AN ABSTRACT POTENTIAL THEORY WITH
CONTINUOUS KERNEL

H. S. BEAR

1. Introduction. In the study of complex function algebras, it
is a standard technique to consider the functions as being defined on
the spectrum (maximal ideal space) of the algebra. In other words,
one routinely replaces a function algebra A by its Gelfand represen-
tation A. Recall that the Gelfand representation of a Banach algebra
is just the standard representation of any normed space A as a family
of functionals on A*. Each xe A is represented as the functional T
on points F'e A* defined by Z(F') = F(x). The Gelfand representation
simply restricts the domain of Z to the very small set consisting of
those F'e A* which are multiplicative (i.e., to the homomorphisms of
the algebra A). Of course this restriction is necessary if A is to be
again an algebra. However, a fair amount of structure accrues to
the representation by virtue of this restriction (ef. {17]).

To consider the standard example, let A be the algebra of con-
tinuous complex valued functions on the unit circle in the complex
plane which have analytic extensions to the unit disc. Then the
spectrum S, is (homeomorphic to) the disc, and the representation f
gives the analytic extension for each fe A. Now consider the space
C of all continuous real functions on the unit circle. These functions
also have natural extensions, as harmonic functions, to the unit dise.
It follows that the disc is embedded as a compact subset X of C*, and that
the harmonic extensions appear as functionals on C* restricted to this
set 2. In this setting, the disc is not a unique set to which the
functions extend “naturally,” since the circle can be put on other
Riemann surfaces on which the Dirichlet problem is solvable.

In this paper we present axioms for a subset XY of C*, where
C = C([I") for an arbitrary compact space I, so that the representation
described above does give an effective generalization of the classical
potential theory on the disc or sphere in m-space. The theory we
develop in this way is quite different in intent from those developed
in recent years by Bauer, Brelot, and others (cf. [1], [2], [7]). In par-
ticular, we start with assumptions which insure that a global Dirichlet
problem is automatically solvable.

Our set X in C* consists of positive continuous functions z on I"
weighting a given positive measure ¢ on I". That is, we restrict the
canonical representation of C as functionals on C* to a subspace of
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C* consisting of functionals of the form 2y, where for each ue C we
have (z¢t)(u) = Suzdﬂ. The functionals z{t are generalizations of the

Poisson measures on the circle or sphere, and the representation i
on Y obtained for each we C is a generalized solution of the Dirichlet
problem with boundary value #. A surprising amount of the classical
theory of harmonic functions on the disc or sphere turns out to depend
on the purely topological assumptions we make.

2. Basic assumptions. We list here a set of assumptions and
some notation which will be used throughout.

Let I" be a compact Hausdorff space with topology 7.

Let C = C(I") be the linear space of all continuous real-valued
functions on I", with the topology .7, of uniform convergence. The
uniform norm in C is denoted || u]|.

Assume there is given a positive probability measure (¢ on the
Baire sets of I'. In addition, we are given a set 4 of strictly posi-
tive continuous functions z on I" such that

(1) [e@iwo) =1

for all ze 4. The function identically one is assumed to be in 4, and
is denoted z,: 2(0) = 1. Hence the measures z¢, for z€ 4, are funec-
tionals of norm one in C*, and include £ = z,/t.

We want to extend the functions we€ C to a compact set con-
taining I°, and consisting of I" and the points represented by the
continuous kernels z€ 4. We do this by representing C as a space of
continuous functions on a subset of C* consisting of evaluation funec-
tionals, and the functionals z¢t. Accordingly, define I™ = {¢,: €7},
where ey(u) = u(0) for all we C. Similarly, let 4* = {#t: z€ 4}, where
zpt(u) = Suzd/x for all ue C. We let ¥* = I'* U 4%, and introduce the
axioms below on X*, 4*, I'* and (. Unless otherwise specified, the
topology in C*, and subsets thereof, is the w™ topology, .7 *.

Axiom 1. X* = 4* U I'* 18 a compact set in C*.

Axiom 2. I'* is the boundary of 4* im 3*.

Axiom 3. The mapping z— z{t 1S o homeomorphism of 4, T,
onto 4*, T *.

The representation of C as functions on X* is as follows: for each
u e C, we define # on X* by

(2) @) =Lw)  (e)..

