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l Introduction* Let A denote a commutative normed algebra
with multiplicative unit and norm || ||. In [2], Arens and Hoffman
showed that it is possible to norm A[x]l(a(x)), where a(x) = Σ?=o aiχi

is a monic polynomial over A, in such a way that the canonical mapping
of A into A[x]l(a(x)) is an isometry as well as an isomorphism; in fact,
they give a family of norms on A[x]/(aQ), all of which are equiva-
lent. Specifically, let ί be a positive number which satisfies tn ^
|| a01| + || ax \\t + + || αw_χ || tn~\ Let Σ S 1 ap* + (a(x)) be any coset
in A[x]l(a(x)). As is well known, Σi=o uft1 is the unique representative
of this coset of lowest degree. Thus, || Σ?^1 aiχί + («(&)) II = Σ S 1 II α* II ί*
is well defined and makes A[x]/(a(x)) into a normed algebra. Clearly,
a —> a +. (α(aj)), αeA, is an isometry of A into A[x]/(a(x)). (Unless
otherwise stated, we assume without loss of generality that t = 1.)
From the form of the norm we see that A[x]l(a(x)) is a Banach algebra
under this norm precisely when A is a Banach algebra under 11 11 I n

the present paper, we deal mainly with the case where A is a Banach
algebra. In section nine we deal with, at some length, more general
algebras.

In this paper we are mainly interested in the algebraic aspects of
the extension B = A[x]/(a(x)). However, we also present results which
are Banach algebraic in nature. For example in section three we give
a complete description of the Silov boundary of B. Section four is
devoted to the study of the inheritance by B of the Banach algebra
properties of regularity and self-adjointness. In particular, we show
that if A is regular then B is also regular. Self-adjointness is not
always inherited as Example 4.3 shows. A sufficient condition (which
is satisfied, for example, when the discriminant of a(x) is invertible)
is given under which this property is inherited. (This condition states
that the set S(a(x), A) of singular points of a(x) is empty. This means
that the natural mapping of the carrier space of B onto the carrier
space of A is a local homeomorphism with respect to the weak* topologies.
See section two for a complete discussion of this concept.)

In section five we once again make use of the condition that a{x)
has no singular points. Theorem 5.2 states that if A is semi-simple
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and if S(oc(x), A) = φ, then B decomposes into the direct sum of a closed
subalgebra of the form A[b], with a(b) = 0, and the radical of B.

The next section is motivated by a well-known result in classical field
theory. If A is a field and a(x) an irreducible polynomial, then any root
be B oΐ a(x) — 0 gives rise to an automorphism (Σϊ=o aiχi + (a(χ)) —*
ΣS^ofliδ*) °f B which leaves invariant each element of A. In the
present context this is no longer generally true. However, we are
able to give two sets of conditions which assure us of this conclusion.
Theorem 6.1 states that if A[b] is dense in B, then Σϊ=o aiχί + (a(χ)) —*
Σi"=o aif)ί is a n automorphism. Theorem 6.2 requires that the discriminant
d of a(x) satisfy the condition that da e Rad(A) imply a e Rad(A) (Rad(A)
denotes the radical of A) and that the Gelfand transform of b satisfy
a certain separation property. Also in section six we give conditions
under which the automorphisms of B which leave each element of A
invariant are periodic. The period is shown to be a factor of n\,
n = degree of a{x) over A. Examples can be given which show that
in the absence of any restrictions some of the automorphisms of B
leaving invariant each element of A have infinite order.

In the next two sections we deal exclusively with polynomials over
A which have invertible discriminants in A. Section seven is concerned
with the problem of extending a ring isomorphism of Ax onto A2 to
an isomorphism of A^x\j{ax{x)) onto A2[x]/(a2(x)). A necessary and
sufficient condition is given under which such an extension exists. The
extension is not necessarily unique. Prior to establishing this theorem
we characterize those elements be B such that B = A[b] (= algebra of
polynomials in b with coefficients in A). Attention is given to extending
involutions on A to involutions of B.

In section eight we show that repeated extensions are again simple
algebraic extensions (algebraically and topologically) of the type under
discussion in this paper.

In the last section we give a complete description of the radical
of B. The major results are stated for algebras over fields of character-
istic zero. The main theorem (9.2) states that if A is semi-simple,
then the radical of B is a nilpotent ideal. The degree of nilpotency
is also specified. As a corollary, we have that if B is semi-simple,
then A is semi-simple and the discriminant of a(x) is not a zero divisor
in A, or zero. Applying this to the case of a tractable normed algebra
(intersection of the closed maximal ideals is (0)), we show that the
radical of B and the intersection of the closed maximal ideals of B
coincide.

We now proceed to section two which contains some preliminaries
gathered from other sources.

2 Preliminaries. If A is a Banach algebra (always assumed to
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be commutative and to possess a multiplicative unit e), then ΦA (called
the carrier space of A, [12]) is to denote the space of (non-trivial)
multiplicative linear functionals on A to C ( = complex numbers). If
(h, λ) e ΦA x C, then {h, λ) can be considered as a multiplicative linear
functional on A[x], its action on elements Σa^ e A[x] being defined by
(h, X)Σaix

i = Σh(ai)X\ In [2] it is shown that ΦB9 B = A[x]/(a(x))
(throughout this paper, B will be used to denote A[x]/(a(x)), a(x) monic),
is (identifiable with) the set {(h, λ ) e ^ x C: (h, \)a(x) = 0}. It should
be noted that if (h, λ) e ΦBf then | λ | <£ 1 (recall that we are assuming
Σ?=o II <*i II ^ 1 so that || x + (a(x)) || = 1). The coset a + (a(x)) will be
denoted by a for aeA and x + (cc(x)) will be denoted by [x].

x will be considered as an indeterminant over A ( = Gelfand rep-
resentation of A) and C as well as an indeterminant over A. If β(x) =
Σβ^e A[x], then β(x) is to denote the polynomial ΣβiX1 over A and
βh{x) is to denote the polynomial Σβi{h)xι over C. If β(x) e A[x] and
Λ(λ) = 0, λ e C, but /SΛ(a?) not the zero polynomial, then we denote the
multiplicity of λ as a root of βh(x) — 0 by Mβ(h, λ). We call Mβ the
multiplicity function of β(x).

We include for the convenience of the reader several results that
we will need from other sources.

2.1. 7Γ defined by π(h, λ) = h, (h, λ)e ΦB, is an open continuous
mapping of ΦB onto ΦA.

2.2. For each heΦΛ there are disjoint neighborhoods Vlf •••, Vm

in ΦΛ of the points in π-\h) = {(h, \), , (h, λm)} such that π{Vr) =
π( V4)f i = 2, , m, and T Γ " 1 ^ Vi)) = UΓ-i V*.

2.3. Λfrt is locally constant at (h, λ) e ΦB if and only if π is a local
homeomorphism at (h, λ).

2.4. (Arens and Calderόn) If β(x) e A[x] (not necessarily monic)
and if fe C(ΦA) such that β(f) = 0 but $'(/) never vanishes on ΦA

(β'(x) is the formal derivative of β(x)), then a unique element be A
exists such that β(b) = 0 and 6 = / . (Arens and Calderόn did not assert
the uniqueness of b. However, it is easily established. Write β(x) —
(x - b)Q(x), Q(x) e A[x] and suppose V e A, β(b') = 0 and bf = 6. Then
{V - δ)Q(δ') = 0. Since f(h) is a simple root of βh(x) = 0, Q(&Γ(Λ) ^ 0
for every h e ΦA, so that Q(b) is invertible in A. Hence b = 6'.)

Related to the above is

2.5. If α:(#)eA[£] is a monic polynomial, if feC(ΦA) such that
a(f) = 0 and if ΛfΛ(•,/(•)) is locally constant on ΦΛ, then / e A. (A
stronger conclusion similar to the above can not be drawn here.)
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2.1, 2.2, 2.3 and 2.5 are proved in [10] while 2.4 is proved in [1],

Let a(x) € A[x] be monic. If h e ΦA is such that each point of π~\h)
possesses a neighborhood on which MΛ is constant, or what is equivalent
(in view of 2.3), π is a local homeomorphism at each point of π~x{h)y

then we call h an ordinary point of a(x). If h e ΦA is not an ordinary-
point of a(x), we say that it is a singular point of a(x) and the set
of such points will be denoted by S(a(x), A). It is clear that if heΦA

is an ordinary point of a{x)y then each h' sufficiently close to h is also
an ordinary point of a(x) so that S{a(x), A) must be a closed subset
of ΦA. S(ct(x), A) is a subset of the set D where d vanishes, where
d is the discriminant of a(x) (cf. [2] and page 93, [14]). (Note that
d(h) is the discriminant of ock(x).) S(a(x), A) can be null even if D is
not null. On the other hand, S{a(x), A) can be all of D. Because the
cardinality of the sets π~\h) is uniformly bounded by n (— degree of
ct(x)), S(a(x), A) is easily shown to be nowhere dense in ΦA.

