ON THE SPECTRUM OF A TOEPLITZ OPERATOR

HAROLD WIDOM

Given a function $\phi \in L_{\infty}(-\pi, \pi)$, the Toeplitz operator T_{ϕ} is the operator on H_2 (the set of $f \in L_2$ with Fourier series of the form $\sum_{0}^{\infty} c_n e^{in\theta}$) which consists of multiplication by ϕ followed by P, the natural projection of L_2 onto H_2 : if $f \sim \sum_{-\infty}^{\infty} c_n e^{in\theta}$ then $Pf \sim \sum_{0}^{\infty} c_n e^{in\theta}$. Succinctly,

$$T_{\phi}f = P(\phi f)$$
 $f \in H_{2}$.

In [5] a necessary and sufficient condition on ϕ was given for the invertibility of T_{ϕ} . This will be stated below. (The paper [5] is needlessly complicated. In a recent paper of Devinatz [1], however, all results of [5] and more are proved without undue complication in a general Dirichlet algebra setting.) Halmos [2] has posed the following as a test question for any theory of invertibility of Toeplitz operators: Is the spectrum of a Toeplitz operator necessarily connected? We shall shown here that the answer is Yes.

The proof consists mainly of applications of Theorem I of [5], which says the following.

A necessary and sufficient condition for the invertibility of T_{ϕ} is the existence of function ϕ_{+} and ϕ_{-} belonging respectively to H_{2} and \overline{H}_{2} (the set of complex conjugates of H_{2} functions) such that

- (a) $\phi = \phi_+ \phi_-$
- (b) $\phi_{+}^{-1} \in H_2 \text{ and } \phi_{-}^{-1} \in \overline{H}_2$,
- (c) for $f\in L_{\infty}$, $Sf=\phi_+^{-1}P\phi_-^{-1}f\in L_2$, and $f\to Sf$ extends to a bounded operator on L_2 .

We don't want to prove the theorem here but we do have to say where the functions ϕ_\pm come from under the assumption that T_ϕ is ivertible. If we set

$$\psi_{+}=T_{\phi}^{-1}1,\ \bar{\psi}_{-}=T_{\phi}^{*-1}1$$

then it can be shown that $\phi\psi_+\psi_-=c$, a constant. We must have $c\neq 0$ since ψ_\pm can vanish only on sets of measure zero and ϕ is not identically zero. One then defines

$$\phi_{+} = 1/\psi_{+}, \quad \phi_{-} = c/\psi_{-}$$

and (a) and (b) hold.

As for the relevance of condition (c), it turns out that the ex-

Received April 15, 1963. Sloan Foundation fellow.

tension of S, restricted to H_2 , is exactly T_{ϕ}^{-1} . It follows that

Conversely, suppose there exists an M such that

$$||(Pf)\phi_{-}||_{2} \leq M ||f\phi_{-}||_{2} \qquad f \in L_{\infty}.$$

Then we can deduce

$$\|\phi_{+}^{-1}P\phi_{-}^{-1}f\|_{2} \leq M\|\phi_{-}^{-1}\|_{\infty}\|f\|_{2} \qquad f \in L_{\infty}.$$

It is a simple consequence of (c) that $||\phi^{-1}||_{\infty} < \infty$. (See [5], Theorem I, corollary, or [1], Lemma 2.) Thus (c) may be replaced by

(c') $\phi^{-1} \in L_{\infty}$ and the map $f \to Pf$ is bounded in the space $L_2(|\phi_-|^2d\theta)$.

We shall need this fact.

To begin the proof of the connectedness of $\sigma(T_{\phi})$, the spectrum of T_{ϕ} , let Δ be a compact set disjoint from $\sigma(T_{\phi})$. (Think of Λ as being a simple closed curve surrounding a portion of $\sigma(T_{\phi})$.) For each $\lambda \in \Delta$ the operator $T_{\phi} - \lambda = T_{\phi-\lambda}$ is invertible, so we have the corresponding functions

$$\psi_{+}(\lambda) = (T_{\phi} - \lambda)^{-1}\mathbf{1}, \quad \bar{\psi}_{-}(\lambda) = (T_{\phi} - \lambda)^{*-1}\mathbf{1}$$

and the constant $c(\lambda)$ as described above, and

$$\phi - \lambda = \phi_{+}(\lambda)\phi_{-}(\lambda)$$

where

$$\phi_+(\lambda) = 1/\psi_+(\lambda)$$
, $\phi_-(\lambda) = c(\lambda)/\psi_-(\lambda)$.

