POLYNOMIALS WITH MINIMAL VALUE SETS
W. H. M1LLs

Let .2 be a finite field of characteristic » that contains exactly
q elements. Let F(x) be a polynomial over 2 of degree f,f > 0, and
let » + 1 denote the number of distinct values F{(z) as ¢ ranges over .5 .
Carlitz, Lewis, Mills, and Straus [1] pointed out that = = [(¢ — 1)/f],
and raised the question of determining all polynomials for which
r =[(¢ — 1)/f]. The cases » = 0 and » = 1 are special cases that do
not fit into the general pattern. These are treated in [1], and do
not concern us here. Thus we arrive at the statement of our main
problem: For what polynomials F(x) do we have

(1) r =@ — Dif] = 22

Carlitz, Lewis, Mills, and Straus [1] determined all polynomials
with f < 2p + 2 for which (I) holds. In the present paper this result
is extended—all polynomials with f <1 ¢ for which (I) holds are
determined. These are polynomials of the form

F(x) = al® + v,

where L is a polynomial that factors into distinct linear factors over
%" and that has the form

L:B_!' Zq)iwpm;

and where v and k are integers such that v|(p* — 1) and ¢ is a power
of p*. Regardless of the size of f our present methods give a great
deal of information about F(x). Furthermore many of the proofs of
[1] can be shortened and simplified by using the results of §1 of the
present paper.

The results of [1] provide a complete answer for the case ¢ = p.
In the present paper the problem is completely solved for the case
qg="n.

1. Preliminaries. Let . be a finite field with ¢ elements and
characteristic ». We use Greek letters for elements of .97, and
small Latin letters, other than 2, for nonnegative integers. We use
capital letters for polynomials in one variable over 9. The poly-
nomials denoted by A, B, C, D, E and the integers denoted by a, b, ¢, d, ¢
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vary from proof to proof. The polynomials and integers denoted by
other letters, except ¢ and j, remain the same throughout the paper.

Let F = F(x) be a polynomial over .97 of degree f,f > 0. Let
Yos Y1y ***, Y, denote the distinct values assumed by F{(z) as 7 ranges
over . %. It follows easily from the fact that a polynomial of degree
f has at most f roots, that r 4 1= ¢q/f. This is equivalent to
r=[(@g —1)/f]. We intend to study the question raised in [1] of
characterizing those polynomials for which » = [(¢g — 1)/f]. The cases

r=0 and r =1 were fully treated in [1]. Hence we make the
assumption that

(1) : r=[—-1/fl=2.

Subtracting the constant v, from F does not change the value of
r. Thus it is sufficient to consider the case 7, = 0. In the first two
sections of this paper, we assume that

7o=0.
Then v, + 0 for ¢ > 0. We now set
F¢=F—’75, Oéié’r.

The polynomials F; are relatively prime in pairs, and each of them
has at least one root in 2 Let my, my,, <+, m;, be the distinet roots
of F; that lie in .9 and set

12
Li=]I@®—m;), 0si=r.
i=1

Then I, =degL; =1, 0 =<4 =<7, and

r

(2) v —~x=1I]L,;.

i<

Now set F; =L, U, 0<% =<7, and

(3) G=T10;.

Then the L;, the U, and G are polynomials over .°%; and

(4) @ — )G =11 F: .

Now (4) and (1) give us an upper bound on the degree of G, namely

degG=(r+1)f—-g=qg—-1+f—gqg=f—1.

t The relations (2), (3), (4), (5), (6), and (7) can all be found in [1] under the
assumption that the leading coefficient of F'is 1.
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Thus we have
(5) degG< f.

Set u; =deg U;,0 <7 =< r. We already have F' = F, by the assump-
tion v, =0. Weset L=L, U=U, Il =1, and u = u,.

We now differentiate both sides of (2) and obtain —1 = L’'L*
(mod L), where L* = L,L,-+--L,. Hence G = —L'L*G (mod LG).
Since FF = LU and U|G, it follows that F'| LG and thus

G = —-LL*G (mod F') .
Now

L*G=U(LU)=UIl(F~v)= (U (modF),

where
t=—T1(=7)#0.

