
ON THE DIFFERENCE AND SUM OF A BASIC
SET OF POLYNOMIALS

W. F. NEWNS

l Introduction* For any basic set (pn) of polynomials, the
differenced set (un) and the sum (vn) have been defined and studied
by Mikhail & Nassif [1, 2], who obtained the best possible bound for
the orders of (un) and (vn) when (pn) has a given order ω. Their
method was to estimate directly the expressions for the orders of (un)
and (vn).

The object of the present note is to indicate how these results
can be obtained by an alternative line of reasoning which the author
believes may throw more light on them. He observes also that either
approach can be used to go a little further and determine not only
the order but the type of the sets. In fact:

THEOREM 1. // (pn) is of increase (ω, 7), then (un) has increase
at most max {(ω, 7), (1, l/2π)}.

THEOREM 2. Let (pn) have increase (ω, 7). Then
(i) // lim sup DJn = a < 00, (vn) has increase at most {ω + a, 00),
(ii) If D£nln = 0(na) and 7 < 00 (so that ω > 0), the increase of

(vn) is at most (ω + α, 0).
Case (ii) applies in particular (with a = 1) to simple sets.

2. Spaces of integral functions* Let / be an integral function,
p its order. If 0 < p < 00 9 the rate of increase of / is (p, σ) where
o is the type of /. If p — 0 we put σ = 00, and if p = 00 we put
σ = 0 and again define the rate of increase of / as (p, σ). We use
lexicographic order, so that (pu σ^ ^ (p2, σ2) means that either pλ < p2

or ft = p2 and σx ^ σ2.
The set I(p, σ) of all integral functions of increase not exceeding

(p, σ) is a vector space under the usual operations. The space /(co, 0)
of all integral functions is an ,^-space under the topology of uniform
convergence on compact sets (the compact-open topology). If p < 00,
I(p, σ) is an ,^-space under a (unique) topology J7~{p, o) finer than
that induced on it by the topology ^"(00, 0) of I(oo, 0), (c.f. [3] §5,
p. 438). These may be defined as follows. Put
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for f(z) = Σ α Λ z \ T h e n -̂ "(i°» 0) i s defined by the semi-norms |/|p, r

for all finite r, ^~(/>, oo) by |/|P l, r for ρx> p and all finite r, and
JΠitf, σ) for 0 < σ < co by |/|P, r for r < 0-1/p.

We denote by I0(p, o) the set of those functions of I(p, σ) which
vanish at the origin: I0(ρ, σ) = {g e I(p, σ): g(0) = 0}. I0(ρ, σ), being a
closed subspace of I(ρ, σ), is an ^^-space under the induced structure.

3* Rate of increase of a basic set As with functions, we define
the rate of increase of a basic set to be the pair (ω, 7) where 0) is
the order, 7 the type if 0 < ω < co and similar conventions where
00 = 0 or 00. We again use lexicographic order and recall the following
result [6]:

THEOREM 3. A basic set (pn) is of increase not exceeding (ω, 7)
if and only if it is effective for I(p,σ) in ^"(00,0) for all
(p, σ) < (Uω, 1/7).

4. The diίFereαce operator* For any integral function g we put
Δg = f, where

f(z) = g(z + 1) - g(z) .

THEOREM 4. The difference operator Δ is a continuous linear
mapping of I(p, σ) onto itself.

A proof that Δ is a linear mapping of I(p, σ) onto itself will be
found in [5] (pp. 21-24) and [4]1 (Theorem I). Continuity of Δ for
the compact-open topology (induced by ^"(«>,0)) is easily checked.
Continuity for ^~{p, o) now follows from the closed graph theorem.

Clearly Δ is not a bijection: its kernel contains not only constants
but any function of period 1. Since the only functions of period 1
and increase less than (1, 2τr) are constants, we have:

THEOREM 5. // (p, σ) < (1, 2π), then Δ is an isomorphism be-
tween the ^-spaces IQ(p, σ) and I(p, σ).

Under the hypotheses of Theorem 5, Δ: I0(p, σ) —• I(p, σ) has a
continuous inverse S?\ I(p, σ) —> I0(p, σ). If / = Δg we have g = Sff
and call g the sum of /.

5. The differenced set In defining the differenced set (un) of a
given basic set (pn), there is no loss of generality in taking pQ(z) = 1.

1 For this reference, which he had failed to trace, the author is indebted to Dr. J. M.
Whittaker.



ON THE DIFFERENCE AND SUM OF A BASIC SET OF POLYNOMIALS 641

Then

un = 4pn+1

and the set (un) is basic with respect to the representation

s" = Σ Πk+1(φn+1)uk(z) ,
o

where

To prove Theorem 1, let the increase of (pn) be (ω, 7). If ω is
infinite there is nothing to prove, so we suppose α> < 00. Let
{p, σ) < min {(l/α>, 1/τ), (1, 2ττ)}, σ < co and let fe I(ρ, σ). Then g =

I{ρ, σ) and (Theorem 3)

Since J is continuous in y ( o o , 0),

1 0

showing that / is represented in ^"(00, 0) by a series of the required
form. To prove that this is the basic series of /, it is obvious that
f—>Πk+1(g) is continuous (being composed of the continuous functions
S^ and Πk+1) and hence the series is basic under the inverse matrix

) = Πk+1(φn+1) .

