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l Introduction* Let X and Y be a conjugate pair of reflexive
Banach spaces (with real or complex scalars) such that X has a smooth
unit ball. For x e X, y e Y, we denote the natural pseudo-inner-product
by ζx, yy. Let /: X—* Ybe a continuous monotonic function—i.e., one
satisfying Reζxx — x29f(x^ — /(a?a)> ̂  0 for all x19 x2 e X. The main object
of this paper is to present a theorem on the solvability of the equation
f(x) = u, for given ue Y, analogous to the ordinary "intermediate-
value theorem" for a continuous (monotonic!) real-valued function of
a real variable. In finite-dimensions, the known result [1] is that the
range R of / is an almost-convex set (contains the interior of its con-
vex hull, where "interior" may be taken relative to the smallest real
flat containing R— see below for the definitions).

In order to preserve, so far as possible, duality between the domain
and the range of /, theorems will be proved first on "monotonic"
subsets of the product-space X x Y, and then afterwards applied to
the graph of / .

The theorems of this paper result from an attempt to obtain the
same general kind of theorems as one gets by the "variational method",
as developed especially by E. H. Rothe, without assuming that / is
the Frechet differential of a real scalar function. In the variational
theory, the assumption of monotonicity of / turns up in the form of
convexity of the associated scalar, which in turn guarantees weak
lower-semicontinuity. (In order to see the connection, compare Theo-
rem 6 of [3] and Theorem 4.2 of [6]).

2* Preliminaries. Let X be a Banach-space and Y its conjugate-
space, or vice versa. In X x Y9 we define the ikf-relation (as in [1],
[3]) by: (x19 yJM(x29 y2) provided Re <α?x - x29 yx - #2> ^ 0. A set
E c (X x Y) is called monotonic provided each pair of points of E is
M-related, and is called maximal if it cannot be embedded in a prop-
erly larger monotonic subset of X x Y. If, for any (x19 yλ) and
(#2, I/a) e E we have Re < x̂ — x2, yx —y^ — Q implies xx = x% and yx = y2,
then E will be called strictly monotonic.

Note that ζx, yy is a bilinear form rather than a sesquilinear
form, that is, for a complex, ζx, ay} = aζx, yy. Nevertheless, in the
theorems of this paper, it may be thought of as the usual inner pro-
duct when X = Y = H, where H is a Hubert space, because the
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statements of the theorems refer only to the functional value of ζx, yy,
and not to the function itself.

For a set S in a normed linear space, K[S] denotes the convex
hull of S. All topological terms refer to the norm-topology unless
explicitly otherwise stated. The unit ball of a real Banach-space is
called smooth provided that at each point of the boundary there is
a unique hyperplane of support; sufficient conditions for this are that
the norm be Frechet-differentiable at all points of the boundary, or
that the unit ball of the conjugate-space be strictly convex. The
unit ball of a complex Banach-space is called smooth if the unit ball
of the real Banach-space obtained by restricting the scalars to be real,
is smooth. A real linear subspace is a linear subspace of this real
Banach-space, in the complex case; in the real case, it is an ordinary
linear subspace. A real flat is a translate of a closed real linear sub-
space. The symbols Px and P refer to the projection-maps of a product
space: Pλ{x, y) = x, P(x, y) = y. The open sphere with center u and
radius ε is called S(e; u), and the closed sphere (ball) is called @(ε; u).
The zero-vector of a linear space is called θ.

3 • Uniqueness'theorems*

THEOREM 1. Let Ea(X x Y) be a maximal monotonic set, and
ue Y. Then S = {x : (x, u) e E} is a closed convex set. Moreover, if
E is strictly monotonic, then S is at most a single point.

Proof. Let (xlf u), (x2, u) e E, and let s, t be positive real numbers
with s + t = 1. Let (x0, y0) be any point of E. Then

Re <(sa?! + tx2) — x0, u — yo>

= sRe <#! — x0, u — yoy + tRe <x2 — xo,u — yoy ^ 0

so that (sx1 + tx2, u)M(x0, y0). Hence (sxλ + tx2, u)eE by the maxi-
mality of E; it follows that S is convex. To show that S is closed,
we put Z = {(x, u) : x e X), and note that

E = n< o.*o>e*{fo v): Re <x -χo>v - vo> ^ o}

and Z are both closed subsets of X x Y (taken with the usual product-
topology), so that T = Z Π E is a closed subset of X x Y, and hence
of Z. Now, there is an obvious homeomorphism of Z onto X which
maps T onto S; the closedness of S follows.

The second statement of Theorem 1 is trivial.
The main purpose of presenting this rather elementary theorem

is to exhibit that a maximal monotonic set has essentially the same
uniqueness-properties as the graph of the Frechet differential of a
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convex function, which is (broadly speaking) a special case.

4» Main existence-theorem* If X is a complex Banach-space with
conjugate-space Y, and Xr is the corresponding real Banach-space
obtained by restricting the scalars to be real, with conjugate-space
Y', it is well known that yf = Reζ ,yy is a norm-preserving isomor-
phism of Y onto Y'. It would be possible to prove the lemmas and
theorem of this section first in the case of a real Banach-space, and
then use this isomorphism to extend them to the complex case; how-
ever, we shall continue for the present to work simultaneously with
the real and complex cases.

