have the following corollary.

COROLLARY 6.10. Let € = Z. Then for any open subset V of 2,
I(V)={ga:9eZ,carg<=V, and ac} is a two-sided ideal in A.
There is a finite set F and a constant M such that ||v(u)|| < M||lu|
for ueI(2 ~ F).
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