Hence G =(L'U (mod F). Since deg((L'U)< deg(LU)=f and
deg G < f, we must have
(6) G=CtLU.
By symmetry it follows that
(7) G =¢LU,;, 0si1=7r,

for suitable nonzero elements {; of .2%7
We next derive another expression for G.

LEMMA 1. There exists a nonzero element 0 im 5 such that
G = 0F",
Proof. Since F' = F; = L;U, + L;Uj}, it follows from (7) that
LU;=F -G/, 015 r.,

Therefore L,U, = LU’, LU}, and L,U, are linearly dependent. Thus
there exist A, A\, and A, in 2% not all zero, such that

NLU" + ML U, 4+ \LU, =0

Multiplying this relation by UU,U, and noting that LU= F,
LU =F—v, LU = F — v, we obtain

(8) \WU'UU, + \MUUU, + NUU,UNF = Ay, UU.U, + N\, UU U, .
Now the degree of the right side of (8) is less than u + u, + u, and
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U+ u+u=degG<f=degF.

This is possible only if we have
(9) AU'OU, + UULU, + UUU, =0 .

The constants N, A, and \, are not all zero. Without loss of generality
we suppose A, = 0. Then (9) gives us U,| UU,U;. Since U,|F,, U,
must be relatively prime to both F' and F,. Hence U, is relatively
prime to UU,, and U,| U;. This implies that U, = 0. Hence

F'=F;,= LU, + L,U; = LU, = G[(,.

Thus G = {,F’, which completes this proof.
Lemma 1 is false for r < l-—counter examples can be readily

constructed.
LeMMA 2. For each j, 0 =35 =r, U, is of the form
U; = LyH;,
where w; is a nonnegative integer, H; is a polynomial over 52, and
L; y H;.
Proof. By symmetry it is sufficient to prove the lemma for the
case j = 0. Combining (6) with Lemma 1 we obtain
(LU=G=0F"=6L'U+ 6LU".
Thus
(10) OLU = ( —0)L'U.
We set U= L*A, where L}t A and w = 0. Then substitution in (10)
gives us
OwL*L'A + 0L*v'A’ = ({ — 0)L'L"A.
This reduces to
6LA' = ({ — 0 — wo)L'A.

Thus L|( — 6 — wd)L'A. Since L is the product of distinet linear
factors, it follows that L and L’ are relatively prime. Since L}t A,
this implies that { — 8 — w6 = 0. Therefore LA’ = 0. It follows.
that A’ = 0. Hence A = H? for some polynomial H. Then we have
LY H and U= L*H?, which completes this proof.

We now suppose, without loss of generality, that

(11) l=l;, 0=j=r.
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LemMA 3. Under the assumption (11), the constants w; of
Lemma 2 satisfy

W, =Wy= +++=w,=0.
Proof. Combining (3) and (6) we obtain
(lv=G6=U00,0,--- U, .
Now suppose 1 < j =r. Then U;|L’, and hence
u;<deg L' <l =<1;.

Therefore L;}t U;, so that we have w; =0. This completes the
proof.

.Set H=H, and v = w,+ 1. Then from Lemmas 2 and 3 we
obtain

(12) F=LU=L'H*,
and
(13) F;=LU = LH?!, l=st=7r,

where Lt H, L, ¥ H;. Moreover
(L' =GIU=UU,---U, = (HH,--H).

Thus L' = S®, where S ={Y"HH, --H,. Therefore L is of the
form

(14) L =8+ T,

where T, as well as S, is a polynomial over .2¢7
2. The polynomial R(x). Set
RB@) =11 @ —v) = 5 0’
where p,€ 247 0=j =7, p,=1. From (4) and (6) we obtain
LUR(F) = FR(F) = 1] F,= (@ — )G = {x" — o)L/ U .
These identities and (12) give us
(15) g ;L H? = LR(F) = {(a" — w)L' .

Differentiating both sides of (15) and noting that L"” =0 by (14), we
get the congruence
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oL = —¢L’ (mod L) .
Since L’ # 0, we obtain
(16) 0= —C.

By Lemma 1 we have F' = G/ #+ 0. Hence p} v.

Let k& be the smallest positive integer such that v|(p* — 1). The
main objective of this section is to show that 1 4 vj is a power of
p* for every nonzero coefficient o; of R(x).