3. The Silov Boundary of A[x]/(a(x)). Let A' be a Banach algebra
extension of the Banach algebra A, let 9A, dAf denote respectively the
Silov boundaries of A and Ar, and π the natural mapping of ΦA, into
ΦA defined by h = π(h') = hf\A,hfeΦA. Then it is well known that
π(dAr) Z)dA. If A' is the extension B = A[x]/(a(x)), then this result
can be sharpened; indeed, we have that dB = π~\dA). In the proof
of this assertion, we need (Theorem 5, Appendix IV, [5]): A necessary
and sufficient condition that h0 e dA is that for each neighborhood V
in ΦA of h0 there is a function feA whose absolute value | / | attains
its maximum (which we may assume is 1) on V and is less than that
on ΦA ~ V.

THEOREM 3.1. dB = π-\dA).

Proof. We first show that π~\dA) c dB. Let h0 e ΘA, let Wo be
a neighborhood in ΦB of (h0, λj1}), and let g e I T such that g(h0, λ

(1)) = 1
and zero at the other points (h09 λ^) of the fiber π~\hQ). Let Wλ c Wo

be an open neighborhood in ΦB of (fc0, X^) such that | g(h, λ) [ > 1/2 if
(h, λ) G Wi and W{ an open neighborhood in ΦB of (h09 λ^}), %Φl9 such
that | g(h, λ) | < 1/2 if (h, λ) e W{. Since π is an open mapping, Vo =
Πi ^(T7i) is an open neighborhood in ΦA of fc0. Let ^ = WiΓ\ π~\V0).
Now, by the theorem quoted above, there is a function feA such
that | | / |U = 1, \f{hx) \ = 1, ^ e Fo, and |/(Λ) | < 1 if h e ΦA ~ Vo. Since
®A ~ Vo is closed, it is compact and hence there is a positive integer
N so large that

\f(h) r S - p - — for he ΦΛ ~ F o .
1̂1 ^ ll
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Then, if h £ Vo and (h, λ) e ΦB, we have t h a t

1 - M 1
9 2\\g\U g 2 '

and if (h, λ) $ V
x
 but h e V

o
, we have that

563

But for (K λ) e Vu

I (fNg) (K = | g(hu λ) I > i - .
Δί

Thus, \fNg\ assumes its maximum value on Vlf and hence, on W, and
is less than that outside Vx or outside of W. By the above quoted
theorem, (hQ, λj1}) e dB, and π~ι(dA) c dB. We next show the reverse
inclusion.

Let (h0, λ0) e 95, and let F be any neighborhood in ΦA of hQ. Let
W be an open neighborhood in ΦB of (h0, λ0) such that π( W) c F and
no (/&o, λj) ^ (fe0, λ0) lies in W. Let g e B be a function such that || flf IU
is assumed by \g\ on W and |gr| < H^IU outside of W. As in the
above paragraph, we may assume that | g(h, λ) | < l/2n if (h, λ ) e ^ -
W. Let / be the function defined by

where the λ f̂e) denote all the roots (each distinct root repeated according
to its multiplicity) of ah{x) = 0. Then feA. Now, for h£π(W)

\f(h)\ =

There exists (hu λx) e
Then

Σ g(K λ,) < Σ I 9(K λ,) | < ± .

such that | ̂ ( ^ , λx), = \\g\ (Assume that

> i, \) I - Σ > 1 -
2

and π(dB) c 9A. Using the fact that π~\dA) c dB, we
Z) 9B. This completes the proof of the theorem.

Thus, Ao e
have that

4» Inheritance of the properties of regularity and self *adjointness
The properties of regularity and self-adjointness are possessed by many
important and interesting Banach algebras and hence it is of interest
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to know whether these properties are inherited by the extension B.
G. A. Heuer in [6] has shown that if A is regular and self-ad joint
and if in addition the discriminant of the monic polynomial a(x) is
invertible in Ay then B is both regular and self-adjoint. In this section,
we show that regularity is always inherited (without the assumption
of self-adjointness). As a corollary we show that if A is dense in
C(ΦΛ)f then B is dense in C(ΦB). (For a discussion of the inheritance
by B of the sup norm completeness of A, the reader is referred to
[7].) Example 4.3 shows that the self-adjointness of A is not always
inherited by B. We finally show that if S(a(x)9 A) = φ, then self-
adjointness is inherited.

THEOREM 4.1. Let A be a regular Banach algebra and let a(x)
be a monic polynomial over A. Then B is regular.

Proof. It suffices to show that if given (h0, λ0) e ΦB and a neighbor-
hood Win ΦB of (ho,Xo), then there exists a function beB such that
$(h0, λ0) = 1 and b(h, λ) = 0 if (h, X)eΦB~ W. From 2.2, it follows
that there is a neighborhood V in ΦA of h0 so small that Vaπ(W)
and π~\V) = \JT=ι V{ where the F< are disjoint neighborhoods of the
points in π~\hQ) with WZD Vλ. We assume (without loss of generality)
that the sets Vu •••, Vm are closed. Since A is regular the set V is
hull-kernel closed in ΦΛ, from which it follows that π~\ V) is hull-kernel
closed in ΦB. Now, let I denote the ideal in B of elements whose
transforms in B vanish on π~\V). Since / is a closed ideal, B/I is a
Banach algebra with carrier space (identifiable with) π~x{V) (cf. [11]).
By [13], there is an idempotent / in B/I such that f(h, λ) = 1 if and
only if (h,X)e Vλ. But / = / 0 | π - 1 ( F ) for some foeB. Since A is
regular there is an element ae A such that d(h0) = 1 and a vanishes
outside of V. Then b = af0 is an element of B such that b(h0, λ0) = 1
and b(h, λ) = 0 outside of Vx c W. This completes the proof of the
theorem.

The corollary below extends the following result of Heuer [6]: If
A is dense in C(ΦΛ) and if for each singular point h, π~\h) consists of
exactly one point, then B is dense in C(ΦB). The proof given below
is essentially due to Heuer.

COROLLARY 4.2. If A is a Banach algebra and if A is dense in
C(ΦΛ), then B is dense in C(ΦB).

Proof. Since A is dense in C(ΦΛ), it is easily shown that B =
(A[x]/(ά(x))Γ is dense in Bo = (C(ΦΛ)[x]/(ά(x))Γ, with both algebras
being viewed as subalgebras of C(ΦB). Thus, it suffices to show that
BQ is dense in C(ΦB). (It need not be the case that Bo is all of C(ΦB)
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as Example 4.3 of this section shows.) Let heΦA be arbitrarily given.
By the theorem, Bo is regular so that if Vu •••, Vm are disjoint
neighborhoods of the points in π~\h), then there exists a function
feB0 which takes the value i on Vif i = 1, 2, , m. Let g be a
real-valued function in C(ΦA) such that g(h) = 1 and g vanishes outside
of ΠΓ=i π(Vi). Then {gf)~ is a real-valued function in Bo which separates
the points of π~~\h). Since C{ΦA) is (isomorphic to) a subalgebra of Bo,
any two points {h, λ), (ft/, λ')e ΦB, with fe ^ /?<', can be separated by a
real-valued function in Bo. Hence any two points in ΦB can be separated
by a real-valued function in Bo. The conclusion of the corollary now
follows from the Stone-Weierstrass Theorem.

We now turn our attention to the question of inheritance of the
property of self-adjointness, and first give an example which shows
that this property is not always inherited by the extension.

EXAMPLE 4.3. Let A = C(Δ), Δ = {z e C: \ z | ^ 1} and a(x) = x2 - f0,

fo(z) ΞΞ z. Then A[x]/(a(x)) is not self-adjoint. For if it were, then
([a;]Λ)" = ô + ^i[xT f ° r some choice of α0, aλ e A. But this means that
aλ(z) = exp( —arg^), z Φ 0. This is a contradiction since exp(—arg#)
is not extendable to a continuous function on Δ.

THEOREM 4.4. Let Abe a self-adjoint Banach algebra and a(x) =
Σ?=o aίχί be a monίc polynomial over A. If S{a{x), A) — φ, then
A[x]/(a(x)) is self-adjoint.