That is, %(e,) = u(0) for 6 I, and u(zL) = guzdﬂ for ze 4. For sim-
plicity we will denote the points of 4* as 2z rather than z¢, and write
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(3) (@) = |w0=0)d0) (ze ).

We let H denote the space of all functions % on X*, for ueC.

Axiom 1 merely expresses the fact that we want a compact ex-
tension of our given space I” (or its homeomorphic image I™*). The
second axiom makes it clear that the Silov boundary of our linear
space H is in fact a bona fide topological boundary (cf. [5, p. 229], [2]).
Although Axiom 3 appears to be quite strong, it turns out to be exactly
the necessary assumption for a theory with jointly continuous kernel.
Notice that the axioms above are satisfied in the classical case which
we shall consider our model: I" is the unit circle in the plane, ¢t is
the normalized Lebesgue measure, and 4 is the set of Poisson kernels.

LevMMmA 1. X* 48 Hausdorff. I', .7~ is homeomorphic to I'*, 7 *.
Each we H 1s continuous on 3*.

Proof. The subspace 2* is Hausdorff since C* is. If 4,— 6 in
7", then certainly u(¢,) —u(f) for allue C, or ¢, — ¢, in .7 *. The
mapping 60— e, is therefore a continuous one-to-one mapping on a
compact space to a Hausdorff space, and hence a homeomorphism.
The w* topology on C* is by definition the weakest such that the
functions # of (2) are continuous. Therefore the functions # are in
particular continuous on the subset X*.

LeMMA 2. H s a uniformly closed linear subspace of C(Z*)
and H contains the constant functions.

Proof. The functionals of X* are all of norm one, by (1), and
the restriction H|I™ can be identified with C on I". Hence uniform
convergence on /™ is equivalent to uniform convergence on all of 3*,
and H is in fact isomorphic and isometric with C. The constant funec-
tions are in H since ¢(z) = ¢ for all ze€ 4, by assumption (1).

Our axioms are given in terms of /™ and 4* as subsets of C* to
facilitate the description of a topology on the union I'* U 4*. How-
ever, the embedding " U 4— '™ U 4* is one-to-one, as we shall show
in Lemma 5. It follows that we can consider our assumptions as
statements about a given compact set I and a distinguished subset
4 of C(I"). Accordingly, we will drop the stars from I'* and 4%,
and regard Y = " U 4 as the object under consideration. The points
of Y are the points 6 of I', and the points (functions) z of 4. The
topology .9 * on Y coincides on I” with the given compact topology
7, and on 4 with the uniform topology .7, of C relativized to 4.

We write @(9) = w(f) for eI, and (z) = Su(ﬁ)z(ﬁ)d/z(ﬁ) for ze 4.
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LemmA 3. If u(z) =0 for all z€ 4, thenu = 0. If u(z) = 0 for
all ze 4, then u = 0.

Proof. Both of these statements are immediate from the facts
that 4 is dense in ¥ (Axiom 2), and the functions @ are continuous
on X,

LemMMA 4. If U is a nonempty open set in I, then p(U) > 0.

Proof. Assume that ¢#(U) = 0 for some nonempty open set U I".
Let u be a function in C such that w = 0 outside U, and u = 0.

Then for every ze€ 4, 4(z) = Suzd,u:O, since wu =0 off U, and £ =0
on U. This contradicts Lemma 3, and proves the statement.

LEMMA 5. The mapping I" U 4— I'* U 4* = X* 1s one-to-one.

Proof. The representation of a functional in C* as a measure
on " is of course unique. The lemma asserts that the representation
of this measure in the form z¢t for continuous positive z, or the form
¢o (unit point mass at ), is unique. This is clearly the case if (and
only if) the support of ¢ is all of 7.

Since ¥ = I" U 4 consists of distinct functionals in C*, H is a
separating linear subspace of C(X). Such a subspace has a Silov
boundary in 3; i.e., a unique minimal closed set Y in X such that
each 7 e H attains its maximum on Y. ([2], or for an elementary
proof, [4]). Since each functional { €2 has norm one, it is clear that
each # € H attains its maximum on I". Moreover, H| "= C({), so I’
is a minimal closed set with this property. We have proved the fol-
lowing:

THEOREM 1. The Silov boundary for H in X is the topological
boundary I' of 4 in 3.