In the proof of the following lemma the notation A|| B means

that A| B and (4, B/A) = 1.

LEMMA 4. Let d be a monnegative integer such that L' is a
p*th power and 1 + vr > p*~'. If j is an integer such that p; + 0,
then either (i) 1 + vj is a power of p*, or (i) p*| (1 + vj). Moreover
H is a p*'st power.

Proof by induction on d. The desired result is trivial for d = 0.
We suppose that it is true for an integer d and show that this
implies that it is true for d + 1. Thus we assume that L’ is a
p*st power and 1 4+ vr > p°. Then the induction hypothesis applies
so that R(x) is of the form

(17) R@) = 3, 0@V + 5 oot
=0

where w; € 97, 0 = ¢ =< ¢, ¢ =][d/k], and the second summation 3’ is
over all 7 such that

P A+vg), p*<1+wj, j<7r.
Moreover H is a p*'st power. Thus
H= A"" and F = L°A"
for some polynomial A over 2% Substitution in (15) gives us
(18) S'o; LA = (o'’ + B,
where
B = —(xL' — ,Z; @, L A7t @F=nle |
The left side of (18) is a p°th power. Since
gzl+fr=1+vr>p

and ¢ is a power of p, it follows that »?"'|q. Hence (x'L’ is a
p**'st power. Therefore B is a p?th power. Thus we can set
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(o'l = C**" and B= D*".

Since 1+ vr > p* and p, # 0, it follows that the left side of (18)
does not vanish identically. Let the term corresponding to 5 = a be
the nonzero term of lowest degree in the left side of (18). Thus a
is the least integer such that p,# 0 and 1+ va > p® Then
P*|(1 + va), and hence 1 + va = 2p®. Because of the way a was
chosen we have

19) L A% || (¢’ + B) .
Extracting the p*th roots of both sides of (19) we get
L(1+va)p—dAa H (Cp + D)

Since 1+ va = 2p* this gives us L?A%|(C* + D). By differentiation
we obtain

(20) LA | D,
Now
deg D' < p~®deg B < p~?deg {L?*°A?*#**-1"} < deg {LA®*-VI%} |
Since
a> @ - Dvz@ -1,
we have (p** —1)jv=a —1, and
deg D' < deg (LA*™) .

Combining this with (20) we get D'=0. Thus D must be a pth
power, and B a p**'st power. Thus the right side of (19) is a p**'st
power. Hence the left side of (19) is also a p?*'st power. Now
L}y H. Since L is the product of distinet linear factors we have
LyA, p**|(1 + va), and A® is a pth power. Hence pta, and A
itself is a pth power. It follows that H is a p*h power. Suppose
there is a b such that p, #0, 1+ wb is not a power of p*, and
p*** f (1 + vb). Without loss of generality suppose that b is the
smallest integer with these properties. By (17) we have 1 + vb > p?
and by (18) we have

(21) L1+vb ford ” {Cqu' +B— Z"’ijl“’jA“’d} ,

where 3" is over those j such that 7 < b, |1 + vj). The right
side of (21) is a p**'st power. Hence the left side of (21) is also a
p**'st power. Therefore p?+'|(1 + vb), a contradiction. It follows
that for every j such that p; == 0, either 1 + vj is a power of »* or
| (1 + v5). This establishes the desired result for d + 1, and
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completes this proof.

LEMMA 5. Suppose there ewxists an integer d such that L' is
a p*th power but mot a p**'st power, and 1+ vr > p*. Then v =1
and p**y A+ 7).

Proof. Since L’ is a pth power by (14), we have d = 1. By
Lemma 4 we have

R(@) = J0@™ 0 + T + o7,
=0

where the w; are elements of 9%, ¢ = [d/k], and the summation I*
is over all j such that »*|(1 + vj), »* <1+ vj, j<r. Moreover
since 1 + vr > p* and p,+ 0, we have p*|(1 + vr). Furthermore H
is a p*'st power. Since (€ %%, it follows that (L’ is a p*th power
but not a p**'st power. Thus we can set

H= A" and (L' =C",
where C is not a pth power. Substitution in (15) gives us
(22) LA = g1C* + B,
where
B= —({wl' — LR(F) + LF"
= Lol — 3 @, LM AreH-ni _ %0, LI A
=

