ON THE SPECTRUM OF A TOEPLITZ OPERATOR

HaroLD WIDOM

Given a function ¢e L.(—m, ), the Toeplitz operator T, is the
operator on H, (the set of fe L, with Fourier series of the form
>re,e®) which consists of multiplication by ¢ followed by P, the
natural projection of L, onto H,: if f ~ 3=.c,e then Pf ~ >c,e™.
Succinetly,

Tof = P(3f) feH,.

In [5] a necessary and sufficient condition on ¢ was given for the
invertibility of 7T,. This will be stated below. (The paper [5] is
needlessly complicated. In a recent paper of Devinatz [1], however,
all results of [5] and more are proved without undue complication
in a general Dirichlet algebra setting.) Halmos [2] has posed the
following as a test question for any theory of invertibility of Toeplitz
operators: Is the spectrum of a Toeplitz operator necessarily con-
nected? We shall shown here that the answer is Yes.

The proof consists mainly of applications of Theorem I of [5],
which says the following.

A mecessary and sufficient condition for the invertibility of T,
18 the existence of function ¢, and ¢_ belonging respectively to H,
and H, (the set of complex conjugates of H, functions) such that

(a) ¢ =¢ip, _

(b) ¢7'e H, and ¢ e H,

(¢) for feL., Sf=¢7'Pp-*feL, and f— Sf extends to a
bounded operator on L,.

We don’t want to prove the theorem here but we do have to
say where the functions ¢. come from under the assumption that T,
is ivertible. If we set

Yo =Tg, §- =T

then it can be shown that ¢+, =c¢, a constant. We must have
¢ # 0 since . can vanish only on sets of measure zero and ¢ is not
identically zero. One then defines
b =19y, ¢_=cly_
and (a) and (b) hold.
As for the relevance of condition (¢), it turns out that the ex-
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tension of S, restricted to H,, is exactly T';'. It follows that

(1) NP~ = 181l [l TGS - Lo fe€L..
Conversely, suppose there exists an M such that
H(Pfre-1l: = M| f-1ls f¢€ L.
Then we can deduce
o7 PoZf |ls = M| 67 || [1.£ [l f¢€ L.

It is a simple consequence of (c) that ||¢*||. < «. (See [5], Theorem
I, corollary, or [1], Lemma 2.) Thus (c) may be replaced by

¢y ¢'eL. and the map f— Pf 1is bounded 1in the space
Ly| ¢-"d0).

We shall need this fact.

To begin the proof of the connectedness of ¢(T,), the spectrum
of Ty, let 4 be a compact set disjoint from ¢(T,). (Think of A as
being a simple closed curve surrounding a portion of ¢(7}).) For
each N € 4 the operator T, — N = T4, is invertible, so we have the
corresponding functions

Vi) = (Ty =M1, P-(0) = (T, — M* 1
and the constant c¢(\) as described above, and
(2) ¢ — A= ¢.(\)p-(\)
where
$+(N) = 1y (V) , 9-(N) = e(M)[y-(V) .

Let us consider the continuity of these various function of A. It
follows from the definition of +r.(\) and the continuity, in the uniform
operator topology, of the mappings A — (T — M) and A — (T — N)* 7,
that » — 4r.(\) are continuous functions from 4 to L,. This implies
that »— c(\)/(¢ — \) is continuous from A to L,. Since A —¢ — \
is continuous from A to L. we conclude that A — ¢(\) is continuous
from 4 to L, so c¢(\) is a continuous complex valued function.
Since c(\) # 0 it follows also that A — ¢,(A) = (9 — N)P_(N)/e(A) and
A —d_(\) = (6 — Ay, (\) are continuous from A to L,. To recapitu-
late, the four functions ¢.(\)*' are L, continuous.