Proof. Let f(h, λ) = λ for (A, \)eΦB. Then / e C(ΦB) and β(f) =
0, where β(x) - Σ?=o βiX\ & = («<)", i = 0,1, , n - 1, and βn = e.
Since the multiplicity function Ma of a(x) is locally constant on ΦB, it
follows that Mβ(•,/(•)) is locally constant on 0Λ, where Mβ is the
multiplicity function of β(x) when viewed as a polynomial over 5 . By
2.5, it follows that / e B so that JS is self-ad joint since ( Σ «<([»]")*)" =

5* On the Wedderburn. decomposition of JB, In this section we
discuss the Wedderburn decomposition of the extension J?, that is, the
decomposition of B into the direct sum of a closed subalgebra Bo of
B and the radical Rad(5) of B (B = Bo © Rad(B)). As is well known,
such a decomposition in general does not hold for Banach algebras,
even in the weaker sense where one does not require that the subalgebra
be closed. We will give an example which supports this statement.
Bade and Curtis have given an example in [3]. Feldman, in [4], gave
an example where the stronger Wedderburn decomposition failed to hold.
For this example, the weaker decomposition holds.
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The condition that S(a(x), A) = Φ (A semi-simple) is sufficient for
such a decomposition of B to hold. When this condition holds, a{x)
is forced to factor; precisely, there exist mutually orthogonal idem-
potents el9 , em, positive integers kijf and polynomials ai3 {x) e A[x], j =
1, , Si9, i = 1, , m, such that efici5{x) is monic over e{At the
discriminant of Π;iiβΛ;0*0 is invertible in e^, and

5.1 a(x) = Σ e< Π aiά{x)^ .
l j l

Furthermore, the radical of A[x]/(<x(#)) is a principal ideal generated
by β([x])> where β(x) = ΣΓ=i e< Π ii <*<;(&) (cf. Theorem 2.3, [10]).

THEOREM 5.2. Let A be a semi-simple Banach algebra and a{x)
a monic polynomial over A. If S{oc{x), A) = φ, then there exists an
element be B such that a(b) = 0, A[b] is closed in B and B ~ A[b] φ
Rad(.B).

Proof. To simplify the proof, we first assume that m = 1 in the
above paragraph. Thus, a(x) is of the form Πf=i a%(χ)ki> where each
aCi(x) is monic over A and β(x) = Πί=i ai(χ) has an invertible discriminant
in A.

Since β{[xY) = 0 and since β(x) has an invertible discriminant in
A, and hence in B, there exists an element be B such that β(b) = 0
and 6 = [#]". Thus, α(δ) = 0 also. Since b — [#P, there is an element
R e Rad(i?) such that [x] — b + R so that Σ S <&<[&]* = ΣK? afi* +
(polynomial in R, with zero constant term) (n = degree of a(x)). Hence,
B is the sum of A[b] and Rad(5). We next show that the sum is a
direct sum. Let t be the degree of β(x) over A. Then Σ S άft can
be expressed in the form Σ t o α ^ for some choice of α0, , α^x in
A. Suppose now that Σ ^ ϊ 0 ^ e Rad(J?). Then Σ ί Ξ ί α ^ is a multiple
of β(x) (this follows since the radical of B is a principal ideal generated
by β([%])) Thus, the α/s must all be 0. Thus, the sum is direct.
(Note also that Σ * = i α ^ = 0 if and only if α< = 0, i = 0,1, , t - 1.)

In order to show that A[b] is closed, we introduce a mapping ^
of i? onto A[y]/(β(y)) as follows: ^(2fαi[a?]<)-= Σa^yY. Φ is well defined
and a homomorphism since ^([^/]) = 0. Furthermore, Φ is continuous
since

I

where K = max {1, || [T/] ||, , || [y] W71'1}. Since Rad(5) is generated by
β([x]), φ(Rsid(B)) = 0. But [a] - δe Rad(5) so that Φ(b) = φ{[x\) = [y].
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Thus, if Σί-ollAHΛ;* g ¥, where β(y) = ΣUA&S then

Σ a K

where K' = if max {1, || & ||, , || & IP"1}. Since A is complete, the norm
on B restricted to A[b] is complete or equivalently, A[b] is closed in
B. This completes the proof of the theorem if we assume that m = 1.

The general situation follows immediately from what was proved
above and the following observations. Let el9 e2, — ,em be the idem-
potents which appear in the factorization of a(x) which was displayed
in 5.1. Then A = e,A 0 0 emA and B = e,B 0 0 emB, the direct
sums being topological. Since the natural isomorphism φ{ of e{B onto
B{ = (βiA)[x]/(eia(x)) is &i-continuous and since Rad(^) = Φi{e{ Rad(J5)),
it follows from the above that there exists bi e e{B such that e{a{b^) —
0, ifiiA) [ί>ί] is closed in e{B and e{B = (e^) [6;] 0 e^Rad 5). If we set
b = ΣΓ=i δ<, then α(6) = 0, A[b] is closed in ΰ and B = A[6] 0 Rad(5).
This completes the proof of the theorem.

We now present an example that shows if we drop the condition
that S(a(x), A) = φ, then the conclusion of Theorem 5.2 is not assured.

EXAMPLE 5.3. Take A to be the algebra of functions / which are
continuous on the disc Δ = {z e C: | z \ ̂  1}, analytic in the interior of
Δ and /'(0) = 0. For a(x), take (x - fQf (x + 2/0) where fo(z) = z,
zeΔ. Then a(x) e A[x] and S(a(x), A) = {0}. (ΦA is identifiable with
Δ.) Now, there is no subalgebra Bo of B isomorphic to B~. (If B =
£ 0 0 Rad (£), then Bo = B = 5/Rad (JB).) For if this were the case,
then Bo would coincide with A[b] for some be B and δ would have to
satisfy fo(b — /0) (b + 2/0) = 0. This is easily shown to be impossible.
It follows from Theorem 9.2 that the degree of nilpotency of Rad (B)
is two.

6, Automorphisms and conjugate roots* If g: A[x]/(a(x)) —>
A[x]/(a(x)) is an automorphism such that g(a) = a for all a e A, then
g{[x\) is obviously a root of a(x) — 0 and A[#(|X|)] = A[x]/(a(x)).
Conversely, if a(b) = 0,be A[x]/(a(x)), need the homomorphism g: la^xf—>
2^6* be an automorphism of J5? The answer is no in general (recall
Theorem 5.2). However, there are various conditions (see 6.1 and 6.3)
under which such homomorphisms g are automorphisms. In 6.4 we
give conditions under which automorphisms of the above type are periodic.
We begin with

THEOREM 6.1. Let a(x) be a monic polynomial over the Banach
algebra A. If be B such that A[b] is dense in B and a(b) = 0, then
g: Σ t o 1 ai[χY —* Σ S 1 aft ^ an automorphism.
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Proof. What we actually prove is this: if T is a linear transfor-
mation of An — Ax xA onto a dense subset of An such that
a T(au , an) = T(aau , aan), then T is one-to-one and onto. For
a norm in An we take || (au , an) \\ = Σ?=i IIα* ll (Clearly the homo-
morphism # has these properties; note that as a Banach space B = An.)

Let heΦA and let Th denote the mapping Th\(h(a^)9 , h(an)) —>
(A(αί), , M O ) where « • • • , < ) - Γ(αx, . . , αn). Clearly, 7\ is a
linear transformation of C% into itself since C = A/fr-XO). (For a norm
in Cw, we take | (λx, . . , λ j | = Σ?=i1 λ< |.) Now, 2\(Cπ) must be dense
in C*. For if (λlf , λw), (μlf , μn) e Cn, then there are elements
ai9 biβA such that h(ai) = λ4 and /&(&;) = ^ , i = 1, , n. If (αί, , a'n) —
Γ(αi, •••,<), then

It follows from the above that Th(Cn) is dense in Cn. But this means
that Th is one-to-one and hence onto.

Now, consider ^-linear equations in a{ (considered to be unknowns)
represented by

(*) Σ aiT(ei) = (bu , bn) ,

where e€ is the vector in An with e in the ith place and zero elsewhere.
If D is the determinant of the matrix of the coefficients of system (*),
then h(D) is precisely the determinant of the matrix associated with
the linear transformation Th. Since Th is onto, h(D) Φ 0.

Since h e ΦA in the above argument is quite arbitrary, h(D) Φ 0
for all he ΦA so that D is invertible in A. But this means that (*)
has a unique solution (au a2, —-,an)e A for each (bu , bn) e An. Hence
T is both one-to-one and onto.

Let G(B: A) denote the group of automorphisms of B which leave
invariant each element of A. If g e G(B: A), let g* denote the homeo-
morphism of ΦB onto itself which satisfies g(b)~ (h, λ) = b(g*(h, λ)) for
all b e B and all {h, λ) e ΦB (cf. [11]). E(ΦB : ΦA) is to denote the group
of homeomorphisms Φ of ΦB onto itself such that π o φ = π.

LEMMA 6.2. // 0 e G(ΰ : A), then g*{h, λ) = (Λ, g([x]T(h, λ)) /or
fe,λ) e ί>£ α^cί consequently g* e E{ΦB : (PJ. Aiso, (g*)n} = identity

homeomorphism (n — degree of a(x)).