It is of course true by definition that a maximum principle holds
for the functions in H and the Silov boundary I. The fact that g
is supported by all of I, which follows from the fact that I" is the
topological boundary of 4, allows us to sharpen the maximum principle
to strict inequality. This situation also occurs in some function alge-
bras (cf. [3], [13]).

THEOREM 2. (Strict maximum principle) If %(z) = ||#% || for some
ze d, then @ is a constant.

Proof. Assume that #%(z) = ||%|| =||«||, and that % is non-constant
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and hence # is non-constant). Let u(d) = |/« || — v(0), where v(4) = 0
and v is not identically zero. Let v(8) = e > 0 for all # in some open
set Uc I'. Then
u@) = |u@)0)dm(0)
= (il = oo)e0)dp0)

= l[ull = {2@=@)du)

< [|w|| — e¢(U) min 2
<[lwll .
This contradicts the assumption that #(z) = ||u||. Hence u and # are

constant.

COROLLARY. If # =0 on XY and #(z) =0 for some zc 4, then

% =0.

Proof. If v=|ul||—u, then v =||u||— %, and ¥ assumes its
maximum, ||« ]|, at the point z2€ 4. Hence 7 is a constant, and # = 0.

THEOREM 3. 4 s closed in C if no singleton in I’ 1s open and
closed. In particular, 4 is closed wn C +f I' is connected.

Proof. Let {z,} be a sequence of distinct functions in 4 which con-
verges uniformly to w e C. We must show that w € 4. The uniform con-
vergence of the 2z, implies that the functionals z,¢¢ converge in 7 *
to wy. Since X is compact in the w* topolgy, wite Y, Thus either
we d and we are done, or wg is evaluation at some 6,¢ I", for all
weC. For wy to be unit point mass at 6,, we must have p{6,} > 0,
w(@,) >0, and w =0 on I" ~ {6,}. This implies that {6,} is open, since
w is continuous; {0,} is automatically closed since I" is Hausdorft.

The following example, which gives the natural “potential theory”
in one dimension, shows that the hypothesis on /" in Theorem 3 is
necessary.

ExAMPLE. Let I" consist of the two points —1 and 1, with the
discrete topology. Let £ assign mass 1/2 to each point. We denote
functions v on I" by pairs, u = (a, b), where a = u(—1), b= u(l).
The family 4 will consist of the functions z,= (1 — 2,1 + ), for
—1 < x < 1. The funection 2, is identically one, and for each function
2, we have

—1_ml 1_
hw_a W5+ +a) g =1.
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The family I'* U 4* is clearly homeomorphic to the compact interval
[—1,1], and I'* is the boundary of 4*, Here 4 is not closed in C(I),
since the function (0, 2) is the uniform limit of functions (1 — «, 1 + )
as £ — 1. The functions # can be represented as follows: if u = (a, ),
then

w(z,) = guz,dﬂ
=o(155) +(H57)-

Hence the graph of @ is the line joining (—1, @) and (1, b), and #(z,)y
is the point on this line above .

3. The harmonic functions on 4. In this section we extend our
class H to a class of functions which are “harmonic” on 4, without
necessarily being continuously extendable to all of 2. We show that.
the kernels P(z,6) = 2(8) are harmonic in z for each fixed ¢, and
that they are extreme points of certain compact convex sets of har-
monic functions. With one additional assumption on 4, which holds.
in the classical case, we show that the set of differences of positive
harmonic functions is isomorphic and homeomorphic with C*.

LEMMA 6. If P(z,0) = 2(0) for all ze 4, all §eI', then P is
Jointly continuous on 4 x I" with the product topology.

Proof. The statement of the lemma holds for any family (here 4)

of continuous functions on a compact space, with the uniform topology
[14, p. 224].

In connection with the above lemma, it is worth noting that the:
uniform topology is the weakest such that P is jointly continuous.
Thus Axiom 3 is necessary if we are to develope a theory based on
the idea of a jointly continuous kernel.

With the above definition of P, the representation (3) for fune-
tions # € H can be written in the familiar form

(4) () = (w0 PG, 0)dg10) .

