SILOV TYPE C ALGEBRAS OVER A CONNECTED
LOCALLY COMPACT ABELIAN GROUP II

ALFRED B. WILLCOX

In 1951 Silov [6] published a structure theory for a class of
translation invariant function algebras on compact abelian groups. In
1959 the author extended portions of this structure theory to similar
algebras defined on connected locally compact abelian groups [8]. One
of the conditions which both Silov and the author employed was that
all of the maximal regular ideals of the algebra be determined by the
elements of the underlying groups in the usual way. In 1958 de
Leeuw [2] published results characterizing the maximal ideals of an
algebra of functions on a compact abelian group which satisfies all of
Silov’s conditions except this one. The results to be reported here
constitute, in effect, an additional chapter to [8] motivated by an at-
tempt to generalize de Leeuw’s results. We will adopt de Leeuw’s
terminology, calling an algebra of the type studied in [6] and [8] a
Stlov-homogeneous algebra and an algebra which satisfies the weakened
conditions of de Leeuw and the present paper a homogeneous algebra.

1. It is appropriate to begin with a brief discussion of an example
of a Silov-homogeneous algebra which is a generalization of the group
algebra of a locally compact abelian group. Domar, Beurling, Wermer
and others have studied algebras of this type and we shall refer to
results of Domar [3] in this connection. It is also an example which
can be generalized in a natural way to include algebras of the type
which we wish to discuss here and for which our results take a par-
ticularly simple form.
 Let G={s,¢,---} be a locally compact abelian group and let
G ={y, -} be the group of characters of G. Suppose that p is a real
measurable function on G which is bounded on compact sets and satis-
fies the conditions

(L.1) p() = 1
(1-2) p(X1X2) = p(XI)p(X2)
(1.3) 5 ni log p(y*) < o

for all ¥, Xu, YeG.
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Let R(p, G) bei the algebra of all Fourier transforms f of those
elements f of L(G) for which ||f]| = § |/ | p()dy < «. That is,
R(p, @) is an algebra of functions f: f(t) = § f(x)f((_t)dx defined on G
with norm || f|| as defined above and with pointwise operations. R(p, @),
is well known to be isomorphic and isometric to the group algebra
L,(p, G) with a “weight function” p. It is also known [3] that

(a) every maximal regular ideal of R(p, G) is determined by an
element of G (M, = {f: f(t) = 0}) and the space of maximal regular
ideals of R(p, @) with the Gelfand topology is homeomorphic to G,

(b) R(p, G) is a semi-simple completely regular Banach algebra
in the sense of Silov (Rickart’s terminology [5]),

(¢) R(p, G) is closed under translation by elements of G ; if feR(p, G)
and heG then f.eR(p, G), where fi(t) = f(¢t — k) for all teG,

(d) the norm in R(p, G) is translation invariant; N = 1lfull for
all f and A,

(e) the elements of R(p, @) are continuous under translation;
f— full—0 as b —0,

& R(p, @) is Tauberian in the sense that the set of elements
with compact support is dense.

These are the defining conditions for a Silov-homogeneous algebra.
In addition, one can show that

(g) R(p, G) is closed under multiplication by elements of G, it
FfeR(», G) and xeG then the function yf: (Xf)(®) = () f(#) is also in
R(p, G). In fact, yf is the Fourier transform of the translate fo of
the function f whose transform is f,

(h) the mapping f— xf is continuous on R(p, G’) for each xe@
and the mapping ¥ — xf is continuous on G for each f with compact
support.

@) @f spans R(p, @) f topologically if f has compact support.

R(p, @) is not of type C but its C-completion is locally isomorphic
to an algebra TK,(G) [8]. An argument similar to that on page 1293
of [8] shows that if p(x") = o(n) then the C-completion of R(p, @) is
the algebra C,(G) of all continuous complex functions vanishing at oo
on G. Thus every closed primary ideal in R(p, G) is maximal [8, p.
1293].