Proof. B y t h e d e f i n i t i o n of # * , w e k n o w t h a t f o r aeA a n d
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(h, λ) e ΦB, a(h) = d(h, λ) = g(aY(h, λ) = a(g*(h, λ)) = α(ft'), where (hr, λ') =
#*(&, λ). Since A is a separating algebra of functions on ΦA, it follows
that h = /&'. Thus, #*(/&, λ) = (h, λ') or equivalently, π o #* = π. The
last assertion of the lemma follows from the fact that if Φ e ϋ ^ : ΦΛ),
then ^ | TΓ" 1^) is a permutation of TΓ" 1^) SO that Φnl must be the identity
homeomorphism on ΦB.

THEOREM 6.3. Let a(x) be a monic polynomial over the Banach
algebra A. If the discriminant d of a(x) has the property that
dae Rad (A) implies that ae Ead (A) and if be B, a(b) = 0 and b
separates the points of π~\h) for each h e ΦA, then g: Σ S &*[#? —>
Σ?^)1 <&*&*' is an automorphism.

Proof. Corresponding to the homomorphism g: Σ?^? ai[x]i-+'Σii=o α»&\
let Φ denote the mapping Φ(h, λ) = (h, g([x\T(h, λ)). Since 6 = g{[x\T
separates the points of each fiber π~~\h), Φ is one-to-one and onto. Hence,
Φ e E{ΦB: ΦA). For each i, it is easily shown that Φ\hy λ) =
(h, (*/*([&]))"(/&, λ)) for each (h, λ) e ΦB. Thus, we have that Φnl is the
identity homeomorphism on ΦB. It now follows that gn]([x])~ = [x]~ or
equivalently, ^%!([ίr]) — [x] e Rad (B).

Let T - gn]. Then Γ([a;]) - [x] e Rad (£). It further follows that
for each i = 0, , n - 1, T([xY) - [a?]* e Rad (B). Since dα e Rad (A)
implies that a e Rad (A), where c£ is the discriminant of a(x), d is not a
zero divisor in A and Rad(JS) = (Rad(A» [[&]] (cf. [2]). Thus, there
exist elements ri3 e Rad(A), i9j = 0f , n — 1, such that Tfla?]*) =
[χY + Σi=o ^ϋM^' When T is viewed as a linear transformation on
A%, the determinant associated with T is invertible in A so that T is
one-to-one and onto. But then g must also be one-to-one and onto.
This completes the proof of the theorem.

COROLLARY 6.4. Maintain the hypothesis (on d) of the theorem.
If either

(i) Rad(A) is a nίlpotent ideal and d is not a zero divisor in
Ay or

(ii) there exists μ > 0 such that \\dr\\ ̂  μ\\ r \\ for all r e Rad(A),
obtains, then each g e G(B: A) is periodic; in fact, if (g*)p is the
identity homeomorphism, then gp is the identity automorphism of B.

Proof. From the theorem we know that ^([α?]) — [x] = R e Rad(β)
if (g*)p is the identity homeomorphism. We will show that if either
(i) or (ii) obtains, then R = 0 so that ^p([^]) = [x]. If case (i) obtains,
then Rad(2?) is a nilpotent ideal (by Corollary 9.4). If we write a(y) =
(V - W)Q{v), Q(V) e B[y], then R-Q([x] + R) = 0. Now there are elements
bi e B, i = 1, , n - 1, such that Q([x] + R) = a'([x]) + Σ?=ί ^B*
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(by direct computation). If Rm Φ 0 but Rm+1 = 0, then Rm a'([%\) = 0. If
we write a(y)s(y) + a'(y)t(y) = d, s{y), t{y) e A[y] (cf. formula 4, page
96, [14]), then α'([x])έ([cc]) = d. Thus, Rm-d = 0; hence i2m = 0. This
is a contradiction so that R = 0.

Suppose next that case (ii) obtains. We first show that d is not
a zero divisor in A. For if da = 0, then we know that α e Rad(A).
But 0 = || dα || ^ μ | | α | | and hence a = 0. Now, as in the above, we
have that R-Q([x] + R) = 0 or i2 «'([«]) = Σ?=ί M2 ί + 1 f o r some choice
ofδ<,i = l, . . , w - l , i n B . Thus, Λ.α'([a?])ί([αj]) = Λ d = *([»]) Σ?«ί Λ*+\
«([&]) as above. If JS d = 0, then # = 0. Suppose therefore that R Φ 0.
Then it follows that Rk Φ 0 for all fc. For if Rk = 0, then JS*-1^ = 0
and hence Rk~x — 0. Now

where K = \\ t([x])>ΣK1 M?*"1 II Φ 0. For each integer k, we have that
|| (Rd)k \\llk ^ μ\\ R" \\x'\ For if Rk = Σ?=» r{*» [a?]*, r\k) e Rad(A) (recall
that Rad(B) = (Rad(A)) [[x]]t then

^ [μ 2 J II
 r ί II ) — μ\\n w

» = 0

Combining the above inequalities, we have

μ\\Rk\\lih^K\\Rk\\*Ik .

Since Rk Φ 0 for all fc, we have that μ^K\\Rk ψk. But i2e Rad(β)
so that lim^oo || Rk \\llk — 0. Thus a contradiction and so R must have
been zero.

Condition (ii) of the above corollary is satisfied when d is not a
topological divisor of zero in A but may still be satisfied if d is a
topological divisor of zero in A.

The case where the discriminant d of a(x) is invertible in A deserves
special attention. In this case, if fe C(ΦB) and ά(f) = 0, then there
exists a b e B such that a(b) = 0 and b = / (cf. 2.4 or [1]). Now, if
Φ e E(ΦB : Φ J , then define f(h, X) = μ where (fe, μ) = (̂fe, λ ) It is easily
shown that / is a continuous function on ΦB. Since α(/) = 0, there
exists a 6 e 5 with the above properties. Since Φ is one-to-one, b
{— f) separates the points of π-\h) for each fee ΦA. Hence, it follows
from Theorem 6.3 that g: Σ?^ 1 &%[%]* —* Σ S 1 <&<&* is an automorphism
of B. (Note that ^* = Φ.) If we write (*) for the mapping g—*g*,
g e G(B : A), then we have

COROLLARY 6.5. // d is invertible in A, then (*): G(B: A) —>
(P )̂ is one-to-one and once.

In closing, we remark that if g e G(B: A), then # is continuous and
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hence δί-continuous.

7* Extensions of ring isomorphisms* If A is a Banach algebra
with an involution (*), then we ask: when can (*) be extended to an
involution on A[x]/(a(x))? Or more generally, if Φ:A1—*A2 is a ring
isomorphism (need not commute with scalars), Aλ and A2 Banach algebras,
when can φ be extended to a ring isomorphism of A\xy{aλ(x)) onto
A2[y]/(ct2(y)) (degree ax(x) = degree 0L2(y))t Simple examples show that
(*) and φ can not always be extended. However, under the added
assumption that the discriminants of ax(x) and a2(y) are invertible in
A1 and A2, respectively, then there is a necessary and sufficient condition
that φ exist. The condition is stated in terms of a topological mapping.
The case of extending (*) is less simple. In the proofs of our results
on extending (*) and Φ, we must consider elements b e A[x]/(a(x)) such
that b separates the points of the fibers π~\h), h e ΦΛ. We will show
that if the discriminant of a(x) is invertible, then such elements generate
all of B over A. Before we prove this, we state a lemma which says
that repeated extensions are algebraic in the strict sense of the word.
The lemma is more general than needed here but will be used in the
next section.

LEMMA 7.1. Let A be a commutative ring (with unit) and let
Bi = B^x^Ka^x^), BQ = A, i = 1, 2, , m, where «<(»<) is monic over
JVi for each i. If be Bm, then there exists a monic polynomial a(x)
over A of degree n = J\T=ini(ni = deg «*(&*)) such that a(b) = 0.

A proof of this lemma is to be found in [15] (page 255).

THEOREM 7.2. Let A be a Banach algebra and let a(x) e A[x] be
a monic polynomial with an invertible discriminant in A. Then
be B has the property that A[b] = B if and only if b separates the
points of π~~\h) for each h e ΦA.

Proof. Suppose that A[b] = B. Then there are elements a{ e A
such that [x] = Σaft. If b(h, λ) = b(h, λ') where (h, λ) and (h, λ') are
points in ΦB, then [x]^ (h, λ) must be equal to [x]~ (h, λ') so that λ = λ'
since [x]~ separates points of π~~λ(h). Hence, b separates the points
of π-\h) for each h e ΦΛ.