LEMMA 1. Let X be a Banach-space and Y its conjugate-space,
or vice-versa. Suppose A c (X x Y) is a monotonic set with the
properties:

( i ) K[P(A)] contains a ball @(ε; θ), with e > 0.
(ii) The set {Re (x, y} : (x, y) e A} is bounded above by M > 0.

Then, for any yQeY with \\yQ\\ > M/e, there exists a finite subset
{{%i, yd' i = h * * •> m l °f A such that, with

Q = ίT=i {x : Re <Xi - x, yt> ^ 0} ,

x e Q implies Re ζx, yo> < || y01|2.

Proof. Consider any y0 with \\yo\\ > Λf/e. Then eyol\\yQ\\ lies in
@(ε; θ), and hence by (i) it is a convex combination of vectors of P(A):

εyolW vo II = Wi + + λm̂ /m (λ* > o, J = Σ\i),

Forming the pseudo-inner-product of both sides with any x e Q and
then taking real parts, we see that

! y o y - ΣX, Re <x, Vi> ^ ΣX{ Re <xif y^
Ill/oil

S ΣXM = M

so that

LEMMA 2. WiίΛ. X α«ώ F as in Lemma 1, ieί {(a;,,
1, " ,m) be any finite subset of X x Y. Then the set

R = ΠΓ=i {* : Re <x, - x, Vi> ̂  0}

is nonempty.
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Proof. The main theorem of [2] asserts the stronger statement
that for any y e Y, there exists x satisfying Re ζx{ — x, y{ — y} ^ 0
for all i. Actually, the theorem of [2] is stated for Hubert spaces,
so a short argument is necessary here, as follows:

If Y is the conjugate-space of X: let X' be the finite-dimensional
linear subspace of X generated by xu , xm. Let Yr be the conjugate-
space of X', and let yle Yf be the restrictions of the functionals y{

to X'. Distinguishing a basis in X', one can now easily make a
Hubert space out of X' in the usual way, and identify Y' with X';
the rest of the proof is simple.

If X is the conjugate-space of Y: let Y1 be the finite-dimensional
linear subspace generated by yu , ym, and let X' be its conjugate-
space. Let Xi 6 Xf be the restrictions of the x{ to Yf. Impose a
Hilbert-space structure on Y\ identify X' with Y\ and construct xf

in X' by the theorem of [2] Now let x be any Hahn-Banach exten-
sion of x' to all of X.

LEMMA 3. Now let X be a Banach-space and Y be its conjugate-
space, and assume that the unit ball of X is smooth. Suppose the
monotonic set £ c ( I x Y) has a subset A satisfying (i) and (ii) of
Lemma 1. Let (xu y>), , (xn, yn) be any finite subset of E, and let
R — Π£=i {χ : Re <\χi — χ, vϊϊ ^ 0}. Then R contains a point x0 having
|| a;,, ||

Proof. By Lemma 2, R is nonempty. Now, R is convex and
closed, so (as is well known) the norm in X assumes its minimum on
R at a point x0. Suppose | | $ 0 | | > Mjε. We take up first the case
where the scalars are real.

By the Hahn-Banach theorem, there exists yo€ Y such that
<#o, 2/o> = ll^o II2, and ||% II — ll^oll (Note that by the smoothness of
the unit ball in X, there is only one y0 satisfying these conditions.)
Since \\yo\\ > M/e9 Lemma 1 asserts that there exists (xn+uVn+ύt •••»
(xn+m, yn+m) in A, and hence in E, such that, with

Q = Πiin^{χ : <χi - x, yi> ^ 0},

xeQ implies that ζx, yoy < || yo\\\ and thus that <#, yo> < ζx0, %>.
Now, by Lemma 2, RΓiQ is nonempty; say, XxSRΓiQ. Thus

and xx φ x0.
Now, if xx is linearly dependent on x0, then xx = cx0 for some real

c, so that c<#o, 2/o> < <#o, %>, and c < 1 (since <#0, %> > 0). Since R
is convex, it contains the line-segment joining x0 and xu so ^ could
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not be an element of R with smallest norm. On the other hand, if
xx and xQ are linearly independent, we can apply the Hahn-Banach
theorem to obtain yx e Y such that ζxlf y^ = \\ xλ || || x01|, and ζx0, y^ =
|| #o II2, and ||l/i| | = | | » 0 | | . By the smoothness of the unit ball, yx = y0,
and hence from (*), || x1 | | . | | x0 || < \\χQ||2 and || xt \\ < \\ xo\\, again contra-
dicting the minimality of the norm of x0 over R. This completes the
proof when the scalars are real.

If the scalars are complex, we make appeal to the earlier-mentioned
norm-preserving isomorphism between the conjugate-spaces of the
complex Banach-space X and the corresponding real Banach-space X',
and the conclusion is immediate.