Now suppose that S is a measurable subsemigroup of C:% which
contains the identity and generates G (in the sense that G is the
smallest subgroup containing S). Suppose, further, that p is a real
measurable function defined on S satisfying conditions (1.1) and (1.2)
for characters in S. Let R(p, S) be the subset of R(p, G) determined by
those # which vanish a. e. outside of S~*. The algebras R(p, S) are van-
ishing algebras in the sense of Simon [7] and others and include the alge-
bras of generalized analytic functions of Arens and Singer [1]. R(p, S}
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is actually a closed subalgebra of R(p, @) and, as a Banach algebra,
has many, but not all, of the properties which we have listed above.

THEOREM 1. R(p, S) is a closed translation invariant subalgebra
of R(p, @) which separates points of G and has the following addi-
tional properties:

(a) R(p, S) s closed under multiplication by elements of S,

(b) The algebra [Sf] generated by Sf is dense in R(p, S)f,

() The mapping f— Y f is continuous in f for each xeS,

(d) If p satisfies condition (1.8) for all yeS then the mapping
X — xS s continuous on S for each feR(p, S) with compact support.

Proof. Let R = R(p,S) and suppose that f,geR. If f and g

are the Fourier transforms of f and § then fg is the transform of
Jxg. Since

P = SFoaGod

and since S~ is a semigroup, it is easy to see that f*g(x) =0 a.e.
for x¢ S~'. Thus fge R. Straightforward computations show that
f+ g and «f belong to R, where « is a complex number, and that R
is closed in R(p, @). From the fact that the translate f, of f is the
transform of the function §(y) = x(s)f(x) it follows that R is closed
under translation. Since S is a generating subsemigroup of G it
separates points of G and it follows easily that R does also.
(a) Let y,€S. Then

[0 £1¢) = 0@ FA@dy
= SOOI 1@)dy,
= \fox®dy .

Since ¥;'e€ S~ then, for all ¢S, yx.¢S™*. Thus f(%)&) =0 for
almost every x ¢ S~*. Thus y,feR.

(b) Let fe R and let I be the closure of the space [Sf]. I is
then the transfrom of the closure I in L(p, @) of the space spanned
by the translates of f by members of S. Thus I is S-invariant in
L(p, G). An argument analogous to the by-now-classical one for group
algebras [4, 31F'] with the use of Domar’s representation of the linear
functionals on R(p, G) as Borel measures on G [3, p. 10] shows that
I is an ideal in R. Thus, if gec R, gfel so ¢gf is a limit of linear
combinations of elements of Sf.

(c) and (d) are obvious since R is a subalgebra of R(p, G).

We will refer to the parts of Theorem 1 as conditions (1, a), (1, b)
and (1, ¢).
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In general, not every maximal regular ideal in R(p, S) is deter-
mined by an element of G. It is natural, therefore, to look for a
characterization of these ideals in such an algebra. If ¢e G then the
set of all elements of R(p, S) which vanish at ¢ is a maximal regular
ideal, and distinct elements of G determine distinct maximal regular
ideals because R(p, S) separates points of G. But if there are other
maximal regular ideals in R(p, S) what do they look like ? An answer
to this question is not hard to find by more-or-less standard techniques
of harmonic analysis. The maximal regular ideals are determined
uniquely by the homomorphisms @ of S into the multiplicative group of
the complexes which take the identity into 1 and satisfy the condition

lP(0) | = p(0)

for all x€S. However, we will delay the proof of this fact in order
to proceed to the more general class of algebras to which we referred
in the opening paragraph. We will see that these algebras share
with R(p, S) weakened forms of conditions (1, a), (1, b) and (1, ¢) and
will show that these properties result in a preliminary form of the
above characterization of the maximal regular ideals.

2. Let G be a connected locally compact abelian group. An
algebra R of functions on G will be called a homogeneous algebra on
G if:

(2.1) R is a Banach algebra of continuous complex valued functions
vanishing at « on G, having the usual pointwise operations and in
which convergence in the norm implies pointwise convergence,

(2.2) R is completely regular on G; i.e., R contains functions
which are 1 on arbitrary compact sets and 0 on arbitrary disjoint
closed sets,

(2.3) R is closed under translation by elements of G and has a
translation invariant norm,

(2.4) the mapping t— f, (fi(s) = f(s — t) for all s) is continuous
from G to R for each fixed fe R,

(2.5) the set R’ of elements of R with compact support in G is
dense in R,

(2.6) if f, and g, are sequences of elements of R such that g,
has support in a fixed compact set C and for each f,€ C there exists
an he @ such that |g,(t)| = | (f.)i(t)| holds for all ¢ in a neighborhood
of t,, then f, — 0 implies g, — 0 in R.