Theorem 1 now follows from Theorem 3.

REMARK. Nothing in this argument depends on the pn(z) being
polynomials. They may be integral functions of any order.

6. The sum of a basic set. Given a basic set (pn) of polynomials,2

the sum (vn) is defined by

This set is basic with respect to the representation

*" = Σ
1

where #n-i(s) = Δzn.
2 In the definition of (vn) we could allow the (pn) to be integral functions of in-

crease <(1, 2π). However, Theorem 2 applies only to sets of polynomials.
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Proceeding heuristically, let / be given (with /(0) = 0) and put
g = Δf. Then

(1) 9 = Σ Πk(g)pk
0

and we obtain

( 2 ) / = &>g = Σ Πk(g)^pk = Σ /7,(</K+1
0 0

a series with continuous coefficients (composed of Δ and Πk-^) which
is therefore basic under

This argument is valid for all / e I0(pQ, σ0) only if (ft, σ0) satisfies
certain requirements. For equation (1) to hold in (say) y ( c o , 0) we need
(ft, ô) < 0-M 1/̂ ). For ̂  to be well-defined, we need (ft, σ*) < (1, 2π).
But to apply £f to (1) to obtain (2), we need (1) to hold in a topology
^~(Pu σi) i n which Sf is continuous, i.e. one for which (ft, σx) < (1, 2ττ).
The problem arises as to which (p0, σ0) will satisfy these requirements
and the answer is given by:

THEOREM 6. Suppose that (pn) is effective for I(p, σ) in ̂ ~{co, 0),
(O</0<oo,O<<7<co), and that D^ln = 0(nβ). Given ft(0 < ft < 00)
put (I/ft) = (1/p) + (/9/ft). Then (pn) is effective for /(ft, σQ) in
^~(Pu 0) for all finite σ0.

We first complete the proof of Theorem 2. For case (i), let
ft < (1/co + a) and choose β > a such that ft < (1/ω + β). Put (I/ft) =
(lip) + β so that p < (1/ω). The hypotheses of Theorem 6 hold with
ft = 1 and so the heuristic argument above holds for (ft, σ0) for any
finite σ0. This being true for any ft < (ll<*> + a), case (i) follows from
Theorem 3.

For case (ii), we put p — (1/ω), β = a and choose σ < (1/τ). We
conclude similarly that (vn) is effective for /(ft, σ0) in J7~(cof 0) when
(I/ft) = o) + a and σ0 is finite. By Theorem 3, this is equivalent to
the stated result.

We now prove Theorem 6. Put

lswp{β-DJn} (βft^l)

(inf {β - DJn} (eft < 1) .

Since Dn^ n and lim sup DJn ^ β, 7 is finite. Also we are dealing
with a Cannon set so that effectiveness is equivalent to absolute ef-
fectiveness. Let 0 < σ0 < co. We have to prove ([3], §§ 7, 8): given
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1Ί < °° 9 there exist M and r 0 < 0"<Γ1/P° such t h a t

lr \klPi

Σ I * I Σ ( ) I
ι

Σ I **ι I Σ
k

Σ I I Σ (
ι k \ep1

P u t 8 = pΛJpφ~llPpϊβlpicll?1(epύ lP*σ-llPσllP° where c is chosen large enough
for s ^ 1 and jD,fw/Λ g cwΛ The left-hand member of the inequality
to be proved may be written

ep1

The largest value of k appearing in this is Dn. Since the sequence
{klep^klp^s~k increases to co from some point on, we have (klepLylPls~k g
A{DJep^)DnlP's~'I}n for some A and all n. Also

Σ π x I Σ I Pn I (^8)* ^ ^ Σ I *« I ^ ( Λ ) - Bωn{R)

for i2 > rλs, and since (pn) is effective for I(p, σ) in y ( o o , 0), there
exist C and r < (J~1/p such that

.„<*) £ c(JL)"V .

Finally, since Dn^ n and s ^ 1 we have s~Dn ^ s~w. Thus the left-
hand member of the inequality to be proved does not exceed

epx) \ep I

ί Ύ) \βnIPl ί Ύl \nIP / Ύl \

^ ABCcnH — ) {epύ{βn~Dn)lPis-n[ — ) rn ^ Ml — γ^rl ,

where r 0 = ρlίp^cllp^ρτβlPι{ePi) ^s^p-^r < OΌ"1/Po, as required.

7. Examples. Let (v j be a sequence of even nonnegative inte-
gers, (yn) a sequence of real numbers and o) a nonnegative real number.
Consider the set

EXAMPLE ( i ) . vn — 2n, Ύn = log (2w + 1). It will be found that
(pn) has increase (ω, co) and (/yw) has increase (ω + 1, co).

EXAMPLE (ii). i^=2w, τΛ = (I/log (2w + 1)) (n > 0), ω > 0. Here
(j>w) is of increase (ω, 0) and (vn) of increase (co + 1,0).

EXAMPLE (iii). Choose vn so that ι>J2n-+a ^ 1, but ((vj)ll2nl(2n)«)-+
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co. Put 7n = V((2n)"l(vn\)112"), ω > 0. Here lim sup DJn = a and (pn)
is of increase (ω, 0), but (vn) is of increase (ω + a, co).
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