Suppose now that 6 separates the points of π~\h) for each h e ΦΛ.
By Lemma 7.1, we know that b satisfies a monic polynomial β(x) of
degree n(= dega(x)). Since for each heΦA,b takes on n distinct
values on π~\h), the discriminant of β(x) must be invertible in A. Let
Bo denote the extension A[y]/(β(y)). Then ΦBQ = {(h, β)eΦΛ x
C: (h, μ) β(y) = 0}, and θ: (h, λ) —> (h, b{h, λ)) is a continuous one-to-one
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mapping to ΦB onto ΦBQ and hence a homeomorphism. Therefore,
[x]~ o θ~x is a function continuous on ΦBQ and <$([#P o θ~λ) = 0. Hence
by the Arens-Calderόn theorem (see 2.4 or [1]) there is an element
b0 e Bo such that a(b0) = 0 and b0 = [α?P o θ'1. If 0 denotes the homo-
morphism

i = 0

and if

then

Σ ^[1/]')" (A, λ) = ( Σ *iVΪ(h, λ) - Σ 6«(Λ) (S(Λ, λ))*
ΐ=0 / \t=0 / t=0

= Σ δ<W (MΓWA, λ)))1 = ί.(<?(Λf λ)) = [x]Λ(fc, λ)

for all (h, λ) e ΦB. Hence, Φ(boy = [a?]Λ and since α(^(δ0)) = 0, we have
that Φ(b0) = [a?] by 2.4. Thus, ^ is onto and A[b] = 5.

COROLLARY 7.3. Maintain the hypotheses on A and a(x). If
feC(ΦB) β(y)eB[y] such that

( i ) £(/) = 0,
(ii) / separates the points of π~\h) for each h e (?4, αtiώ
(iii) Mβ((h, λ), /(&, λ)) (Mβ = multiplicity function of β(y)) is

locally constant on ΦB, then there exist be B such that A[b] = B and
b=f.

The corollary follows immediately from 2.5 and the theorem.

COROLLARY 7.4. Maintain the hypotheses on A and a(x). If b
separates the points of π^(h) for each h and β{y) e A[y] is a monic
polynomial {of degree equal to the degree of a(x)) satisfied by 6, then
φ: Σa^yY —> Σa^1 is an isomorphism of A[y]/(β(y)) onto A[x]/(a(x)).

Proof. (We use the notation of the theorem.) By the theorem
we know that A[b0] = A[y]/(β(y)) so that if (̂Σ?=o «*[»]*) = Φ(Σ*i~}a'M) =
0, then Σ?^? a'i[χY — 0. But this means that a\ — 0 for each i and Φ
is an isomorphism.

Note that the above Φ is continuous and hence 6ΐ-continuous.
Before we state and prove the next result, we require the following

comments. Let g: A1—> A2 be a ring isomorphism (onto). Define
9*m ΦA1—*ΦA2

 a s follows: for heΦAl, let g*(h) be the linear functional
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associated with the maximal ideal g(h~\0)) in A2. Since g is one-to-one
and onto, so is g* one-to-one and onto. We now prove

LEMMA 7.5. Let Ax and A2 be Banach algebras. If g: A1 —> A2 is
a ring isomorphism {onto), then g*: ΦAl—> ΦA<λ is a homeomorphism
(with respect to the weak* topologies on ΦAχ and ΦA2).

Proof. We can assume that Aλ and A2 are semi-simple since g
induces an isomorphism of A ^ R a d ^ ) onto A2/Ra,d(A2). Now, by a
theorem of Kaplansky [9], Aλ = Σ? = 1 Θ

 eiAx where the e{ are mutually
orthogonal idempotents in A19 e^ = C for i — 3, 4, , p, and g \ eλAx

is linear while g \ e2Aλ is conjugate linear. Thus, ΦAχ — Uι=1 ΦeiAλ and the
^e^ are disjoint open subsets of ΦAχ. Since each ΦHAχ consists of exactly
one point if 3 S i S P, g* I Uip=3 ΦeiAχ is continuous. That g* \ ΦeχAι is con-
tinuous follows from a now classical result (cf. Theorem 242?, [11]). To
show shat g* \ Φe2Ax is continuous, we take a e e2Ax and let λ = h(a),h e Φβ2Al.
Then (a — λβ2) e h^iO). Since g | e2Aλ is conjugate linear, g(a — λe2) =
g(a) — Xg(e2) e g*{h)-\Q), and hence g(a)~{g*{h)) = (a(h))~. From this it
follows immediately that g* \ Φβ2Al is a continuous mapping.

THEOREM 7.6. Let Aλ and A2 be Banach algebras, a^x^ e A\x^\
and cc2(x2) e A2[x2] be monic polynomials with invertible discriminants
in Ax and A29 respectively, and Bi — A^x^Kμ^x^)), i = 1, 2. If g is
a ring isomorphism of Ax onto A2, then there exists an isomorphism
g of Bx onto B2 which extends g if and only if there exists a homeomor-
phism 7 of ΦB± onto ΦB2 such that π2 o y = g* o πu where π* is the
usual mapping of ΦBi onto ΦA.. If g1 and g2 are any two such extensions
of g, then g± o g2

λe G(B2: A2).
(Note that if 7 exists, then oc^x^ and a2(x2) must have the same

degree since for h e ΦAl, πτ\h) and ^{g^Qi)) have the same number
of points.)

Proof. If g extends g, then we take 7 = g*. By the above lemma,
7 is a homeomorphism. 7 is onto since g is onto. Now, if M is a
maximal ideal in Bl9 then

g(M Π A,) = g(M n A,) = g(M) n g(AJ = g(M) Π A2 .

But this means that the restriction of g*(h, λ) to A2 is g*(h) if
(h, λ)~1(0) = M. Thus, τra o £* = 0* o πx.

Suppose, now, that 7: ΦBl —> ΦB% has the prescribed properties. Let
β{%i) = Σ?=o (dΛ^i)) %ί = 0, where a2(x2) = Σ?=o a2tixi. We will show
that there is a function / in B^ which separates the points of πΐ\h)
for each h in ΦAχ and β(f) — 0. Let elf ---,ep be the mutually orthogonal
idempotents discussed in the proof of the above lemma. We define /
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as follows. If (h, X) e π^(ΦeιΛ)f let f(h, X) = [x2Γ(7(h, λ)) and if
(h, X) G π?(Φ.^9 let f(h, X) - ([x2Γ(v(h, λ)))-. For λ e t/?β 80M l, let
ft(ft), •••, μw(fc) denote the w distinct roots of Σ?=o (ίΓ^α^ΓWίcί = 0
and let (h, λ<(Λ)) be the w points in πϊ\h). For (Λ, λ<(fc)), let f(h, X^h)) =
l*i(h). As defined, / is a continuous function on ΦBι and satisfies
β(Xχ) = 0. Since / separates the points of πϊ\h) for each h e ΦΛi, and
since β(x) has an invertible discriminant in A19 the Arens-Calderόn theorem
tells us that there exists beBx such that 8 = / and Σ?=o ff"1(«a,i)δί = 0,
It follows from Corollary 7.4 that AJ6] — JBj and Bx is isomorphic to
BQ — A^yyiΣg-^a^y1). But 2?0 is, of course, isomorphic to JB2 =
A2[#2]/(α2(ίE2)) so that Bx and J?2 are isomorphic.

Suppose, now, that g1 and g2 are any two extensions of g. Then
0i ° Qϊ1 is clearly an automorphism of B2 onto itself. Since gx = ^2 on
-Aif ^i ° ^Γ1 leaves A2 invariant elementwise, that is, g1 o grf1 e G ( 5 2 : Aa).

The above theorem has the following interesting consequence if A
is the group algebra L\G), G = integers. Let a(x) e A[x] be an irreducible
monic polynomial with an invertible discriminant. The irreducibility
of a(x) together with the fact that the discriminant is invertible imply
th&t ΦB is connected (cf. Theorem 2.4, [10]). Then the above theorem
implies that A[x]/(a(x)) and A[x]/(#% — α0) are isomorphic, where n =
degree a(x) and aoe A is the unique element such that do(z) = z,
ze{μeC:\μ\ = l} = ΦΛ. If ae A, let φ(a) = b where b(z) = ΣΓ=— δ^ *
and α(«) - Σ ^ — 6 ^ . Then 0: Σ?-o c φ ] * -* Σ?=o ^(^i)^α is clearly an
isomorphism of A[cc]/(xu — a) onto A so that A[x]/(a(x)) is isomorphic
to A - L^G).

Another interesting consequence is that if a(x) e A[x] is a monic
polynomial with an invertible discriminant, then A[x]/(a(x)) is isomorphic
to A[x]/(a(x) + R(x)) where R(x)e (Rad A)[x] and degi2(cc) < dega(x).