Let us consider the continuity of these various function of λ . It follows from the definition of $\psi_{\pm}(\lambda)$ and the continuity, in the uniform operator topology, of the mappings $\lambda \to (T_{\phi} - \lambda)^{-1}$ and $\lambda \to (T_{\phi} - \lambda)^{*-1}$, that $\lambda \to \psi_{\pm}(\lambda)$ are continuous functions from Λ to L_2 . This implies that $\lambda \to c(\lambda)/(\phi - \lambda)$ is continuous from Λ to L_1 . Since $\lambda \to \phi - \lambda$ is continuous from Λ to L_1 , so $c(\lambda)$ is a continuous complex valued function. Since $c(\lambda) \neq 0$ it follows also that $\lambda \to \phi_{+}(\lambda) = (\phi - \lambda)\psi_{-}(\lambda)/c(\lambda)$ and $\lambda \to \phi_{-}(\lambda) = (\phi - \lambda)\psi_{+}(\lambda)$ are continuous from Λ to L_2 . To recapitulate, the four functions $\phi_{\pm}(\lambda)^{\pm 1}$ are L_2 continuous.

The next step is to take logarithms. Since both $\phi_{+}(\lambda)$ and $1/\phi_{+}(\lambda)$ belong to H_{2} , $\phi_{+}(\lambda)$ is an outer function. Recall that this means it has the representation

$$\phi_{\perp}(\lambda) = \alpha_{\perp}(\lambda)e^{\log|\phi_{\perp}(\lambda)|+i[\log|\phi_{\perp}(\lambda)|]}$$

where the tilde denotes conjugate function and

$$lpha_+(\lambda) = \mathrm{sgn} \int \phi_+(\lambda) d heta$$

is a constant of absolute value 1. Since $\phi_+(\lambda)^{\pm 1}$ are L_2 continuous so is $\log |\phi_+(\lambda)|$, and therefore also $[\log |\phi_+(\lambda)|]^\sim$ (since $u \to \widetilde{u}$ is L_2 continuous). The continuity of the complex valued function $\alpha_+(\lambda)$ follows from the fact that $\int \phi_+(\lambda) d\theta$ is continuous and nonzero.

Similarly we can write

$$\phi_{-}(\lambda) = \alpha_{-}(\lambda)e^{\log|\phi_{-}(\lambda)|-i[\log|\phi_{-}(\lambda)|]^{\sim}}$$

with $\alpha_{-}(\lambda)$ continuous and nonzero. Putting our representations together and using (2) we have

$$(3) \qquad \phi - \lambda = \alpha(\lambda) e^{\log|\phi_{+}(\lambda)| + i \lceil \log|\phi_{+}(\lambda)| \rceil^{\sim}} e^{\log|\phi_{-}(\lambda)| - i \lceil \log|\phi_{-}(\lambda)| \rceil^{\sim}}$$

where $\alpha(\lambda) = \alpha_{+}(\lambda)\alpha_{-}(\lambda)$ is a continuous nowhere vanishing complex valued function.

The sum of the two exponents in (3), which we shall call $l(\lambda, \theta)$, is for each λ an element of L_2 , and the map $\lambda \to l(\lambda, \cdot)$ is L_2 continuous. It is important that we be able to say that for each θ (or almost every θ), $l(\lambda, \theta)$ is a continuous function of λ . This is false for general L_2 valued functions but in our situation something as good is true.

LEMMA 1. There is a null set $N \subset (-\pi, \pi)$ and a function $L(\lambda, \theta)$ defined on $\Lambda \times N'$ such that for each λ

$$L(\lambda, \theta) = l(\lambda, \theta) a.e.$$

for each $\theta \in N'$

 $L(\lambda, \theta)$ is continuous in λ .

and for all $\lambda \in \Lambda$, $\theta \in N'$

$$\phi(\theta) - \lambda = \alpha(\lambda)e^{L(\lambda,\theta)}$$
.