Now the left side of (22) is a p*th power. Moreover
gzl+jfr=zl+or>p*,

so that p*" q. Therefore B is a p*h power, say B = D*'. Ex-
tracting the p°th roots of both sides of (22) we obtain

(23) Lutmr™igr — por™%C 4 D,
Differentiation now yields
(24) L+atme™ @ Ar=1((1 + vr)p~iL/A + rLA} = 2 °C' + D' .

since p***|q. Multiplying (24) by C, (23) by C’, and subtracting, we
get

(25) L-i+asenr™igra g — 0D — C'D,
where

E=Q0Q+ vr)pL’AC + rLA'C — LAC' .
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Now A|H and therefore LA|F. Moreover
C|L =GICU) = U, U,| FF,--- F,.

Hence C is relatively prime to LA. Since C is not a pth power we
have C’+# 0. Hence C})LAC'. It follows that E+# 0. From (25)
we obtain CD’ £ C'D and

(26) Lrertens®4r2 | (CD' — C'D)
where

(0 if Pt (L + o),
T if etk 4 vr) .

Comparing degrees in (26) we obtain
@27 A4 vr—epdl + p(r — 1)deg A < p®deg (CD) = deg (L'B) .

Now the leading term of R(x) is 2" and R(x)+*a". Set b=
deg {R(x) — «"}. Then we have 0 < b < r and

deg B = deg (LF?)
=1+ vb)l +bp*deg A =1+ b)) + (r —1)p*deg A .

Substitution in (27) gives us, after simplification,
v(r — b < epl + deg L' < (ep* + 1)1 .
Hence v(r — b) < ep®. Therefore ¢ = 0. Hence e =1 and
v(r — b) = p%
Since p*|(1 + vr) and 1 + vr > p%, we have 1 + vr = 2p* and
14+vb=1+vr—ovr—>b=p*.

Since o, # 0, this gives us p?| (1 + vb). Since p?|(1 + vr), it follows
that p*|v(r —b) and ptwv. Hence v(r — b) = p* and v = 1. Finally
since ¢ = 1 we have

P YA +ovr)=1+r,

which completes this proof.

LEMMA 6. If d is an integer such that p* < 1 + vr, then L’ is
a p*tst power.

Proof. Suppose the result is false. Then L' is not a p?'st
power and p* <1+ vr. Without loss of generality we suppose that
L' is a p°th power. By Lemma 5 we have v=1 and '}y (1 + 7).
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Therefore k=1 and p* <1+ r. It follows from Lemma 4 that
R(x) is of the form

R@) = S wam + Stou
i=0

where the summation 2+ is over all j such that »*|(1 + j5), j = 7.
Moreover H is a p*'st power and p*|(1 + 7). Now

FRF) =T (F ) =L Fi = (& — 0)G

by (4), so that
(28) 2o, Fi*t = G + B,

where deg B =< p*'f. The left side of (28) is a p*h power. More-
over ¢g=1+fr=1+r>9p% so that x* is a p*'st power. Since
G =(L'U and U = L**H* = H?, it follows that G is a p?h power.
Hence B is also a p*th Power. We set

G=C" and B=D".
Then, extracting the p?h roots of both sides of (28), we get
(29) S g,Fi =g %C + D,
=1

where a = (r + 1)p~* = 2, the &; are in G ba=1, and deg D = f/p.
Now prta since p**)(r +1). We set F=F + &,,/a. Then (29)
becomes