DEFINITION. Let Z7 be the topology of uniform convergence on
compact subsets of 4 (the u.c.c. topology, or compact-open topology).
Let &~ denote the Z/-closure of H|4. That is, 57 is the set of all
u.c.c. limits on 4 of functions in H. The functions in 5# will be:
called harmonic. The set 5% forms a locally convex real linear
topological space with the topology %/, since the basic neighborhoods
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of zero, {v: supg|v(2)| < €}, are convex.

We interrupt our development here to point out explicitly that
the family 57 just defined is the set of all harmonic funections in
the classical case.

PROPOSITION. If I" = {z: |z| =1}, 4 ts the set of Poisson kernels
on I" (or the open unit disc {z: |z| < 1}, and ¢ is normalized Lebesgue
measure on I, then 57 1is the set of all functions on 4 which are
harmonic wn the classical sense.

Proof. The proposition is simply the observation that every
harmonic function on the open unit disc is the u.c.c. limit of harmonic
functions continuous on the closed disc. To see this, let » be harmonic
on 4, v + 1w be analytic on 4, and {p,} be a sequence of polynomials
in 2 which converge u.c.c. to v +tw on 4. Then the continuous
harmonic functions {Rep,} converge u.c.c. to v.

LEMMA 7. 4 s locally compact, and each harmonic function s
continuous on 4.

Proof. For each ze€ 4 there are disjoint neighborhoods U and V
in Y such that z€e U and " V. Hence U~ is compact, and each
point of 4 has a compact neighborhood U~ 4. Since a harmonie
function is a uniform limit of continuous functions on some (compact)
neighborhood of each z€ 4, each ve 57 is continuous on 4.

Lemma 8. If K is a compact subset of 4, thenm K 1s an equi-
continuous family of functions on I'. The functions in K are uni-
Jormly bounded, and uniformly bounded away from zero.

Proof. Since K C 4, the hypothesis is that K is compact in the
uniform topology .7.,. K is therefore a bounded set in the norm || ||
of 7,, which means the functions z¢€ K are uniformly bounded on I".
If the functions in K were not uniformly bounded away from zero,
then there would be a limit point ze K, since K is compact,
with minimum value zero. This minimum value would be attained
on the compact set I”, which contradicts the assumption that all ze 4
are strictly positive. The set K is equicontinuous since the uniform
topology .7, is jointly continuous, and K is compact in .77, [14, p. 233].

DEerFINITION. We will let H* denote the nonnegative functions in
H, and 5#* the closure in ¥ of H*| 4.

THEOREM 4. (Harnack’s inequality—see e.g. [8, p. 153]) If K 1is
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a compact subset of 4, then there are positive numbers m and M
such that for every ve S#7+,

(5) mu(z,) = v(z) = Mv(z,)
for all ze K.,

Proof. Recall that the function z, in (5) in identically one: z,(f) =
1. We prove that the inequality (5) holds for every # e H*, and then
the theorem follows by taking uniform limits on the compact set
K U {z}.

Assume that v = 0 on I', and let min 2z = min {2(d): e I'}. We
have

min z%(z,) = min zSu-ld,u

= Suzd/&

= u(z)

=1/z ) |u-1ds
= ||z u(z,) .

If m is a uniform lower bound for the functions z¢ K, and M is a
uniform upper bound, then we have

mu(z,) = u(z) = Miu(z,)

for all ze K, all we H*.

COROLLARY. (Harnack’s second convergence theorem) If {%,} is
an increasing sequence of functions in H™*, and {%,(2)} is bounded
for any z¢< 4, then {u1,} converges u.c.c. on 4.

Proof. Suppose that #%,(z) < B for all n, so that the positive
series >, [#,(2) — #,-,(?,)] converges. Let K be any compact set in

4 and let m and M be the constants of Theorem 4 for the set KU {z}.
Then from (5) we have

Tnl2) — Toues(Be) < — [Tin(22) — Tops(@)]
m
and hence for all ze K,
5(?) — Tua(@) = M [70(2) — Tusl2D)] -
m

Therefore the series 3 [#,.(2) — %,-.(2)] converges uniformly on K.
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Since K is arbitrary, this says that {#,} converges u.c.c. on 4.
Notice that the corollary is stated for H*, rather than 2S#+.
This is because it is not clear that if v, we 5#*, and v — w = 0, that
v — we 7%, as would be required in the above proof (S#* is defined
as the set of limits of H*, and not as the positive functions in 5#).
Now we can prove that the kernel P(z,0) is harmonic in z for
each fixed €/, and moreover, that each P(-,60)e 5~ .