The next step is to take logarithms. Since both ¢,(\) and 1/¢.(\)
belong to H,, ¢.(\) is an outer function. Recall that this means it has
the representation

¢+()\‘) — a+(k)elog1¢+()\) 1+i[logld 4 (A) 11~
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where the tilde denotes conjugate function and
@0 = sgn | 40040

is a constant of absolute value 1. Since ¢.(\)*' are L, continuous so
is log [#.(\) |, and therefore also [log|¢.(\)[]” (since w — % is L, con-
tinuous). The continuity of the complex valued function a.(\) follows

from the fact that §¢+(7\1)d0 is continuous and nonzero.
Similarly we can write

¢_()\‘) — a_()\,)elogltﬁ_()\)I—i[logltf)_()\)ll"'

with a_(\) continuous and nonzero. Putting our representations
together and using (2) we have

(3) ¢ — A = a(x)elogl¢+(k)l+i[10gld>+(>\)l]Nel"gltb_(Ml—i[logl¢_(A)l]N

where a(\) = a,(M)a_(\) is a continuous nowhere vanishing complex
valued function.

The sum of the two exponents in (3), which we shall call I(x, ),
is for each N an element of L, and the map A —I(\, -) is L, con-
tinuous. It is important that we be able to say that for each 0 (or
almost every ), l(\, #) is a continuous function of N. This is false
for general L, valued functions but in our situation something as
good is true.

LemMA 1. There is a null set NC(—x, ) and a function
L(\, 0) defined on 4 x N’ such that for each \

L\, 0) = I\, ) a.e.,

for each 6 N’
L(\, 6) is continuous im \ .

and for all xe 4, 6 N’

#(0) — N = a(N)eEMD |

Proof. First we make sure that ¢ is defined everywhere and

that its range has positive distance from 4. This we can do since
4 is a compact set disjoint from R(¢), the essential range of .
(Recall that T,_, invertible implies (¢ — \)*e L..)

Take N €4 and let Ly, 8) be a function of 6 which equals
I\, 0) a.e. and for which

3(0) — Ny = a(ho)e%‘%o-‘”
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everywhere. Let U={reA:|N— | <3} be a neighborhood of X,
so small that » € U implies

a(\)

1a()~0) ll <1,

$(0) — N

T 1|<1, all 4.

We extend L,(\,8) to a function defined on U X (—m, ) by

#(0) — a()
(4) Lu(v, 0) = Lou,0) + Iog 20L=_Y — log &)

where the logarithms are defined by the usual power series. Clearly
Ly\, 0) is continuous on U for each 6 and ¢(6) — » = a(\)ebo™*®
everywhere on U X (—x, ). We shall show Ly, §) = I()\, 6) a.e. for
each e U, at least if 0 is small enough. Let us set

() = BN _ progion o 1+iliosld 1T~

(N

u(\) = BN _ grosio_ni—itogis_ 1T~
a_(\)

and
’vi()\,) — @l/2Lo(X 9)£5/2Ly(A,0) .

We know u,(\)*'€ L, Actually for each A, uw,(\)**e L, for some
p > 2 (the p depending on \). The reason is the following. Condi-
tion (c¢’) in the criterion given above for invertibility implies that the
map f— Pf is bounded in the space L,(|u.(\)|’*df). Helson and Szego
have determined ([3], Theorem 1) all measures d/t such that f— Pjf
is bounded in Ly (dt). They are measures of the form

dp = e+odo
with pe L., and ||¢||l. < /2. However

0|l < % implies ¢’ € L, .

This is a theorem of Zygmund. (See [6], p. 257.) A statement
which is only at first glance stronger is

0. < %implies e*? ¢ L,,, for somee > 0 .

Putting these things together we can conclude that w._(A\)*'e L, for



ON THE SPECTRUM OF A TOEPLITZ OPERATOR 369

some p > 2, and so also u, (\)* € L,.

Since Ly, 0) = I(xy, 8) a.e., a routine check shows |v.(\)| =
clui(\)| a.e., where ¢ is a nonzero constant, so we have v,(\)* € L,,.
We shall show from this that v.(\)*' € L, for all ne U is 0 is sufficiently
small. We have

V4 N) L p11azg 00 ~Zg(hg, 00110 Tg 0,0 ~To(hg 0]

V4+(\o)

It follows from (4) that

llm ” L0(>": 0) - LD()"Or 0) ||°° = O .