If we assume, in addition to the six properties above, that every
maximal regular ideal of R consists of the set of elements which vanish
at a specified t € G then R is a Silov-homogeneous algebra in the sense
of [8]. Actually, we have assumed a bit more. Condition (2.6) is,
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under these conditions, similar to the type C condition which was em-
ployed in [8]. For our present purposes, however, we require a con-
dition on the algebra analogous to the type C condition but which in-
volves only the underlying group G. This analog could be stated as
follows: For fe R and te G define || f]]; to be the infinum of || g|| for
all g which agree with f on a neighborhood of ¢, and define ||| f||| =
sup ||fll::teG. Then the norm in R is stronger that the uniform
norm and weaker than ||| - ||| (hence is equivalent to ||| « ||]).

It is not hard to show that, given conditions (2.1) — (2.5), this
condition implies condition (2.6). However, (2.6) may actually be weaker
and is in a form which will be most easily applied in the proof of the
next theorem.

Examples of algebras which satisfy the above conditions can be
found among the algebras TK,(G) discussed in [8]. These are certain
algebras of functions on G with values in a primary B-algebra K. If
such an algebra is (isomorphic to) an algebra of complex functions on G
and is completely regular on G in the sense of (2.2) then it is a homo-
geneous algebra. Another example is the algebra of complex continuous
functions vanishing at o on the reals which are boundary values of
analytic functions on the half-plane.

In case G is compact abelian a Silov-homogeneous algebra contains
all of the characters of G and these elements generate the algebra.
In case G is connected, locally compact and abelian a type C Silov-
homogeneous algebra is closed under multiplication by elements of G
(hence, by complete regularity, contains these characters modulo com-
pact sets), and, for each fe R, Rf is generated by @f. In neither of
these cases does a homogeneous algebra necessarily contain all charac-
acters (mod compact sets). However, as deLeeuw points out in the
compact case, R is generated by a semigroup of characters which also
generates G in the group sense. We have something like this here.

THEOREM 2. Let R be a homogeneous algebra on a connected
locally compact abelian group G. There exists a generating subsemi-
group S of G containing the identity such that

(a) R’ is closed under multiplication by elements of S,

(b) For each fe R', Sf generates Rf topologically,

(¢c) For each compact subset C of G and each x € S, the mapping
S —xf is bounded on the set R, of all elements of R with support C.

Proof. Since the argument repeats certain of the constructions
of [8] we will omit many of the details. It is well known that
G = E, x G,, where E, is the m-dimensional vector group and G, is
compact. Denote an element of G by (s, t) where s = (®,, %5, -+, 2,) € E,,
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and te G, Consider an m-tuple a = (@, &, +++, «,) of positive real
numbers, and define

Cw:{(s’t):|wil-—s—ai’ tch}
and D, ={(s, 1) : s = (kay, ksty, + -+, k), k; an integer} ,

where in the definition of D, 1 denotes the identity element of G,.
If we make the usual identifications, C, is isomorphic and homeomorphic
to the quotient group G/D,. Moreover, G is covered by the compact
sets Cra, £k =1,2, ++- .

If f is an element of R which vanishes outside of C, then by
adding together the appropriate translates of f we may obtain an ele-
ment g of B which agrees with f on C, and is D,-periodic on C,, for
any prechosen k. That is, g is periodic on C,, and any element of D,
is a period. We call g a D,-periodic extension of f to C,,.

Let C=C,, D=D,, and C, =C,,, £k =2,8, ---. Denote by k(C)
the set of elements of R which vanish on C and by R the difference
algebra R/E(C). By complete regularity on G, R has an identity e.
Let R, be the subalgebra of R generated by & and the images in R
of all f in R with support in C and their translates by elements of C,
D-periodically extended to C,. R, is a homogenous space of functions
on G/D in the sense of Silov, so is generated by a set S of characters
of G/D [6, 2.7]. Each element of S is uniquely associated with a
character ¥ of G such that y(¢) =1 on D. Call the set of characters
of G determined in this way S,.