Proof. First we make sure that ϕ is defined everywhere and that its range has positive distance from Λ . This we can do since Λ is a compact set disjoint from $R(\phi)$, the essential range of ϕ . (Recall that $T_{\phi-\lambda}$ invertible implies $(\phi-\lambda)^{-1} \in L_{\infty}$.)

Take $\lambda_0 \in A$ and let $L_0(\lambda_0, \theta)$ be a function of θ which equals $J(\lambda_0, \theta)$ a.e. and for which

$$\phi(\theta) - \lambda_0 = \alpha(\lambda_0)e^{L_0(\lambda_0,\theta)}$$

everywhere. Let $U = \{\lambda \in \Lambda : |\lambda - \lambda_0| < \delta\}$ be a neighborhood of λ_0 so small that $\lambda \in U$ implies

$$\left|rac{lpha(\lambda)}{lpha(\lambda_0)}-1
ight|<1$$
 , $\left|rac{\phi(heta)-\lambda}{\phi(heta)-\lambda_0}-1
ight|<1$, all $heta.$

We extend $L_0(\lambda_0 \theta)$ to a function defined on $U \times (-\pi, \pi)$ by

$$L_0(\lambda,\, heta) = L_0(\lambda_0,\, heta) + \lograc{\phi(heta)-\lambda}{\phi(heta)-\lambda_0} - \lograc{lpha(\lambda)}{lpha(\lambda_0)}$$

where the logarithms are defined by the usual power series. Clearly $L_0(\lambda, \theta)$ is continuous on U for each θ and $\phi(\theta) - \lambda = \alpha(\lambda)e^{L_0(\lambda, \theta)}$ everywhere on $U \times (-\pi, \pi)$. We shall show $L_0(\lambda, \theta) = l(\lambda, \theta)$ a.e. for each $\lambda \in U$, at least if δ is small enough. Let us set

$$egin{align} u_+(\lambda) &= rac{\phi_+(\lambda)}{lpha_+(\lambda)} = e^{\log|\phi_+(\lambda)|+i\lceil\log|\phi_+(\lambda)|]^{\sim}} \ u_-(\lambda) &= rac{\phi_-(\lambda)}{lpha_-(\lambda)} = e^{\log|\phi_-(\lambda)|-i\lceil\log|\phi_-(\lambda)|]^{\sim}} \ \end{aligned}$$

and

$$v_{+}(\lambda) = e^{1/2L_0(\lambda \cdot \theta) \pm i/2\widetilde{L}_0(\lambda, \theta)}$$
.

We know $u_+(\lambda)^{\pm 1} \in L_2$. Actually for each λ , $u_+(\lambda)^{\pm 1} \in L_p$ for some p>2 (the p depending on λ). The reason is the following. Condition (c') in the criterion given above for invertibility implies that the map $f \to Pf$ is bounded in the space $L_2(|u_-(\lambda)|^2d\theta)$. Helson and Szegő have determined ([3], Theorem 1) all measures $d\mu$ such that $f \to Pf$ is bounded in $L_2(d\mu)$. They are measures of the form

$$d\mu=e^{
ho+\widetilde{\sigma}}d heta$$

with $\rho \in L_{\infty}$ and $||\sigma||_{\infty} < \pi/2$. However

$$||\,\sigma\,||_{\scriptscriptstyle\infty}<rac{\pi}{2}\,$$
 implies $\,e^{\widetilde{\sigma}}\!\in\!L_{\scriptscriptstyle 1}\,$.

This is a theorem of Zygmund. (See [6], p. 257.) A statement which is only at first glance stronger is

$$||\,\sigma\,||_{\scriptscriptstyle\infty}<rac{\pi}{2} ext{ implies } e^{\pm\stackrel{\sim}{\sigma}}\!\in L_{\scriptscriptstyle 1+\epsilon} ext{ for some } \epsilon>0$$
 .

Putting these things together we can conclude that $u_{-}(\lambda)^{\pm 1} \in L_p$ for

some p>2, and so also $u_+(\lambda)^{\pm 1} \in L_p$.