A=A
Therefore, from Zygmund’s theorem again, we can say this: given
any ¢, < o there exists a ¢ so that v.(\)/v.(\)€ L,, wWhenever
IV — N | < 0. If we choose g, so that p;* + ¢;* = 1/2 then we shall
have v.(A\)e L,. In fact me shall have v.(\) € H,. (Any function of

the form exp (¢ + 6), ¢ € L,, which belongs to L, also belongs to H,;
see [6], pp. 282-3.) Similarly

v,(\) e H, and v_(\)**e H, .

Now almost everywhere

us(MNu-(A) = v.(Mv-(N) (Z ¢a&)h )

SO
u (N _ v-(0\)
vV u(n)

The left side belongs to H, and the right to H, so both sides must
be a constant 8 = B(\), and

BN o (V)
sy Py

If we take the logarithm of the absolute value of both sides we
obtain

[Z L\, 0)]7 = 21log | B(V) | + log [¢-(V) | — log | 6:(V) |
and so
Lo\, 0) = [log [ .M []7 — [log | 6-(M) |]7 + (V)

where v(\) is, for each A\, a constant. Since

BL, 0) = log %l = log | #:(0) | + log | 6_(\) |
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we have upon adding,
LN, 6) = LN, 6) + 2v(V) a.e.

Given a sequence X\, — AM\,, M€ U) there is a subsequence X\, for
which I(\,., 8) — l(\, 6) a.e. (This follows from the L, continuity of
l.) Since Ly(\,,, 0) — Ly(\, 0) everywhere we have v(\,) — v(\). This
shows that v is a continuous function of M. Since v(3,) = 0 (recall
that by definition, L\, 6) = (A, 6) a.e.) and v is for each )\ an
integral multiple of 27, we must have Y(A\) = 0. Thus Ly, 0) =
I\, 6) a.e. for each ve U.

Because of what we have done and the compactness of 4 we
can find a finite open covering {U,} of A and for each k a function
L,(\, 0) defined on U, x (—x,7) so that L,(\, 0) = I\, 8) a.e. for
each e U, L,(», 0) is continuous on U, for each 6, and ¢(0) — » =
a(\)ex™% on U, X (—x, 7). Consider a pair of these open sets U;
and U, and let A, \,, -+ be dense in U; N U,. For each X\, there
is a 0-set E, of measure zero outside of which both L;,, ) and
L,(\,, 6) equal I(\,,8). Thus if 6 does not belong to UE, we have
L\, 0) = Li(\,, 8) for all n. By the continuity of L; and L, in )
and the density of {\,} we conclude that L\, 8) = L,(\, 8) for all
rve U; N U, as long as 6 does not belong to the set F;, = JF,. Thus
as long as 6 does not belong to the set N = U, .F;,, any two of the
functions L,(\, ) agree where they are both defined. We can therefore
combine all the L, to define a single function L(\, #) on 4 X N’ which
has all the required properties.

LemMA 2. If A4 is a stmple closed curve disjoint from o(Ty)
then R(9), the essential range of ¢, lies entirely inside or entirely
outside A.

Proof. Lemma 1 says that ¢(0) — N = a(\)ef™? where L(), 6) is
continuous in N for each fe N’. For each 0 the index (winding
number) of 4 with respect to ¢(f) is the index of —a(r) with
respect to the origin, and so is independent of 6. But the index is
1 if ¢(0) is inside 4 and 0 if #(0) is outside 4, and this establishes
the lemma.

LeMMA 3. If 4 is a simple closed curve disjoint from o(T,)
and such that R(¢) lies entirely outside A, them o(Ty) lies entirely
outside A.