We now turn our attention to the case where g: A —> A is a periodic
automorphism and, in particular, an involution of a certain type. The
following example shows that not every such automorphism is extendable.
Let A = C({zeC: \z + 11 = 1 or \z - 11 = 1} and a{x) = x2-f,f(z) =
£ + 1 if | s + 11 = 1 and /(«) = 1 if | z - 11 = 1. For an involution,
we take f*(z) = (/(—«))"". g has no extension to B since this would
imply that there exists a homeomorphism 7 of Φ* onto ΦB such that
7(«, λ) = ( — z, [x]~(y(z, λ)). But it is impossible for such a homeomorphism
to exist. Hence, g has no extension.

However, if g: A —> A is a periodic automorphism which has an
extension g to B (we are assuming that a(x) has an invertible discrimi-
nant), then g is periodic and its period divides nip, p = period of g.
For if gp = identity automorphism, then g*p(h,X) = (g*p(h), [xT(g*p(h,X))) =
{h, [xΓ(g*p(h, λ)) so that g*> e E{ΦB : ΦA). Hence {g*p)nl = identity
homomorphism. Thus, g* is periodic. By Corollary 6.4, gpnl is the
identity automorphism. Simple examples show that the period of g



ALGEBRAIC EXTENSIONS OF COMMUTATIVE BANACH ALGEBRAS 575

may be p-nl We now restrict our attention to the case where g is
a symmetric involution, that is, (α*)̂ (/&) = (ά(h))~.

THEOREM 7.6. Let A be a Banach algebra and a(x) e A[x] a monic
polynomial with an invertible discriminant in A. If (*): A—>A is
a symmetric involution, then there exists a unique symmetric involution
('): B—+B which extends (*). If (") is any involution extending (*),
then (") = (') o g for some g e G(B : A) which is of period two.

Proof. Let a*(x) = Σ?=o «?»* where a(x) = Σ?=o &&. Then ά*(f) =
0 where /(/&, λ) = λ. By the Arens-Calderόn theorem, there is an
element bQe B such that α*(60) = 0 and b0 = /. Let (') denote the
mapping defined by (Σ?=o ai[χ]Ύ = Σ?=o ^6; . Clearly (') is a homomor-
phism and aφΌ) = 0. But

(6ίΓ(Λ, λ) = ( Σ α?6j)>, λ ) = ( Σ (
\ΐ=0 / \ΐ=0

where 60 = Σf̂ Ό1 »<[»]% and (λ, λ) is any point of ΦB. Thus, (6J)~ =
[a?]Λ, and it follows that b'o = [a?]. Thus, (') is an involution. That (')
is symmetric follows from the fact that {{Σa^xYYT = ^((α^)")/*, / =

(M Λ )-.
If (") is any symmetric involution on 5 which extends (*), then

α*([α]") - 0. But ([a?]")" = b0 so that [»]" = δ0. Thus (') is a unique
symmetric involution extending (*).

If (") is any involution (not necessarily symmetric), then C)"1 ° (") =
g belongs to G(B : A). To show g is of period two, consider the following.
Since the involution defined on B~ by conjugation commutes with
every involution, g2(b)~ is equal to 6 for every b e B; hence, in particular,
g\[x\T = M". But a{g\[x\)) = 0 so that g\[x\) = [x] and g is of period
two.

8 Primitive elements in repeated extensions^ As seen in § 6, there
is some analogy between the present study and the classical case of
field extensions. We carry this analogy one step further by proving a
theorem about the existence of primitive elements in repeated extensions.
It will follow from our theorem, that if a(x) is a monic polynomial
with an invertible discriminant, then there exists an extension of the
form A[x]/(β(x)) over which a(x) factors into linear factors.

THEOREM 8.1. Let A be a Banach algebra. If BQ = A and B{ =
Bi-^XilftctiiXi)), i = 1, 2, , m, where x{ is an indeterminate over B^
and oίi(x^ e B^\x^ is a monic polynomial with an invertible discrimi-
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nant in Bi-U then there exists a monic polynomial a(x) e A[x] with
an invertible discriminant and an element be Bm such that a(b) = 0
and A[b] = Bm = A[x]/(a(x)) (algebraically and topologically).

Proof. The proof is by induction. We shall prove the case m = 2.
Consider [#iP(/&, λ) + c\x2Y(h, λ, μ) = λ + cμ, where c is a complex
number, and (h, λ, μ) e ΦB2. We will show that we can choose c > 0
such that λ | c ^ λ ' + cμ' if (h, λ, μ) Φ (h, λ', μr). If

= min {| λ - λ'| : (h, λ), (fe, V) e ΦBι and λ =£ λ'} for each k ^ ,

then F is a continuous function on ΦA since tfife) has no singular points
in ΦA. Since ΦA is compact and since F(h) > 0 for each h e ΦΛ, there
exists s > 0 such that -F(fr) > s on 0^. Choose c > 0 so that s >
2 c || IXΓ llco. For this choice of c, let b = [a?J + c[x2]. Now, if (ft, λ, μ) Φ
(h, λ, μ'), then &(fe, λ, j«) Φ b(h, λ, ^') and if (h, λ) ^ (fe, λ'), then

| b(h, λ, μ) - b(h, λ', /£') | ^ | λ - λ'| - c | /̂  - μ'\

^s- c\μ~ μf\> s- 2 c ||[»2ΓI|oo > 0 .

From this it follows that if a(x) is the monic polynomial (constructed
in Lemma 7.1) of degree n = nλn2 satisfied by 6, then its discriminant
is invertible since corresponding to each h, ah(x) = 0 has nxn2 distinct
roots.

Let B = A[x]/(a(x)). Then ΦB is (identifiable with) {(h, X)eΦΛx C:
(h, \)a(x) = 0}. Hence 7: (h, λ, μ) —> (fe, b(h, λ, /̂ )) is a homeomorphism
of ΦB2 onto (?5. Thus, |XΓ o 7-1 is continuous on ΦB and ^ i (M" © 7"1) =
0. By the Arens-Calderόn theorem, there exists bte B such that ^ =
[xT ° 7-1 and α̂ ftx) = 0. Now, if g: Σ& 1 ^[x]1 -> Σ S 1 «»&!, then g is
a homomorphism of B onto A[6]. By an argument in the proof of
Theorem 7.2, we have that #(δi)^ = [a^P. But ^i(δi) = 0 so that
0 from which it follows that g(b^ = [x^\ since the discriminant of
is invertible. Thus, A[b] contains [x^\ and hence [x2] eA[b], i.e., A[b] =
B2. It remains to show that g is one-to-one and 6i-continuous. Clearly,
g I A\b^\ is one-to-one so that there is an element b2 e B which satisfies
ΣΓio (g I A[bά)-\<xP)b\ = 0 and b2 = [x2Γ o y~\ where a2(x) - ΣΓ=o ̂ I 2 ) ^
As before, a2(g2)) = 0 and #(&2Γ = [̂ 2]" so that g(b2) = [x2]. Hence,
r̂ I A[&! + c&2] is a one-to-one mapping. But (6χ + cb2)~ = [α?]" so that

A[δi + c&2] = A[x\l(a(x)). Thus, ^ is one-to-one. (Note that this means
that &! + cb2 = [x].) The continuity of g follows as in Theorem 7.2.
The δί-continuity follows from the closed graph theorem.

COROLLARY 8.2. // a(x) e A[x] is a monic polynomial with an
invertible discriminant in A, then there exists an extension of the
form A[x]/(β(x)) over which a(x) factors into linear factors, where
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ζβ(x) is a monic polynomial with an invertible discriminant.

In view of the theorem, the proof of the corollary follows from
the fact that if a(x) = (x — bλ), •••,(& — bt)Q(x) over A[x]/(a(x)), then
Q(x) must have an invertible discriminant over A[x]/(a(x)).

9. On. the radical of B. Let A be a normed algebra and let K{A)
denote the intersection of the closed maximal ideals of A. If K(A) =
(0), we say that A is tractable. In [2] it is shown that if A is tractable
and if the discriminant of a(x) is not a zero divisor in A, or zero,
then B is also tractable. It is further shown that if A is tractable
and if a{x) = xn — α, then B is tractable if and only if a is not a zero
divisor in A, or zero. Actually, these results are true for a wider
class of algebras, namely, commutative algebras (with unit) over fields
of characteristic zero, with "tractable" replaced by "semi-simple."