THEOREM 2. (Main Existence-Theorem) Let X and Y be a con-
jugate pair of reflexive Banach-spaces such that X has smooth unit
ball, and suppose Ec(X x Y) is a maximal monotonic set. Then
a sufficient condition for θe P{E) is that there exist a set AdE
with the properties:

( i ) θ e int K[P(A)]
(ii) {Reζx, y>\ (x,y)eA) is bounded above.

Proof. Let e > 0 be such that @(e : θ) c K[P{A)\ and M > 0 be
such that {Re ζx, y} : (x, y) e A} < M. Let the points of E be indexed
by a, so that E = {(xa, ya)}. Consider the sets

Ta = {x : Re<xa - x, ya> ^ 0, | | x\\ g Mjε) .

By Lemma 3, the intersection of any finite subcollection of these sets
is nonempty. Since the Ta are all weakly-closed subsets of the weakly-
compact ball @(Λf/e θ), it follows (from the "finite-intersection pro-
perty" of compact sets) that the intersection of @(Λf/e θ) and all the
T0 is nonempty: say, it contains x. Thus for every a, (x, θ)M(xa, yΛ)9

and since E is maximal, (x, θ)eE and θ e P(E).

5 Generalizations of the main theorem- The main theorem gen-
eralizes easily in many directions simultaneously, so that a very general,
but unwieldy, main theorem could be stated. The writer feels that
it is best merely to indicate the directions of such generalizations.
To keep the discussion lucid, we shall discuss only the special case
where the maximal monotonic set E is the graph of a monotonic func-
tion /: X-+ Y. (See Paragraph 6.)

REMARK 1. It is easily seen, from the proof of Theorem 2, that
an upper bound on the norm of the solution of f(x) = θ constructed
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there, is given by | | # | | ^ ikf/ε. It is not hard to sharpen this upper
bound to Molεo, where MQ is the g.l.b. of all possible M, and ε0 is the
l.u.b. of all possible ε, by applying Theorem 2 (or rather, the proof
of the theorem) to the sequence of pairs (Mlf ε1)f (M2, ε2), , where
Mi is a decreasing sequence approaching Mo and e< is an increasing
sequence approaching ε0, and using the weak compactness of &(N1lε1 θ).
If the unit ball of X is not smooth, an equivalent norm may some-
times be introduced to smooth it. But note that introduction of an
equivalent norm changes not only the form of the inequality | | $ | | g
M/e, but may also effect a change in ε, since the norm in Y must
be changed correspondingly.

REMARK 2. To prove the existence of a solution of the equation
f(x) — u, with u Φ θ, one should work with the function g(x) —
f(x) — u, or even with g(x) = f(x — v) — u, with a judicious choice
of v.

REMARK 3. The existence of a solution of x + f{x) = u, for
monotonic /, has already been shown elsewhere [3], The theorems of
[3] can be generalized to solve the equation Xx + f(x) — u, for Re X > 0,
by the use of the map Φ(x, y) = (Xx + y, Xx — y) in place of the map
Φ of that paper.

REMARK 4. If the entire range of / is contained in a closed
linear proper subspace Yo of y, then it is impossible to satisfy (i) of
Theorem 2. But virtually the same trick can be used as in [1]: note
that / must be constant on any coset of X mod YQ

L, the orthogonal
complement of Yo, so that / can be regarded as a function mapping
X/Yo1 into Yo, this function is still monotonic. Also, by a standard
argument, XIY<t and Yo are a conjugate pair of reflexive Banach-
spaces, and the unit ball of X/Γo is smooth if that of X is. Also:
it is easily seen, by the discussion given in [1], that one can work
with the underlying real Banach-space of X and take YQ as the smal-
lest real closed linear subspace containing the range of /.

This trick corresponds to taking the "interior," in the statement
of Theorem 2, relative to the smallest closed real linear subspace
containing the range of /. In case one wishes to solve the equation
f(x) — u, as in Remark 2, the interior is taken relative to the smallest
real flat containing the range of /.

6. An application. Let if be a Hubert space; let /: H—> H
have the property that its Frechet differential exists everywhere and
is a "dissipative" linear operator:

Re<Jx,f'(x; zte)> ^ 0 for all x, Δx ,
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and that the range of / lies entirely in some closed linear subspace
Ho C H. Then we can state the following:

THEOREM 3. A sufficient condition for f(x) — θ to have a solution
is: there exists a set BczH such that

( i ) θ 6 int K[P(f(B))] (interior relative to Ho)
and

(ii) the set {Reζx,f(x)y : xeB} is bounded below.
The solution is unique if / ' is strictly dissipative.

Proof. Regard / as a monotonic function from Ho into HQf as in
Remark 4. Let g(x) = —f(x). Then g has an "accretive" Frechet
differential. By Therem 6 of [3], the graph of g is a maximal mono-
tonic set in Ho x HQ. Theorem 2 above completes the existence-proof,
and an adaptation of the proof of Theorem 6 of [3] shows that if gf

is strictly accretive, then g is strictly monotonic; Theorem 1 of the
present paper completes the uniqueness proof.

Theorem 3 can be generalized to some cases in which / is not
everywhere differentiate, or even everywhere-defined; see [3], Theorems
4 and 5.
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