THEOREM 5. If 6,¢1I’, then P(-,0,)€ 2".

Proof. Let K be a compact subset of 4, and ¢ > 0. We must
find # € H* such that

lu(z) — Pz, 00| <e

for all ze K.

Since K is an equicontinuous family, there is a neighborhood U
of 0, in I" such that |2(6) — 2(0,)| < e for allze Kand all e U. Let
% be a nonnegative continuous function on I such that w = 0 off U,

and Sudp: = 1. For ze€ K we have

@) — PGz, 00| =| [u@)=(0)dm0) — 20

- | Su(ﬁ)[z(ﬁ) — 2(6,)] dﬂ(0)|

< sup | #(6) — 2(0) | [u(0)dp0)
<e.

Since K and ¢ are arbitrary, and # = 0, P(-, 6,) e S~°+.

The next two theorems are extensions to our abstract setting of
classical results of Herglotz [11], Bray-Evans [6], Evans [9], and
Martin [15, p. 153].

THEOREM 6. A function v on 41isin S#Z* if and only if there is
a positive Baire measure v on I' such that for all ze 4,

(6) w(z) = SP(z, 6)dv(0) .

Proof. Assume first that v is given by (6). The integral in (6)
can be approximated at any finite number of points z € 4 by a Riemann
sum of the form

(7) 2 P(z, 0,)v(E)) .
Any function of the form (7) is in 5#* by Theorem 5. The set of
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functions of the form (7) is equicontinuous on 4, since

| ZP(z, 0)v(E;) — 2 P(2, 0.)v(E))
= X |2(0:) — 2,(0,) | v(E))
= ||z — 2 || 2u(E)
=|lz — 2| v .

That is, any function of the form (7) will vary by less than ¢ on the
sphere of radius ¢/v({") around #z,. Therefore pointwise convergence
of sums (7) will be uniform on any compact set K C 4 [14, p. 232].
Hence v is in the Z/-closure of the Z/-closed set 5#*; i.e., ve SZ&*.

Now assume that v e 5#*, and let {&,} be a net of functions in
H* which converges uniformly on compact sets to v:

v(z) = lim %,(z)

— lim §P<z, 0)u(6)d(6) .
The measures {u,tt} are all in some closed ball of C*, since
tatt ]| = [a(0)d1(6) = alz) = v(20

(recall that 2z,(6) = 1). The closed balls in C* are . * compact, so
there is a subnet of {u,/t} which converges w* to a positive measure
v. For this subnet, also denoted {u.f}, and the continuous function
P(z, <) on I', we have

2(2) = lim SP(z, B)uo(6)d2(6)

_ SP(z, 0)du(8) .

COROLLARY., vesF™ — 7% if and only if v = SPdv for some
signed Baire measure v,

DEFINITION. H,,:{z‘ceH:Slu]d/JéM}. Let 57, be the 7-
closure of Hy| 4.

The hypothesis v e 57 is our replacement of the classical Fatou

condition for harmonic functions in the disc: (1/27r)§2'1| v(re?) | dd = M
0

for all » <1 (Fatou [10] or [16, p. 201]). If I"={z2:|2z| =1}, 4 is
the set of Poisson kernels, ete., so the classical situation obtains, then
5%y 1s the set of harmonic functions v such that the functions v, are
uniformly bounded by M in the L, norm, where v.(e"’) = v(re’) (see
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[12, pp. 33-39]). The families 57, are compact sets of harmonic
functions (Theorem 8 below), and this compactness accounts for much
of their tractability.

LEMMA 9. For each 6, 1", P(-, 0, € 57.

Proof. In the proof of Theorem 5 (that P(-,6,) € 5#*) we found for
a given compact K < 4 a function @ € H* such that |%#(z) — P(z, 6,) | < ¢

for all ze K. This function # was in H,, since 4 = 0 and |udy = 1.

Thus P(-, 8, is the u.c.c. limit of functions in H,, or P(-, 6, € 2#4,.
For the following theorem in the classical context, see [18, p. 143]
or [12, p. 33].