Since $L_0(\lambda_0, \theta) = l(\lambda_0, \theta)$ a.e., a routine check shows $|v_+(\lambda_0)| = c |u_+(\lambda_0)|$ a.e., where c is a nonzero constant, so we have $v_+(\lambda_0)^{\pm 1} \in L_{p_0}$. We shall show from this that $v_+(\lambda)^{\pm 1} \in L_2$ for all $\lambda \in U$ is δ is sufficiently small. We have

$$rac{v_+(\lambda)}{v_+(\lambda_0)} = e^{\scriptscriptstyle 1/2[\mathcal{I}_0(\lambda, heta)-\mathcal{I}_0(\lambda_0, heta)]} e^{i/2[\widetilde{\mathcal{I}}_0(\lambda, heta)-\widetilde{\mathcal{I}}_0(\lambda_0, heta)]}$$
 .

It follows from (4) that

$$\lim_{\lambda o\lambda_0}\|\,L_{\scriptscriptstyle 0}\!(\lambda, heta)-L_{\scriptscriptstyle 0}\!(\lambda_{\scriptscriptstyle 0}, heta)\,\|_{\scriptscriptstyle \infty}=0$$
 .

Therefore, from Zygmund's theorem again, we can say this: given any $q_0 < \infty$ there exists a δ so that $v_+(\lambda)/v_+(\lambda_0) \in L_{q_0}$ whenever $|\lambda - \lambda_0| < \delta$. If we choose q_0 so that $p_0^{-1} + q_0^{-1} = 1/2$ then we shall have $v_+(\lambda) \in L_2$. In fact me shall have $v_+(\lambda) \in H_2$. (Any function of the form $\exp{(\sigma + i\tilde{\sigma})}$, $\sigma \in L_2$, which belongs to L_2 also belongs to H_2 ; see [6], pp. 282-3.) Similarly

$$v_+(\lambda)^{-1} \in H_2$$
 and $v_-(\lambda)^{\pm 1} \in \overline{H}_2$.

Now almost everywhere

$$u_+(\lambda)u_-(\lambda) = v_+(\lambda)v_-(\lambda)\left(=rac{\phi-\lambda}{lpha(\lambda)}
ight)$$

so

$$\frac{u_+(\lambda)}{v_+(\lambda)} = \frac{v_-(\lambda)}{u_-(\lambda)}.$$

The left side belongs to H_1 and the right to \overline{H}_1 so both sides must be a constant $\beta = \beta(\lambda)$, and

$$\frac{v_{-}(\lambda)}{v_{+}(\lambda)} = \beta(\lambda)^2 \frac{u_{-}(\lambda)}{u_{+}(\lambda)}$$
.

If we take the logarithm of the absolute value of both sides we obtain

$$[\mathscr{I}L_{\scriptscriptstyle 0}\!(\lambda,\, heta)]^\sim = 2\log|\,eta(\lambda)\,| + \log|\,\phi_-(\lambda)\,| - \log|\,\phi_+(\lambda)\,|$$

and so

$$\mathscr{I}L_{0}(\lambda,\, heta)=\left[\log\left|\,\phi_{+}(\lambda)\,
ight|
ight]^{\sim}-\left[\log\left|\,\phi_{-}(\lambda)\,
ight|
ight]^{\sim}+\gamma(\lambda)$$

where $\gamma(\lambda)$ is, for each λ , a constant. Since

$$\mathscr{R}L_{\scriptscriptstyle 0}\!(\lambda, heta) = \log\left|rac{\phi(heta)-\lambda}{lpha(\lambda)}
ight| = \log|\phi_{\scriptscriptstyle +}(\lambda)| + \log|\phi_{\scriptscriptstyle -}(\lambda)|$$

we have upon adding,

$$L_0(\lambda, \theta) = l(\lambda, \theta) + i\gamma(\lambda)$$
 a.e.

Given a sequence $\lambda_n \to \lambda(\lambda_n, \lambda \in U)$ there is a subsequence $\lambda_{n'}$ for which $l(\lambda_{n'}, \theta) \to l(\lambda, \theta)$ a.e. (This follows from the L_2 continuity of l.) Since $L_0(\lambda_{n'}, \theta) \to L_0(\lambda, \theta)$ everywhere we have $\gamma(\lambda_{n'}) \to \gamma(\lambda)$. This shows that γ is a continuous function of λ . Since $\gamma(\lambda_0) = 0$ (recall that by definition, $L_0(\lambda_0, \theta) = l(\lambda_0, \theta)$ a.e.) and γ is for each λ an integral multiple of 2π , we must have $\gamma(\lambda) = 0$. Thus $L_0(\lambda, \theta) = l(\lambda, \theta)$ a.e. for each $\lambda \in U$.