By complete regularity of R, R, and hence S, separates points
of G/D. Tt follows that S generates the gharacter group of G/D and
hence that S, generates the subgroup of G consisting of those elements.
which are 1 on D.

If x € S, let X be the corresponding element of E,. Then ¥ = f 4 ue
where f=lim f, and each f, is a suitably extended translate of an
element of R supported by C. Let f, be a Cauchy sequence in B with
fo = f. and let £, be a D-periodic extension of f, to C,. If g is an
element of R which is 1 on C, and 0 outside of C, then the sequence
9. = f.'9 satisfies condition (2.6) relative to the Cauchy sequence
fllgll. It follows that g, is Cauchy and converges to an element of
R which is x(t) — £ on C,. Thus R contains an element which is
x() on C,. The above construction could be repeated for each C, so
we conclude that R contains elements which are x(¢) on arbitrary com-
pact sets. Thus R’ is closed under multiplication by elements of S,.
It is also clear from the above that S,f generates Rf for any f which
vanishes outside of C = C,.

Let S be the set of all e G which belong to R on arbitrary com-
pact sets. This is, €S if and only if given any compact set C in
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G there exists an element f of R such that f(¢) = X(t) on C. We have
seen that S, < S so S is not vacuous. Clearly S is a subsemigroup
of G. Moreover, since G = E,, X G, it follows that any character ¥
of G is identically 1 on some subgroup D, of the type discussed above.
Thus, as we have seen, ¥ = Y. X:* where X, X.€S,C S, so S is a
generating subsemigroup of G. By complete regularity of R, S contains
the identity character. It also follows from what we have proved
above that R’ is closed under multiplication by S and that, for fe R’
Sf generates Rf.
If g(t) = x(t) on C and f vanishes outside of C, then

xSl =1afll =gl AN,

so the mapping f— xf is bounded on FE,. This completes the proof
of the theorem.

Conditions (2, a), (2, ¢) and (2, c) are weakened forms of conditions
(1, a), (1, b) and (1, ¢) which are satisfied by the algebras R(p, S) of
§1. We are now ready to prove a lemma which can be considered as
providing the algebraic part of our principle results.

3. If S is a semigroup of characters of G denote by P(S) the
set of complex linear combinations of elements of S. Let R be an
algebra of continuous complex functions vanishing at o on a connected
locally compact abelian group @, and suppose that R contains a dense
subset R’ such that

(3,a) R’ is closed under multiplication by a semigroup S of char-
acters of G containing the identity,

(3, b) for fe R, P(S)f is dense in Rf,

(3, ¢) for each fe R’ the mapping g — Xg is continuous on P(S)f.

Both algebras R(p, S) and homogeneous algebras satisfy these
conditions as we have seen. In R(p, S) the subset B’ may to taken
to be the entire algebra.

Let Hom (S, C) be the set of all homomorphisms of S into the
multiplicative group of complex numbers which carry the identity into
1. If peHom (S,C) and ve P(S) define o(v) = Ja,®():), where
v = X We will call an element @ of Hom (S, C) an R-semichar-
acter of S if there exists an element fe R’ such that

3.1) |2(v)| = ||7f|] for all ve P(S) and
3.2) if lim~,f = f* then lim ¢(7,) exists and is not 0.

In the following, if M is a maximal regular ideal in R we will
use the notation f(M) for the image of f in the difference algebra
R/M, considered as the complex field.
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LeMMA 3. Under the conditons stated above, there is a one-to-one
correspondence between the set of maximal regular ideals of R and
the set of R-semicharacters of S. The maximal regular ideal M cor-
responds to the R-semicharacter @ if and only if

9(M) = lim ¢(v,) whenever v, f—gf,
where f 1s as in the definition of the semicharacter @, and

_Q)M)
J(M)

where f is any element of R’ such that f(M) # 0.