THEOREM 7. A function v is in 57, tf and only if there is a
signed measure v on I", with ||v|| < M, such that for all ze 4,

(7) v(z) = SP(z, 0)dy(0) .

Proof. Assume that ve 57, and that {%,} is a net of functions
in H, which converges uniformly to v on compact subsets:

v(z) = lim %,(?)

= lim SP(z, 0)uo(6)d2(0) .
The measures {u,/t} are all in the M-ball of C*, since by hypothesis
|| att || = Sluwld/zé M.

As in the proof of Theorem 6, there is a w* accumulation point v of
{u.tt}, and ||v|| = M. If {u,tt} is a subnet converging w* to v, then

2(z) = lim SP(z, 0)uo(0)d(0)
- S Pz, 0)dv(0)

for each ze€ 4.

Now assume that ||v|| < M and v is given by (7). We showed
in the proof of Theorem 6 that v can be uniformly approximated on
any compact K C 4 by a finite sum XP(-, 0,)v(E;), where {E;} is a
partition of I". By Lemma 9, each P(-, §;) occuring in this sum can
be uniformly approximated (within ¢/n||v ||, if there are » summands)
by a function #%;€ H, N H*. Hence there is a sum w = Jv(K,)it; which
is uniformly close to v on the given compact set K. Clearly e H,
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and we have

[lwlde = 1@ |ads
= S| u(E)|

= |lvll
=M.

Thus w € Hy, and v can be uniformly approximated on K by functions
in Hy, S0 V€ 57%.

COROLLARY. £+ — 57" = U{SF: M=1,2,---}
Proof. This follows from the corollary of Theorem 6.
LemMmA 10. H, is equicontinuous on 4.
Proof. If z,2,€ 4 and ue Hy, then

7@ — 7(e) | =| [uO)I=0) — 2(0)1duo)

=1z = 2| w0) | dm0)

S Mllz—z].
THEOREM 8. 5%, is compact in the topology 7.

Proof. The pointwise closure (and, a fortiori, u.c.c. closure) of
an equicontinuous family is equicontinuous, and hence 57, is equi-
continuous. By Ascoli’s theorem [14, p. 233], the subfamily £#; of
C(4) is compact in the topology Z~ if and only if 57, is closed, 57
is equicontinuous, and {v(z): ve 57} is bounded for each zc 4. We
have only the last condition to check. For each ze€ 4, {|v(?)|: ve &%}
is bounded by M]||z||, since for %e H,,

3@ | < ||u®) | 20)d0) = M 2]l
and this estimate carries over to 5% on the compact set {z}.
COROLLARY. £+ — S¢°* 18 o-compact.
Proof. This follows from the corollary of Theorem 7.

In the classical case of the unit ball in Euclidean space, the corre-
spondence between functions in 97 * — 5+ and measures is one-to-



AN ABSTRACT POTENTIAL THEORY WITH CONTINUOUS KERNEL 419

one. The proof uses the specific form of the Poisson kernels [18, p.
143, 144]. The uniqueness of a representing measure v is of course
equivalent to the non-existence of a nontrivial measure orthogonal to
all the functions zec 4. Restated, the measure corresponding to a
function in 57" — S#°* is unique if the linear span of 4 is uniformly
dense in C. We incorporate this hypothesis in the next theorem to
make the statement explicit for the classical case.

THEOREM 9. If the linear span of 4 is wuniformly dense in C,
then the isomorphism v -— SPdv %8 & homeomorphism of C* onto
T — .

Proof. As noted above the hypothesis contains the assumption
that the mapping is one-to-one. Since this isomorphism maps the
compact M-ball of C* onto the compact set 27, it is sufficient to
show the mapping is continuous in either direction. We will show
the mapping v — v from S#* — 5#* to C* is continuous. Let v,—v
in the topology %/, and let v,, v be the corresponding measures. Then

SZde—’deV for all ze 4. Since the linear span of 4 is uniformly
dense in C, we have Sgde—a Sgdu for every continuous ¢, or v, — v
in 9 *.

COROLLARY. The extreme points of 57, are the functions = P(-,0),
for el

Proof. These are the images under the isomorphism above of
the unit point masses on I” which are the extreme points of the unit
ball of C*. (The positive extreme points are the minimal positive
harmonic functions of R. S. Martin [15].)
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