Because of what we have done and the compactness of Λ we can find a finite open covering $\{U_k\}$ of Λ and for each k a function $L_k(\lambda,\theta)$ defined on $U_k\times (-\pi,\pi)$ so that $L_k(\lambda,\theta)=l(\lambda,\theta)$ a.e. for each $\lambda\in U_k$, $L_k(\lambda,\theta)$ is continuous on U_k for each θ , and $\phi(\theta)-\lambda=\alpha(\lambda)e^{L_k(\lambda,\theta)}$ on $U_k\times (-\pi,\pi)$. Consider a pair of these open sets U_j and U_k , and let $\lambda_1,\lambda_2,\cdots$ be dense in $U_j\cap U_k$. For each λ_n there is a θ -set E_n of measure zero outside of which both $L_j(\lambda_n,\theta)$ and $L_k(\lambda_n,\theta)$ equal $l(\lambda_n,\theta)$. Thus if θ does not belong to $\bigcup E_n$ we have $L_j(\lambda_n,\theta)=L_k(\lambda_n,\theta)$ for all n. By the continuity of L_j and L_k in λ and the density of $\{\lambda_n\}$ we conclude that $L_j(\lambda,\theta)=L_k(\lambda,\theta)$ for all $\lambda\in U_j\cap U_k$ as long as θ does not belong to the set $F_{j,k}=\bigcup E_n$. Thus as long as θ does not belong to the set $N=\bigcup_{j,k}F_{j,k}$ any two of the functions $L_k(\lambda,\theta)$ agree where they are both defined. We can therefore combine all the L_k to define a single function $L(\lambda,\theta)$ on $\Lambda\times N'$ which has all the required properties.

LEMMA 2. If Λ is a simple closed curve disjoint from $\sigma(T_{\phi})$ then $R(\phi)$, the essential range of ϕ , lies entirely inside or entirely outside Λ .

Proof. Lemma 1 says that $\phi(\theta) - \lambda = \alpha(\lambda)e^{L(\lambda,\theta)}$ where $L(\lambda,\theta)$ is continuous in λ for each $\theta \in N'$. For each θ the index (winding number) of Λ with respect to $\phi(\theta)$ is the index of $-\alpha(\lambda)$ with respect to the origin, and so is independent of θ . But the index is 1 if $\phi(\theta)$ is inside Λ and 0 if $\phi(\theta)$ is outside Λ , and this establishes the lemma.

LEMMA 3. If Λ is a simple closed curve disjoint from $\sigma(T_{\phi})$ and such that $R(\phi)$ lies entirely outside Λ , then $\sigma(T_{\phi})$ lies entirely outside Λ .

Proof. Write

$$\phi(\theta) - \lambda = e^{L(\lambda,\theta) + \log \alpha(\lambda)}$$

where $\log \alpha(\lambda)$ denotes a continuous logarithm of $\alpha(\lambda)$. This exists since $\alpha(\lambda)$ has index zero. Let $d\mu_z$ be the Borel measure on A which solves the interior Dirichlet problem, i.e., if f is a continuous function on A then $\int f(\lambda)d\mu_z(\lambda)$ is the value at the point z inside A of the function harmonic inside A, continuous on the union of A and its inside, and equal to f on A. Now $L(\lambda,\theta) + \log \alpha(\lambda)$ is (for fixed $\theta \in N'$) a continuous logarithm of $\phi(\theta) - \lambda$. Since $\phi(\theta)$ is outside A this can be extended to a continuous logarithm of $\phi(\theta) - z$ for z inside A. The extension is a harmonic function, so

$$\int [L(\lambda, \theta) + \log \alpha(\lambda)] d\mu_z(\lambda)$$

is the value of the extension at z. Consequently

(5)
$$\phi(\theta) - z = e^{\int [L(\lambda,\theta) + \log \alpha(\lambda)] d\mu_z(\lambda)}.$$

The integral $I(\theta) = \int L(\lambda, \theta) d\mu_z(\lambda)$ is a pointwise integral, i.e., for each θ , $L(\lambda, \theta)$ is a Borel measurable function of λ and $I(\theta)$ is its integral. We prefer to think of it as a weak integral, i.e., I is the unique L_z function which satisfies, for all $u \in L_z$,

$$(I, u) = \int (L(\lambda, \theta), u(\theta)) d\mu_z(\lambda)$$
.