(30) S, F9 = 2%™C + D,
=0

where the 7; are in 9% , = 1, and 7,_, = 0. Differentiating (80) we
obtain

(31) Jn;FitF = gTC 4+ D

iMe

|

Eliminating #7*~® from (30) and (31) we get
7C' + 3 ,FiC'F — jCF)y = C'D — CD' .
=
Since 7,, = 0, it follows that
(32) FeYC'F —aCF")=C'D—-CD — E,
where
deg E< (@ —2)f +degC.
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Now
deg C=p~*degG < p~°f = flp
by (5). Hence deg E < (@ — 1)f, and
deg (C'D — CD') < deg (CD) < 2fp < (@ — 1)f .
Therefore
deg (C'D — CD' — E) < (@ — 1)f = deg F*,
and (32) yields
C'F = aCF'.
Now F’ = F’ = 67'G # 0 by Lemma 1. Therefore aCF’" + 0. Hence
C’ #+ 0 and thus C}yC’. It follows that (F,C) # 1. Since
c*=G=I1U,
we have (F, U,) # 1 for some b,0 <b < r. Hence (F, F,) # 1. Since
F — F,e %, we must have F' = F,. Therefore
C'F, =aCF};.
Since v = 1, we have F, = L,H}, whether or not b = 0. Hence
C'L,H} = aCL;H? ,
and C'L, = aCL}. Now L, is relatively prime to L;. Therefore L,|C.
Since v =1 we have

C=G=11U=1]H?.
1=0 1=0

It follows that L,|H,H,--+ H,. On the other hand L,/} H,, while
for 1+ b we have (L,, H) =1. Therefore L,y HH,--- H, a con-
tradiction. This completes the proof of this lemma.

We are now in a position to prove the most general theorem of
this paper. We drop the assumption v, = 0.

THEOREM 1. Let 5 be a finite field of characteristic p that
contains exactly q elements. Let F(x) be a polynomial over 2 of
degree f,f > 0. Let Yy, 7y, +++, 7. be the distinct values F(t) as T
ranges over %, and let 1, denote the number of distinct roots in
% of the polynomial F(x) — v;. Let the v; be arranged in such a
way that [, =1, 1=t =<r. Set L = lI(x — 7), where the product is
over the distinct roots = of F(x) — v, that lie in ¢ Suppose that
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r=1[(q—1)f1=2. Then there ewist positive integers v, k, m; a
polynomial N over %7; and w, @, -+, w, wn % such that
L} N,v|(p* —1), 1 + vr = p™, L' is a p™*th power, w, + 0, v, =1,

F(x) = L’N*™ + v,,

(33) fI (@ =7+ )= i @z
=1 =
and

Proof. Without loss of generality we can suppose that v, = 0,
so that our previous discussion applies. Let d be the integer such

that
=14 vr > p*t.

It follows from Lemma 6 that L’ is a p*th power. We now apply
Lemma 4 to conclude that either 1 + vr is a power of p* or p*|(1 + vr).
In either case we must have p* =1+ vr. Since k is the smallest
positive integer such that v|(p* — 1), it follows that k|d. We put
m =dfk. Then L' is a p"*th power and 1 + vr = p™. Applying
Lemma 4 again we find that R(x) is of the form

R(@) = 3, @g* -0
= 1 ’

so that (33) holds. Moreover H is a p*'st power by Lemma 4, and
therefore H? is a p™*th power. Thus there is a polynomial N over
2% such that

F = L’H? = L°N*"* ,

Furthermore since L} H, it follows that L 4 N. Using (16) we obtain
W, = p, = —{ # 0. It follows at once from (33) that w, = 1. Finally
we substitute in (15) to obtain (84). This completes, the proof of the
theorem.

In - the next two. sections we apply Theorem 1 to a number of
special cases.

3. A special case. There are two general types of polynomials
known for which (1) holds [1, §5]. For every polynomial of the first
type both L’ and N are constants. Thus this case is of special
interest. Here we have the following result:



POLYNOMIALS WITH MINIMAL VALUS SETS 237

LeMMA 7. Suppose that L' and N are both constants. Then q
18 a power of p*, and F is of the form

d
(85) F=al’+v, L=8+ > px",
=0
where L factors into distinct linear factors over ¢ and v|(p* — 1).

Proof. Since N is a constant it follows from Theorem 1 that
F=al’+ v, where ae % and v =1v,€ 2. Suppose that L is not
of the form given in (85). Then, since L’ is a constant, we can
write

¢ i
(36) L=8+3pa™ + 30,00
i=0 Jj=a
where @ and ¢ are integers such that
pk(c+1) > pa >pkc, l g pa s
and J, = 0. Moreover L' = ¢, # 0. Now (84) becomes
(37) S0l = —ope — a),

where the y; are in %, ¥, = 0w, # 0, and %, # 0. Substituting (36)
in (87) we get

c 1pkm .
¥+ JZ=0 Py 4 xed,0P + jgj,ﬂa,-w’ = —w P! — ),

for suitable v, 4;, 0; in 2. Since y0, # 0, this implies that either
pa =1 or pa = q. Comparing degrees we obtain

q=1p"™ > 1= pa.