PQ) =

’

Proof. Let @ be an R-semicharacter of S. Let fe R’ satify the
conditions, relative to @, of the definition. If g€ R then, by hypo-
thesis, there exists a sequence v, in P(S) such that lim~.f = gf.
Define #(g) = lim (v,). @ is clearly a linear functional on R. Sup-
pose that limv,f=gf, limo,f=hf and limp,f = ghf. Then
lim (v,f)o,f) = lim (v,0,)f* = ghf* and lim o, f* = ghf* so lim (v,0, —
0.)f*=0. By condition (3.1),

so P(gh) = P(9)P(h). Thus @ is multiplicative and determines a maxi-
mal regular ideal M = {g: $(g) = 0}. P(g) = g(M) for all ge R.

If v, f— f* then vv,f—7f* by 3,c). Thus P(vf) = P(MP(f),
and #(f) = 0 by (3.2). Thus

P0f) _ (W )M)
?(f) S)

P(7) =

’

for all ve P(S).
Now suppose that f'e R’ also satisfies the condition of the defini-

tion of the R-semicharacter @. Let M’ be the maximal regular ideal
constructed as above using f’ in place of f. Then also

(rf)M')
J'(M)
for all ve€ P(S). There exists an element g€ R’ such that
g(M) = 0 = g(M") ,

P(7) =

and it is easy to see that

(vo)(M) _ (vg) (M)
g(M) g(M')

P(r) =
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for all v. Let lim p,g = hg, then by the above we see that
lim ¢(0,) = (M) = h(M')

for all he R. Thus M = M' and M is independent of the choice of
the function f.

Now let M be a maximal regular ideal. Since R’ is dense in R
there exists an fe R’ such that f(M) # 0. Define

_ _NHw
P(X) Fi%)

for all yeS. It is clear that @ is independent of the choice of f with
the above properties. ¢ is a homomorphism of S, for

9’(X1X2) — (Xlef)(M) — (X1X2f2)(M)

JF(M) SHM)
_ L )MQNM) )
10 PP(X)

If we choose f so that f(M)=1 then, by the obvious linearity,
o) | = | (M) | = ||vf]] for all ve P(S). Moreover, if 7v,f— f?
then lim @(v,) = f(M) # 0. Thus @ is an R-semicharacter of S.

It is easily seen that this correspondence between maximal regular
ideal and R-semicharacters is one-to-one.

COROLLARY. If R satisfies the conditions of Lemma 3 and if,
for each fe R, the mapping X — Xf s continuous on S in the G-
topology, then the maximal regular ideals of R correspond to the
continuous R-semicharacters of S.

4. For both R(p,S) and homogeneous algebras we can sharpen
somewhat the above characterization of the maximal regular ideals.

In the case of R(p, S) suppose that @ is an R-semicharacter of S.
Then |@()| < ||xf|| where f is any element of R not in the corre-
sponding maximal regular ideal. But in R(p, S) it is easy to see that
121l = p() [|f]] so we conclude that

(4.1) |P(0| = p(y) for all xeS.

Conversely, suppose @ € Hom (S, C) satisfies (4.1). Then, if @ is
not a.e. 0, we can find in R a function f which is the Fourier trans-

form of a function 7 for which S Py = [S f(x)gv(x)dx} —1.



1472 ALFRED B. WILLCOX

20| = |pn- {Fpdx| = | | Safuwewa]
=||Sasfum|pear = 11l
Moreover,
|21 — 1] = || Saf ey - (Piwetdt| < 19f - 1,

go if limv,f = f* then lim@(v,) =1. Thus @ is an R-semicharacter
of S.

If we call an element of Hom (S, C) which satisfies (4.1) a p-semi-
character of R then we have shown that the R-semicharacters of S
are precisesly the p-semicharacters of S. Thus we have.

THEOREM 4. The maximal regular ideals of R(p, S) are in one-
to-one correspondence with the p-semicharacters of S.

Observe that this result is indeed a sharpening of the earlier char-
acterization of the maximal resular ideals of R(p, S). For one thing,
the conditions for a p-semicharacter involve only the elements of S
while those for an R-semicharacter involve all of P(S). For another,
the conditions for a p-semicharacter do not involve one in the actual
structure of R(p, S).

Theorem 4 is a natural generalization of the well-known results
for R(p, @). If, for instance, S = G and p satisfies (1.3) is it not
hard to see that p must be identically 1. Thus the p-semicharacters
of S become the continuous characters of G, that is, by the duality
theorem, the elements of G.