This identity follows from Fubini's theorem. If we use the fact that $L(\lambda, \theta) = l(\lambda, \theta)$ a.e. for each λ , we can write (5) as

$$\phi(heta)-z=e^{\int \loglpha(\lambda)d\mu_z(\lambda)}e^{\int \log|\phi_+(\lambda)|d\mu_z(\lambda)+i\int[\log|\phi_+(\lambda)|]\sim d\mu_z(\lambda)} \ \cdot e^{\int \log|\phi_-(\lambda)|d\mu_z(\lambda)-i\int[\log|\phi_-(\lambda)|]\sim d\mu_z(\lambda)}$$

where all integrals are weak integrals. Now $^{\sim}$ commutes with integration respect to $d\mu_z(\lambda)$; this follows from the definition of $^{\sim}$ in terms of Fourier coefficients. Thus if we set

$$egin{aligned} A &= e^{\int \log lpha(\lambda) d\mu_z(\lambda)} \ t_+ &= \int \log \mid \phi_+(\lambda) \mid d\mu_z(\lambda) \ t_- &= \int \log \mid \phi_-(\lambda) \mid d\mu_z(\lambda) \end{aligned}$$

we have

$$\phi-z=Ae^{t_++i\widetilde{t}_+}e^{t_--i\widetilde{t}_-}$$
 .

We shall show that this factorization exhibits the invertibility of $T_\phi-z$. Set

$$\phi_+ = A e^{t_+ + i\widetilde{t}_+}$$
 , $\phi_- = e^{t_- - i\widetilde{t}_-}$.

We must verify that $\phi_+^{\pm 1} \in H_2$, that $\phi_-^{\pm 1} \in \overline{H}_2$, and that the map $f \to Pf$ is bounded in $L_2(|\phi_-|^2d\theta)$.

The following fact is crucial. If $w_1, w_2 \ge 0$ satisfy

$$\int \mid Pf\mid^{2} w_{i}d\theta \leq M \int \mid f\mid^{2} w_{i}d\theta \qquad (i=1,2)$$

for all $f \in L_{\infty}$, and $w = w_1^{\alpha} w_2^{1-\alpha} (0 \le \alpha \le 1)$, then also

$$\int \mid Pf\mid^{\scriptscriptstyle 2}\!\! w\,d heta \leq M \int \mid f\mid^{\scriptscriptstyle 2}\!\! w\,d heta$$
 .

This follows from an interpolation theorem first proved for general operators and weight functions by Stein ([4], Theorem 2). We shall need an extension of this theorem to families of weight functions, and for convenience we state this extension together with another little fact as,

SUBLEMMA. Assume $\lambda \to r(\lambda, \theta)$ is continuous from the compact set Λ to real L_2 and such that for all λ

$$\int \! e^{r(\lambda, heta)} d heta \le K$$
 .

Let μ be a nonnegative Borel measure on Λ with $\mu(\Lambda)=1$. Then

$$\int e^{\int r(\lambda, heta)d\mu(\lambda)}d heta \leq K$$
 .

If in addition

$$\int \mid Pf \mid^2 \!\! e^{r(\lambda, heta)} d heta \leq M \! \int \mid f \mid^2 \!\! e^{r(\lambda, heta)} d heta$$

for all $f \in L_{\infty}$, then also

$$\int \mid Pf\mid^2 \!\! e^{\int \!\! r(\lambda,\theta) \, d\mu(\lambda)} d\theta \leqq M \int \!\! \mid \!\! f\mid^2 \!\! e^{\int \!\! r(\lambda,\theta) \, d\mu(\lambda)} d\theta \; .$$