Clearly pa # 1. This contradiction implies that L is of the desired
form, which completes this proof.

The converse of Lemma 7 is already known [1]: If q is a power
of p*, and if F is of the form (35), then the polynomial F' satisfies
the equality r = [(¢ — 1)/f]. This was proved in [1] as follows: Let
7w be a root of L. Replacing ¢ by  + 7w we can assume that 8 =0.
Let | = deg L as before, and set L(x) = L. Because of the form of
L the values assumed by L(r) as 7 ranges over .9 form a vector
space over the subfield GF(p*). Since we have assumed that L
factors into distinet linear factors over .97, it follows that L has
exactly ! distinet roots in .9%7 Therefore this vector space containg
exactly ¢/l distinct elements. Then since F = aL®’ + v, where
v|(p* — 1), it follows that the number of values assumed by F'(r) as
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7 ranges over .5 is exactly
1+ (=1+qghv=1+(@~-0/f =1+[@g—D/f].

Hence r = [(¢ — 1)/f].

Thus we have a complete characterization of those polynomials
for which r = [(¢ — 1)/f] = 2, subject to the condition that L’ and
N are both constants. One significance of this result can be seen
from the following lemma:

LemMA 8. If f<V'q, and r =[(¢ — 1)/f]1 =2, then L' and N
are both constants.

Proof. Theorem 1 applies so that we have 1+ rv = p™*, and
f=vl+ p™ deg N. Moreover f* < q and r = [(¢9 — 1)/f] so that

fFSafsr+1=1+ @™ —1fv<pm.

Thus p™* deg N < f = p™*, deg N = 0, and" N is a constant. Further-
more L' is a p™*th power by Theorem 1 and deg L' <l =< f < p™,
Hence L’ is also a constant, and the proof of this lemma is complete.

The above results give us a complete characterization of those
polynomials F for which » = [(¢ — 1)/f] =2 and 0 < f <1"¢q. Now
suppose that » = [(¢ — 1)/f] < 2 and 0 < f=<1"q. Then

2>@—-0/f=z*—-DIf,

fP—2f—1<0, and thus f=1or f =2. Now ¢ is a prime power
and f?<q¢ < 2f+ 1. Hence we have either (i) f =1 and ¢ =2, or
(i) f=2 and gq=4. If f=1, then F is clearly of the form (35)
with v=k=1 and d=0. If f=2 and ¢=4, then r=1, and
since F, and F, together have 4 distinct roots in .%; it follows that
F, has two distinct roots in .2, so that F' is still of the form (35),
this time with p=2 and v=%k=d =1. Thus we see that the
condition 7 = 2 can be dropped here. Combining all these results we
obtain one of our major results:

THEOREM 2. Let F(x) be a polynomial over the finite field o7
of characteristic p and let q denote the number of elements of 7.
Let r + 1 denote the number of distinct values assumed by F(z) as
T ranges over ¢, and let f be the degree of F(x). Suppose that
0<f=Vq. Then

r = [(¢ — 1)/f]
if and only if F 1is of the form
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F=al®+ v,

where L is a polynomial that factors into distimct linear factors
over % and that has the form

a
L=p+ Z¢ix"m .
i=

and where v and k are integers such that v|(p* — 1), ¢ is a power
of p*, and «, B, v, and the ®; are elements of 57

4. The cases ¢ = p and q¢ = p>. The results of §1 enable us to
treat the case ¢ = p quickly.

Suppose ¢ =p and r =[(¢ — 1)/f]1=2. If v, =0, then the re-
sults of §1 apply, so that

F = L"H?, L=aS*"+T?
by (12) and (14). Since

degF:fé—;—(q—l)=%(p~l)<p,

the polynomials H, S, and T are all constants. Thus F' is of the
form a(x + B) and v =f. It is easily shown that v|(¢ — 1) here.
Dropping the assumption v, =0, we see that if ¢ =9 and r =
[(g —1)/f]1= 2, then f£|(¢ — 1) and F is of the form

F=ax+B) +.