Proof. Write

¢(0) —\ = 6L(A,0)+10gw()\) \E /1, 0 e NI



ON THE SPECTRUM OF A TOEPLITZ OPERATOR 371

where log @(\) denotes a continuous logarithm of a()\). This exists
since (M) has index zero. Let d/f, be the Borel measure on 4 which
solves the interior Dirichlet problem, i.e., if f is a continuous funec-

tion on 4 then g F)dpe,(\) is the value at the point z inside 4 of

the function harmonic inside 4, continuous on the union of 4 and
its inside, and equal to f on 4. Now L()\, 0) + log a(\) is (for fixed
f# € N') a continuous logarithm of ¢(@) — . Since ¢(d) is outside 4
this can be extended to a continuous logarithm of ¢(0) —z for z
inside 4. The extension is a harmonic function, so

[12.0 ) + log a0
is the value of the extension at z. Consequently

(5) ¢((9) — 2 = eS[L(A,9)+10gw()\)]dﬂz(M .

The integral I(0) = SL()», NHdpr,(\) is a pointwise integral, i.e., for
each 6, L(\,0) is a Borel measurable function of )\ and I(d) is its

integral. We prefer to think of it as a weak integral, i.e., I is the
unique L, function which satisfies, for all u € L,,

() = (L, 0), u@)dpeoy -

This identity follows from Fubini’s theorem. If we use the fact that
L\, 0) = l(\, 0) a.e. for each N\, we can write (5) as

$(0) — 2 = g Y lora (Va0 6 {10816 (M 1akz0) +i fDog1e 0 13~vaR, )

. g 1os1b_ N 1di =i {og1d_ V11~dkz )

where all integrals are weak integrals. Now ~ commutes with inte-
gration respect to dg,(\); this follows from the definition of ~ in
terms of Fourier coefficients. Thus if we set

A=—c¢e {108 (Mdiz(r)
t, = S log | 6, (\) | (V)
t= S log | (V) | (V)

we have

¢ — 2= Aet++itgt——it_ .
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We shall show that this factorization exhibits the invertibility of
T¢ — 2. Set

o Aet++it+ , b= P

We must verify that ¢%'e H,, that ¢*'e H,, and that the map f — Pf
is bounded in Ly(| ¢_ |*dd).
The following fact is crucial. If w,, w, = 0 satisfy

[ Bf pwido < b | £ pwide (=12
for all fe L., and w = wiw;™0 < a = 1), then also
5] PfPwd < MS|f|2wdo .

This follows from an interpolation theorem first proved for general
operators and weight functions by Stein ([4], Theorem 2). We shall
need an extension of this theorem to families of weight functions,
and for convenience we state this extension together with another
little fact as,

SUBLEMMA. Assume \— r(\, 0) is continuous from the compact
set A to real L, and such that for all \

Sefw’da <K.
Let ¢t be a momnegative Borel measure on A with p(4) =1. Then
gesr‘*"”d"""dﬁ =K.
If in addition
S| PflPer™9de < MSI F e 0dg
for all fe L., then also
|1 Pf pelrwomwag < b | £ pelrnnnmgy

Suppose for the moment that this has been established. If

we apply the first part of the sublemma to the four functions

+ log | ¢.(\)|* and recall that by continuity the norms || #.(\)*'|,
are uniformly bounded on 4, we conclude that

ette — g J1oBlbx (N1 Flap )

belong to L, and so ¢*'c H, and ¢*'c H,. Next it follows from (c’)
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of the criterion for invertibility and the fact that T, — X\ is invertible
for each M€ 4 that

[1rris-0ypas = a7 1600 pas

for all fe L.; M can be chosen independently of ) since A is bounded
away from o(T4). (See (1).) Therefore, by the sublemma again,

S[ Pfter-do = MS[ £Per-do

i.e., f— Pf is bounded in L.(|¢_|*df). This concludes the proof
of invertibility of T, — 2. Since Ty —z is invertible for any =z
inside 4 we conclude that o(T}) lies entirely outside 4.