Suppose for the moment that this has been established. If we apply the first part of the sublemma to the four functions $\pm \log |\phi_{\pm}(\lambda)|^2$ and recall that by continuity the norms $||\phi_{\pm}(\lambda)^{\pm 1}||_2$ are uniformly bounded on Δ , we conclude that

$$e^{\pm t_{\pm}} = e^{\int \log|\phi_{\pm}(\lambda)|^{\pm 1}d\mu_{z}(\lambda)}$$

belong to L_2 , and so $\phi_+^{\pm 1} \in H_2$ and $\phi_-^{\pm 1} \in \overline{H}_2$. Next it follows from (c')

of the criterion for invertibility and the fact that $T_{\varphi} - \lambda$ is invertible for each $\lambda \in A$ that

$$\int \mid Pf\mid^{\scriptscriptstyle 2}\mid\phi_{-}(\lambda)\mid^{\scriptscriptstyle 2}\!\!d\theta \, \leqq M \int \mid f\mid^{\scriptscriptstyle 2}\mid\phi_{-}(\lambda)\mid^{\scriptscriptstyle 2}\!\!d\theta$$

for all $f \in L_{\infty}$; M can be chosen independently of λ since Λ is bounded away from $\sigma(T_{\phi})$. (See (1).) Therefore, by the sublemma again,

$$\int \mid Pf \mid^2 \!\! e^{zt} \!\! - \!\! d heta \leq M \int \!\! \mid \!\! f \mid^2 \!\! e^{zt} \!\! - \!\! d heta$$
 ,

i.e., $f \to Pf$ is bounded in $L_2(|\phi_-|^2d\theta)$. This concludes the proof of invertibility of $T_\phi - z$. Since $T_\phi - z$ is invertible for any z inside Λ we conclude that $\sigma(T_\phi)$ lies entirely outside Λ .

It remains to prove the sublemma. For each integer n let $E_{n,i}$ $(i=1,2,\cdots)$ be a finite partition of A into Borel sets so that

$$|| r(\lambda, \theta) - r(\lambda', \theta) ||_2 < \frac{1}{n}$$

if λ , λ' belong to the same $E_{n,i}$. Choose points $\lambda_{n,i} \in E_{n,i}$ and set

$$egin{aligned} w_n &= \exp\left\{\sum_i r(\lambda_{n,i},\, heta)\mu(E_{n,i})
ight\} \ w &= \exp\left\{\int r(\lambda,\, heta)d\mu(\lambda)
ight\} \,. \end{aligned}$$

It follows from (6) that $\log w_n \to \log w$ in L_2 and our problem is to justify various passages to the limit under the integral sign. It follows from Hölder's inequality that for each n we have $||w_n||_1 \le K$. There is a sequence n' so that $w_{n'} \to w$ a.e., so Fatou's lemma gives $||w||_1 \le K$. This is the first part of the sublemma.

The unextended interpolation theorem has a trivial generalization to arbitrary finite logarithmically convex combinations of weight functions. Since $0 \le \mu(E_{n,i}) \le 1$ and $\sum_i \mu(E_{n,i}) = \mu(A) = 1$ we can conclude that for each n

$$\int \! |Pf|^2 w_n d heta \le M \int \! |f|^2 w_n d heta$$
 .

A slight modification of this which also follows from the unextended interpolation theorem is

$$\int |Pf|^2 w_n^{1-\epsilon} w_1^{\epsilon} d\theta \le M \int |f|^2 w_n^{1-\epsilon} w_1^{\epsilon} d\theta$$

for all $\varepsilon(0<\varepsilon<1/2)$, n,f. (Here w_1 is just w_n with n=1.) By Hölder's inequality $||w_n^{1-\varepsilon}w_1^{\varepsilon}||_1 \leq K$. This implies that $w_n^{1-2\varepsilon}$ have uniformly bounded norm in $L_p(w_1^{\varepsilon}d\theta)$, where $p=(1-\varepsilon)/(1-2\varepsilon)$.