We note that in this case L’ and N must both be constants, so that
we could have obtained this result from Lemma 7.

Let us now consider the case ¢ = p?. Comparing the degrees of
the two sides of (34) we obtain

™l + rp**deg N=¢q +deg L’ <qg+1—-1=p+1—-1.
Therefore
(38) pl+pdegN=p*+1—-1.

Thus pl < p*+1—1 or I <p+ 1. Since L' is a pth power, it
follows that Il =0 or 1 (mod »). Therefore I =1, p, or p+ 1. If
Il =por p+1, the inequality (38) gives us

pdegN=p' —l(p—-1)—-1=p-—1,

deg N=0 and N is a constant. If [ =1, then L is of the form
x+ B, L' =1, and (84) gives us
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N| (=o' + wo — w,L) = —w(x* + B) = —w,L*.

Thus in case I =1, we see that N is a constant times a power of L.
Since Lt N, this implies that N is a constant. Thus N is a constant
in all three cases.

If L’ is also a constant then Lemma 7 applies, and F is of the
form (85) with either (i) I =1, d =0, and v|(p* — 1), or (ii) I = p,
kE=d=1, and v|(p — 1).

Now suppose that L’ is not a constant. Since L' is a p™*th
power by Theorem 1, we must have =941 and m =k =1.
Since N is a constant we have F = al® + v, where ac 2 and
v ="7¢e . %. Moreover L is of the form L =aS*+ T* by (14).
Since L has leading coefficient 1, S is of the form S=2x 4+ o.
Moreover T is of the form T = px + v. Now (84) becomes

oL + yL? = —wyx? — x)S?,

where ye 220 Comparing leading coefficients we see that ¥ = —w,.
Therefore

L? = (v — 2)S* + L = a”"S* + T*.
Extracting pth roots we obtain L = ?S + T. Thus
xS? + T =a2*S+ T,
or
(39) Pt + pPe? + PPy + VP =t o 4w+ v .
Comparing the coefficients of  in (39) we obtain ¢t = @?. Therefore
L=2*S+ T=ua"+oa” + ¢’» + v = (x + oy + 8,

where B8 = v — @?*', Comparing the constant terms of (39) we get
v? =y, Therefore v € GF(p), the prime field of .22 Now @?*'e GF(p).
Hence Be€GF(p). Since L has distinct roots we have 8 # 0. Now
if v=1, then F =aL + v, and F — v — aB has exactly one distinct
root in .97, contradicting (11). Thus v = 2. We have shown that
if =19, r=1[(¢—1)/f]1 =2 and L’ is not constant, then F is of the
form al’ + v, where L is of the form

L=(@+oy"+8,

where Be GF(p), 8+ 0, v|(p—1), v = 2.
Conversely if ¢ = p* and F' has this form, then L(z)e GF(p) for
all e 24, and thus F assumes at most

I+ (—-Dv=1+@—-D/f=1+[g—1)/f]
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distinct values. Since we always have r = [(¢ — 1)/f], this implies
that » = [(¢ — 1)/f].

We have completed the discussion of the case ¢ = p’. We sum
up our results for this case in our final theorem:

THEOREM 3. Let 9% be a field of characteristic p that contains
exactly p* elements. Let F(x) be a polynomial over 9% of degree
f» f>0. Let F(r) assume exactly r + 1 distinct values as © ranges
over 2%, If r=[(»* — 1)/ f]1= 2, then F(x) has one of the following
three forms:

(i) F(x) = a(@ + By + v, where v|(p*—1), a +0,

(ii) F(x) = a(z® + px + B) + v, where x* + @z + B has p dis-
tinct roots in o7, v|(p — 1), a # 0,

(i) F(») = a{(® + )" + B + v, where 8e GF(p), B+ 0, v = 2,
v|(p —1), and a #* 0.

Conversely if F(x) has one of these three forms, then r =[(q — )/f].

For ¢ > p? the question of the characterization of all polynomials
F for which (1) holds, remains open. The most general types of
polynomials known for which (1) holds are described in [1, §5]. At
present it seems unlikely that there are any more.
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