In this section, we will show that the converse of the above theorem
is also valid; indeed, we formulate our theorems and corollaries in the
general context of algebras over fields of characteristic zero. To do
so requires no extra effort, except that of characterizing the maximal
ideals of B in terms of those of A. It will follow from the general
results presented that when A is tractable, then the radical of B and
the intersection of the closed maximal ideals of B coincide, a result
that is generally not valid for normed algebras. (An example of a
semi-simple normed algebra which is not tractable is given at the end
of this section.) Thus, until further notice, we assume that A is a
commutative algebra (with unit) over a field F of characteristic zero.
Let MA denote the maximal ideal space of A. We first identify MB

in terms of MΛ. If m0 is a maximal ideal in B, then B/m0 is a field
which contains an isomorphic copy of F and hence is also of characteristic
zero. Let Φ denote the canonical homomorphism of B onto B/m0. Then
Φ(A) is a subfield of B/m0 since the latter is a simple algebraic extension
of Φ(A) (cf. page 259, [15]). Thus we see that m0 Π A is a maximal
ideal of A. On the other hand, if m is a maximal ideal in A, then
we can extend m to (at most n = degree of a(x)) a maximal ideal of
B. We proceed to show this assertion and at the same time give a
description of the extensions.

If I is an ideal in A, then let βj(x) denote Σ{βi + I)x* where
β(x) = Σβtf.

Let m e MA and y(x) denote a monic polynomial over A such that
Ύm(x) is an irreducible factor of am(x). Let (m, y(x)) denote the set

( Σ a>i[
\i=0

It is clear that (m, y{x)) is an ideal in B. If we define θ by

Σ ™>ilxY :aieA,miem\ .
i=0 )
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i=0 / ί=0

then θ is a homomorphism of B onto (A/m)[a;]/(γm(α;)). Clearly (m,

tf-'ίO). Now if Σ?=» (α4 + m) (x + (7.(a;)))4 - 0, then

Σ («< + ™)^ = ym(χ)Qm(χ) ,
i=0

where Q(x) e A[x] or equivalently,

n—1

Σ <&#'

Thus, Σ?=o ΛiM* e(m, 7(a?)). Hence, θ"\0) = (m, 7(05)) and so (m,
is a maximal ideal of J5.

From the above, it is clear that if y^x) — y2(x) em[x], then
(m, 7i(x)) = (m, 7j(α)). We now show the converse. Suppose (ra, 7i(a?)) =
(m, 7a(a?)). There exists p(x) e A[x] and m(x) e m[cc] such that 72(#) =
7!(a?)3>(ί») + m(a?). Now, y2m(x) = ylm(x)pjx). Since both ylm{x) and 72m(α;)
are irreducible, and monic, pm(x) — e + m. The degrees of 7i(αs), 72(»)f

7i»(a?) and Ύ2m(%) are all equal so that p(x) = β. Thus, 7a(») — 7i(») e m[α;].
So far we have shown that each maximal ideal of A extends to

at least one maximal ideal of B. Furthermore, each maximal ideal of
B extends a unique maximal ideal of A. We shall now show that each
maximal ideal m0 of B is of the form given above, with m = m0 Π A.
From earlier comments we know that B/m0 is a simple algebraic ex-
tension of the field Φ(A), where φ: JB—• B/m0 is the canonical homomor-
phism. Since Φ([x]) is a root of ccm(x) = 0, Φ([x]) must satisfy one of its
irreducible factors, say βm(x). Hence B/m0 must be isomorphic to
φ(A)[x]/(βm(x)). Thus, if 0(Σ?-oα*[α]*) = O, then Σ?=ί (a* + m)«* =
Qw(α;)/9m(x). Thus, m0 - (m, ^(^)).

In summary, we have that MB may be viewed as the set of ordered
pairs (m, β{x)), m e MΛ, β(x) monic and βm(x) an irreducible factor of
ocm(x). Of course, we identify any two such pairs (m, β(x)) and (m', 7(0?))
if and only if m = m' and /3(cc) — y(x)em[x]. As before, we let π
denote the (onto) mapping (m, β(x)) —• m.

In what follows, let α(ra) denote the coset a + m, a e A, m e MA.
In order to avoid interrupting the proof of the main theorem, we

will next state and prove a lemma about the existence of a common
factor of aa(x) and ba'(x) for suitable elements a and b in A. In
general, a and b will not be invertible elements (consider the a(x) in
Example 5.3). We will need the following result [15]: Let f(x) and
g(x) be polynomials over A of respective degrees m and n, let k =
max (m — w + 1, 0) and let α be the leading coefficient of g(x). Then
there exist polynomials Q(x) and R{x) over A such that
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akf{x) = Q(x)g(x) + R(x)

and R(x) is either of degree less than n or is the zero polynomial.

LEMMA 9.1. Let A be semi-simple. If the discriminant d of a(x)
is a zero divisor in A (say dc = 0, c Φ 0) or ifd = 0, then there are
nonzero elements a and b in A and polynomials y(x), δ(x) and R(x)
over A such that

( i ) aa(x) — rr(x)R(x)
(ii) ba\x) = δ(x)R(x)
(iii) for m e MA, a(m) = 0 if and only if b(m) = 0, and if c(m) =

0, then a(m) = 0, and
(iv) if βm(x) (w& e MA) is a factor of am(x) and a'm(x), then βm(x)

is a factor of Rm(x).

. Proof. We first prove the lemma for the case d — 0. Let R-λ(x)
and R0(x) denote a(x) and a'(x), respectively. In view of the above
quoted result, we assume that we have found polynomials Qj+1(x),
Rj+1(x), 0 ^ j ^ i, over A such that

and R0>jRj+1(x) Φ 0 for 0 g j ^ i, where RQ,3 denotes the leading coefficient
of Roj^Rjix) and kt = max {deg (Rj-^x)) - (deg R^^Rjix)) + 1, 0}. The
polynomial RQfjR3 +1(x) is never a non-trivial constant polynomial. This
follows from the fact that if meMΛ, then am(x) and oc'm(x) have at
least one irreducible factor in common since d(m) — 0 (recall that A/m
is a field of characteristic zero). For each m, let βm(x) be one such
factor. Thus, it follows that if ROtj(m) Φ 0, then βm{x) is a factor of
ROtj(m) (Rj+1)m(x). Thus, if R0>jRj+1(x) were a constant, say c, then
c(m) — 0 for all m e MΛ. Since A is semi-simple, c = 0. From this
fact and the fact that degree Rj+1(x) < degree 120,i.β0fi_1(ίB), we can
conclude that there is a first integer, say i0, such that (*) holds with
j = i0 and RQ>ioRiQ+1(x) = 0. Since the coefficients of iίio+1(aj) belong to
the same maximal ideals that Ro>ίo belongs to, we have that RiQ+1(x)
is the zero polynomial. Hence

Let 12(05) = R^β^R^x), a - Πi°=o R$ and b = Πj°=i ^ 7 Then α
and b are nonzero and belong to the same maximal ideals to which
R0>j belongs. Now, by repeated substitutions, we find polynomials Ύ(X)
and δ(x) over A such that aa(x) = Ύ(X)R(X) and δα'(a?) = δ(x)R(x). From
the above it is clear that if βm(x) is a factor of αw(ίc) and ar

m(x), then
it is a factor of Λ»(ίc).

If dc = 0(d Φ Q, c Φ 0), then let Z> denote the set of maximal ideals
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of A to which c doesn't belong, and I denote the intersection of the
maximal ideals in D. By the first part of the proof, there are elements
α', 6' e A (α', 6' ί I) and polynomials y(x), δ(x) and R(x) over A such that
for the cosets α' + / and V + I and the polynomials ΎΣ(x), δz(x) and
R^x), the four conditions of the lemma are fulfilled over A/1. It then
follows that the same four conditions are fulfilled over A if we take
a = cV, b = c2δ', 7(x) = cy(x), 8(x) = c3(α) and i2(a) = cJB(a?). (Note that
a and 6 are not zero since if so we would have that a! and V belong
to /.) This completes the proof of the lemma.

It is necessary to introduce the following notation at this point.
Let A be semi-simple and a(x) a monic polynomial over A. MΛ(m, βm{x))
is to denote the power to which βm{x) appears in the factorization of
am(x) into irreducible factors. Let dk denote the resultant of a(x) and
a[k)(x) (= the formal fcth derivative of cc(x))9 l g f c ^ ^ - 1 (cf. page
96, [14]) and let k(a) denote the smallest integer h, if it exists, such
that dk is not a zero divisor in A, or zero, and n if all the dk are zero
divisors in A, or zero. From the definition it follows that if k > k(a),
then dk is not a zero divisor in A or zero.

By a nil ideal in A we mean an ideal all of whose elements are
nilpotent. If / is an ideal in A for which there exists an integer k
such that aτ a% ak — 0 whenever a{ e I, i = 1, 2, , k, then we
say that / is nilpotent (and write P = (0)) and if k is the smallest
such integer, then we call k the degree of nilpotency of /.

THEOREM 9.2. Suppose that A is semi-simple and that a{x) is a
monic polynomial over A for which k(a) ^ 2. Then the radical of
B is nontrivial consisting precisely of the nilpotent elements of B.
Furthermore, Rad B is nilpotent and its degree of nilpotency is k(a).