Since $f \in L_{\infty}$ the functions $|f|^2 w_n^{1-2\varepsilon}$ also have uniformly bounded norm. Since p > 1 we can find a sequence n' so that $|f|^2 w_n^{1-2\varepsilon}$ converge weakly to a function in $L_p(w_n^{\varepsilon}d\theta)$. But n' has a subsequence n'' so that $|f|^2 w_n^{1-2\varepsilon}$ converges a.e. to $|f|^2 w^{1-2\varepsilon}$. It follows that

$$|f|^2 w_{n'}^{1-2\varepsilon} \rightarrow |f|^2 w^{1-2\varepsilon}$$

weakly. The conjugate space of $L_p(w_1^{\varepsilon}d\theta)$ is $L_q(w_1^{\varepsilon}d\theta)$ where $q=(1-\varepsilon)/\varepsilon$. Since $w_1^{\varepsilon} \in L_q(w_1^{\varepsilon}d\theta)$ it follows from the weak convergence that

(8)
$$\int |f|^2 w_{n'}^{1-2\varepsilon} w_1^{2\varepsilon} d\theta \to \int |f|^2 w^{1-2\varepsilon} w_1^{2\varepsilon} d\theta .$$

This holds of course if n' is replaced by any subsequence, in particular one such that $w_{n''} \to w$ a.e. Then (7) with ε replaced by 2ε , (8), and Fatou's lemma give

$$\int \mid Pf \mid^2 \! w^{1-2arepsilon} w_{\scriptscriptstyle 1}^{2arepsilon} d heta \leqq \int \! \mid \! f \mid^2 \! w^{1-2arepsilon} w_{\scriptscriptstyle 1}^{2arepsilon} d heta$$
 .

Since $w^{1-2\varepsilon}w_1^{2\varepsilon} \leq \max(w, w_1) \in L_1$ we can take the limit as $\varepsilon \to 0$ under the integral on the right, and apply Fatou's lemma to the integral on the left, to obtain the final conclusion of the sublemma.

Now we are in a position to prove, without much more difficulty, that $\sigma(T_{\phi})$ is connected. Suppose not. Then we can find a simple closed curve Λ , disjoint from $\sigma(T_{\phi})$, so that a non-empty portion of $\sigma(T_{\phi})$ lies inside Λ and a non-empty portion of $\sigma(T_{\phi})$ lies outside Λ . Call these portions σ_1 and σ_2 respectively. By Lemmas 2 and 3, $R(\phi)$ lies entirely inside Λ . Let Γ_{ε} be a simple closed curve surrounding a non-empty portion σ_3 of σ_2 and such that each point of Γ_{ε} is within ε of σ . Since σ_2 is contained in the convex hull of $R(\phi)$ (in fact all of $\sigma(T_{\phi})$ is; this will be explained in a moment) Γ_{ε} will be contained in the convex hull of Λ if ε is sufficiently small. Thus of the three possibilities for disjoint simple closed curves (Λ and Γ_{ε} will be disjoint is ε is small enough),

arDelta inside $arGamma_{arepsilon}$ inside arDelta

 Γ_{ε} , Λ have disjoint insides,

the first is eliminated since Γ_{ϵ} is contained in the convex hull of Λ , the second is eliminated since σ_{ϵ} lies entirely outside Λ , and the third is eliminated by Lemma 3: since $R(\phi)$ lies outside Γ_{ϵ} so does $\sigma(T_{\phi})$. The assumption that $\sigma(T_{\phi})$ is disconnected has led to a contradiction.

It remains to see why $\sigma(T_{\phi})$ is contained in the convex hull of $R(\phi)$. It suffices to show that T_{ϕ} is invertible if $R(\phi)$ is contained in an open angle of opening less than π with vertex 0, and since

invertibility of T_{ϕ} is not destroyed by multiplying ϕ by a nonzero constant we may assume that this angle has the positive real axis as bisector. But then for sufficiently small ε we shall have $||1-\varepsilon\phi||_{\infty}<1$, i.e. $||I-\varepsilon T_{\phi}||<1$, and this implies T_{ϕ} is invertible.

REFERENCES

- 1. A. Devinatz, Toeplitz operators on H2 spaces, Trans. Amer. Math. Soc., to appear.
- 2. P. R. Halmos, A glimpse into Hilbert space, article in "A Survey of Modern Mathematics," Wiley, 1963.
- 3. H. Helson and G. Szegö, A problem in prediction theory, Annali di Mat., 41 (1960), 107-138.
- 4. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), 482-492.
- 5. H. Widom, Inversion of Toeplitz matrices II, Ill. J. Math., 4 (1960), 88-99.
- 6. A. Zygmund, Trigonometric Series, vol. I, Cambridge, 1959.

CORNELL UNIVERSITY