It remains to prove the sublemma. For each integer n let E, ;
(t=1,2,--) be a finite partition of 4 into Borel sets so that

(6) 17(n, 6) — 7OV, 0) ||y < %

if A, A belong to the same E, ;. Choose points )\, ;€ K, ; and set
w, = exp {2@.‘4 ’r()\‘n,i’ 0)#(Efnz)}
w = exXp {Xr(x, e)dy(x)} .

It follows from (6) that log w,— logw in L, and our problem is to
justify various passages to the limit under the integral sign. It
follows from Holder’s inequality that for each n we have ||w,|; = K.
There is a sequence n' so that w, — w a.e., so Fatou’s lemma gives
l|wll; < K. This is the first part of the sublemma.

The unextended interpolation theorem has a trivial generalization
to arbitrary finite logarithmically convex combinations of weight
functions. Since 0= ((#,;)) =1 and >,(&,;) = (4) =1 we can
conclude that for each n

Sl Pfw,do < MSI FlPw,do .

A slight modification of this which also follows from the unextended
interpolation theorem is

(7) {1 s rwiewido = M| £ Pu-wido
for all e(0 <e<1/2),n,f. (Here w, is just w, with » =1.) By

Holder’s inequality ||wi*wi|, =< K. This implies that w.™> have
uniformly bounded norm in L,(widd), where p = (1 — ¢)/(1 — 2e¢).
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Since f€ L.. the functions |f *wi ™ also have uniformly bounded norm.
Since p >1 we can find a sequence %’ so that |f[*w. * converge
weakly to a function in L, (widf). But %' has a subsequence n” so
that |f|*w}>” converges a.e. to | f *w'*. It follows that

]f ]zwh—,u — ]f |2w1—28

weakly. The conjugate space of L,(widf) is L, (wid6) where ¢=(1—¢)/e.
Since wie L (wid#) it follows from the weak convergence that

(8) |17 Pwizwrdo — 1 pu-rwtds .

This holds of course if #»’ is replaced by any subsequence, in par-
ticular one such that w,.— w a.e. Then (7) with ¢ replaced by 2¢,
(8), and Fatou’s lemma give

S] Pf Pw'~2widl < Sl I Pw"wde .

Since w'*w?* < max (w, w,) € L, we can take the limit as ¢ — 0 under
the integral on the right, and apply Fatou’s lemma to the integral
on the left, to obtain the final conclusion of the sublemma.

Now we are in a position to prove, without much more difficulty,
that o(T;) is connected. Suppose not. Then we can find a simple
closed curve 4, disjoint from o¢(7}), so that a non-empty portion of
o(T,) lies inside 4 and a non-empty portion of o(T;) lies outside A.
Call these portions o, and o, respectively. By Lemmas 2 and 3, R(¢)
lies entirely inside 4. Let I, be a simple closed curve surrounding
a non-empty portion ¢, of ¢, and such that each point of I is within
¢ of 0. Since o, is contained in the convex hull of R(¢) (in fact all
of o(T,) is; this will be explained in a moment) /. will be contained
in the convex hull of 4 if e is sufficiently small. Thus of the three
possibilities for disjoint simple closed curves (4 and I, will be dis-
joint is ¢ is small enough),

4 inside I,

I, inside 4

I, 4 have disjoint insides,
the first is eliminated since ', is contained in the convex hull of 4,
the second is eliminated since o, lies entirely outside 4, and the
third is eliminated by Lemma 3: since R(¢) lies outside I'; so does
0(Ty). The assumption that o(T,) is disconnected has led to a
contradiction.

It remains to see why o(T,) is contained in the convex hull of
R(¢). It suffices to show that T, is invertible if R(¢) is contained in
an open angle of opening less than 7 with vertex 0, and since
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invertibility of T, is not destroyed by multiplying ¢ by a nonzero
constant we may assume that this angle has the positive real axis
as bisector. But then for sufficiently small ¢ we shall have
|1 —edlle <1, ie. || I —¢eTy|| <1, and this implies 7T is invertible.
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