Proof. It is well known that the radical of an algebra contains
all the nilpotent elements of the algebra. We show that Rad(S) consists
of precisely nilpotent elements by showing the last assertion of the
theorem, from which it follows that Rad(I?) is nontrivial.

Suppose that &([&]), ••,&(,,([&]) e Rad(B) and set β(x) = UΪLf &(&).
Then there are polynomials Q(x) and R(x) over A such that β(x) =
a(x)Q{x) + R{x), with degree R(x) < degree a(x). We will show that
β([x]) = 0 by showing that R(x) is the zero polynomial. Suppose first
that meMΛ has the property that Mω(m, Ύm(x)) ^ k(a) for every irreducible
factor ΊJX) of am(x). Since &([&]) e Rad(i?), we know that Ύm(x) must
divide (βi)m(x), and hence Ύm(x)j, j = MJ^m, Ίm{x)) divides βjx). Further-
more Ύm(x)d divides am(x) (by definition of j) so that Ύm(x)j also divides
Rm(x). But Ίm{x) is an arbitrary irreducible factor so it follows that
am(x) divides βm(x) and consequently also divides Rm(x). Since degree
•R»(β) < degree ccm(x), Rm{x) is the zero polynomial over A/m, or equiva-
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lently, the coefficients of R(x) lie in m. If there i s a m e M A such that
Ma(m, Ύm(x)) > k(a) for some y(x), then dk{a) e m. Thus, the coefficients
of dk{a)R(x) lie in every maximal ideal in A and hence are all zero.
But dM) is neither a zero divisor in A or zero, so that R(x) is the
zero polynomial over A. Thus, β(x) — a(x)Q(x), or equivalently, β([x]) =

Πίi? βi([χ]) = o.
To show that RadCB)**00-1 Φ (0) (recall that k(a) is assumed to be

greater than one), it suffices to show that there is an element fe Rad(l?)
such that/* ' 0 0 " 1 Φ 0. We will show t h a t / = ατ(|X|) is a suitable choice,
where a and Ύ(X) are supplied to us by Lemma 9.1. (We may assume
that c in the lemma has the property that cdUcll)-x — 0, c Φ 0.) Let us
first note that αγ([#]) Φ 0. For if not, then a/r(x) = Q(x)a(x) for some
Q(x) e A[x]. But aa(x) = y(x)R(x) so that a2a(x) — Q{x)R{x)a(x) or a2 =
Q(x)R(x). If c(m) = 0, then a{m) = 0. If c(m) Φ 0, then d(m) = 0 so
that «»(#) and 0̂ (05) have a common factor which is also a factor of
Rm{%) by (iv) of the lemma. Thus, α(m) = 0 for all m e ikf̂  and hence
a = 0, which is a contradiction. We show next that ατ([#]) e Rad(U).

Let m be a maximal ideal such that a(m) Φ 0 and βm{x) an irreducible
factor of ocjx). If /3m(^) is not a factor of 6(m)α^(α?), then βm(x) is
not a factor of Rm(x) (cf. lemma). Hence βm(x) must be a factor of
Ύm(x). If, on the other hand, βm(x) is a factor of 6(m)α^(x), then βm{x)
is a factor of <x'm(x) (b(m) Φ 0 since a(m) Φ 0). Thus, from the lemma,
we can conclude that βm(x)k, Jc — Ma(m, βm{x)) — 1, is also a factor of
ct'm(x)f hence a factor of Jϊm(aj) since βm(x)k+1 is a factor of ccm(x). Thus,
/9m(x) must be a simple factor of 7m(ί»). We can now conclude that
ατ([#]) belongs to every maximal ideal of B.

We now show that (αTfla?]))**"'-1 Φ 0 or equivalently, ayix)^'1 Φ
Q(x)a(x) for every Q(x)eA[x]. Since &(α) ^ 2, we know that there is
at least one irreducible factor βm(x) of ocm(x) for some m e MA such
βm{x) is also a factor of a'Jx) and βm{x)k[oί>) is a factor of αm(α;) (take
any meMΛ such that dΛ(βo-i € m). From what we showed above, we
have that βjx) is a simple factor of Ύm(x). If (αTίίc))^^5-1 = Q{x)a(x)
for some Q(x) e A[x], then /5m(^)ft(Q>) would be a factor of (α(m)τm(a;))Λ(Λ)-1

or else a(m) = 0. Since adk{a>)^ = 0 (recall our assumption that cdk{Λ)^ = 0),
we may assume that a(m) Φ 0. Hence a contradiction since βm(x) is only
a simple factor of 7W(^) Thus, (aidx]))*™-1 Φ 0.

COROLLARY 9.3. If B is semi-simple, then A is semi-simple and
the discriminant d of a(x) is not a zero divisor in A, or zero.

The proof follows immediately from the theorem. To use the
theorem, we need to know that A is semi-simple. But this is true
since each maximal ideal of A extends to at least one of B. This
situation is special. (There are examples of semi-simple algebras with.



582 JOHN A. LINDBERG, JR.

non-semi-simple subalgebras.)

COROLLARY 9.4. Let Abe a commutative algebra with non-trivial
radical R = Rad(A). Then Rad(£) = {beB:bke R[[x]]}, k = k{aR). If
R is a nil ideal, then so is Rad(2?). // R is nilpotent, say Rp — (0),
then so is Rad(J?) and Rad(£)p* = (0).

Proof. Since Rad(£) =D R, it is clear that Rad(JB) a {b e JB : 6fe e
Now, consider the homomorphism Φ oΐ B onto (A/i2)[a?]/(αΛ(a;)) defined
by ^ c φ ] * ) = Ha, + R)xι + (aB(x)). Then ^(Rad(B)) £ Rad((A/R)[x]/(aR(x)))
(cf. page 10, [8]). The kernel of Φ is R[[x]\. Thus, if 6 e Rad(B), then
^(6*) = (0(6))* = 0 by the theorem. It follows that bk e ^ (O) so that
Rad(5) Q{beB:bke R[[x]]}. Thus equality holds and the first assertion
of the corollary is established.

Suppose now that R is a nil ideal. Let 6 e Rad(B). Then by the
above, bk{"R) e R[[x]\. Let δ*(α>β) = %?-} blx]1, b{ e R. Since A is com-

mutative, the elements b0, , bn-λ generate a nilpotent ideal in A (cf.
page 193, [8]). If p is the degree of nilpotency of this ideal, then
(&*<*s>)p = o. Thus, Rad(β) is a nil ideal.

The last assertion follows immediately from what we just proved.
If the degree of nilpotency of Rad(A) is p, it may well be the

case that the degree of nilpotency of Rad(jB) is less than pk(aB). For
example, take an algebra for which p = 2 and let a(x) = xs. Then
Rad(ί?)4 = {0}. (It is easy to modify this example so that a(x) = 0 has
no solution in A.) On the other hand, the degree of nilpotency of
Rad(J5) may be equal to k{aR)p.

We now turn our attention to the case where A is a commutative
normed algebra. For such an algebra, K{A) denotes the intersection
of its closed maximal ideals.

THEOREM 9.5. Let A be a tractable normed algebra. Then K{B)
coincides with the radical of B. Hence if B is tractable, then A is
tractable and d is not a divisor of zero in A, or zero.

In order to prove the theorem we only have to establish that the
elements of K(B) are nilpotent. To do this, we must know which
maximal ideals of B are closed. Of course, each closed maximal ideal
of B extends a maximal ideal of A so that ΦB ( = space of closed maximal
ideals of B) is a subset of D = {(h,X)eΦΛxC: ah(X) = 0}. Actually,
ΦB = D. To see this, observe that

\ah(\)\ ^ | λ | - Hα^H IM*"1 \\ax || |λ | - \\a01| .

If | λ | > 1, then the right hand side is greater than zero so that
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| ah(\) | > 0 for all h e ΦΛ. Thus, if (h, λ) e D, then | λ | g 1 and hence
(h, λ) defines a continuous multiplicative linear functional (recall that
we are assuming that || a0 || + || ax \\ + + || αn-i || S 1).

Now, using the fact that ΦB = D, we use the method of proof of
the first assertion of Theorem 9.2 to establish that K(B) is nilpotent.
Hence K{B) C Rad(S). On the other hand, Rad(J5) S #(#) SO that
iΓ(β) = Rad(S).

The second assertion now follows from Corollary 9.3.
As we have pointed out earlier, there are normed algebras which

are semisimple but not tractable. A simple example illustrating this
is as follows: Let A be any normed algebra with no nonzero nil ideals
but possessing a nontrivial radical. A[x] is a normed algebra under
WΣdiX* || = 2Ί|α< ||. Clearly, A[x] is not tractable. However A[x] is
semi-simple (cf. Theorem 4, page 12, [8]).
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