Now suppose that R is a homogeous algebra of functions on G,
which we again assume to be connected as well as locally compact and
abelian. If S is the semigroup of characters whose existence is asserted
in Theorem 2, suppose that ¢ is an R-semicharacter of S and that M
is the corresponding maximal regular ideal in B. Choose fe R’ with
S(M) #+ 0 and let C be the compact supporting set for f. If ve P(S)
and g€ R is such that g(¢) = v(t) for all t€C then vf = gf. Thus
P(7) = (HM)f(M) = g(M) and |@(7)| = ||g|l. Thus

(4.2) lp(M| = inf {llg||: g(t) = ¥(t)on C}.

Conversely, if @€ Hom (S, C) satisfies (4.2) for some compact set
C then let ¢ec R’ be a unit modulo C and ¢ € R’ be a unit modulo the
support of e. Then ve and v¢ are both identically v on C, so

(4.3) lPM | = llvell and [P(M) | = |7 || .
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If limv,e = (¢)) then, since ¢ée=(¢)e=¢, limv,e=¢. Thus
lim (v, — 1)e = 0, so, by (4.3), lim ¢(v, — 1) = lim¢(v,) — 1 = 0. Thus
@ is an R-semicharacter of S.

Now suppose that ¢ satisfies the formally weaker condition

(4.4 P | = inf {||g |l : g(t) = x(t) on C} for all yeS.

The let C, be a compact set of the type employed in the proof of
Theorem 2 with C < C,. Then, certainly, ¢ satisfies (4.4) for all
X €S, the corresponding subset of S. The whole problem may then
be transfered to the algebra R, in the proof of Theorem 2 which is
an algebra of functions on the compact abelian group G/D,. Methods
of deLeeuw [2] may then be used to show that ¢ satisfies (4.2) for
all ve P(S,).

The proof of Theorem 2 shows that S,f generates Rf topologically
if f is supported by C,, and it is easily seen that this, together with
(4.2) for all v P(S,), is enough in the proof of Theorem 3 to show
that @ determines a maximal regular ideal. Hence @ is an R-semi-
character of S, and the R-semicharacters of S may therefore be de-
scribed as the elements of Hom (S, C) which satisfy condition (4.4) for
some compact set in G.

Given a compact C define

p(y) = inf {||g || : g(t) = x(¢) on C}.

Since ps()) is just the norm of the element “y” in the difference
algebra R/k(C), it is clear that p, has properties (1.1) and (1.2) on S.
Let C, < C,c -+« be a g-covering of G by compact sets and.let p, be
the function p,,. Then {p,} is a nondecreasing sequence of functions
satisfying (1.1) and (1.2) on S, and @ € Hom (S, C) is an R-semicharacter
of S if and only if there exists an % such that

(4.5) |P(0 | = pa(y) for all xe§,

that is, if @ is a p,-semicharacter of S.
To summarize what we have proved:

THEOREM 5. If R 1is a homogeneous algebra over the commected
locally compact abelian group G then there exists a generating sub-
semigroup S of G containing the identity and a nondecreasing sequence
of real valued functions p, each satisfying conditions (1.1) and (1.2)
on S such that the maximal regular ideals of R are in one-to-one
correspondence with the p,-semicharacters of S for n =1,2, «--.

We conclude with two rather obvious corollaries of Theorem 5.
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COROLLARY. If, in the homogenous algebra R, convergence 18
uniform convergence then the maximal regular ideals correspond to
the continuous p,-semicharacters of S.

This follows from the fact that in this case the mapping y — xf
is continuous for each fe R'.

COROLLARY. If the homogeneous algebra R contains a bounded
(tm the morm) sequence of units modulo a o-covering {C,} of G and
tf the mapping f— xf is bounded on R’ then, for each xe S, p,(})
18 bounded. If p(Y) = sup p.(X) then p is also & real function satisfying
1.1) and (1.2) on S and every R-semicharacter of S is a p-semichar-
acter of S.

Whether, in the setting of this corollary, every p-semicharacter
of S is an R-semicharacter of S remains a matter of conjecture at the
present.
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