BOUNDED GENERALIZED ANALYTIC FUNCTIONS
ON THE TORUS

VicToR L. SHAPIRO

1. Introduction. We shall operate in Euclidean k-space, E,,
k = 2, and use the following notation:

x:(xl,"':xk); y:(ylr"’,yk);
ax + By = (awy + By, *++, ax, + BYL) ;
@ y) =2y + o+ 205 |x]= (2, 2)".

T, will designate the k-dimensional torus {z; — 7w <w; =7 Jj=
1, .-+, k}, v will always designate a point a distance one from the
origin, i.e., |v| =1, and m will always designate an integral lattice
point. If fis in L' on T,, then f(m) will designate the mth Fourier
coefficient of f, i.e., 2n)7*\| f(x)e '™ dw.
T

We shall say that f(x) in L' on T, is a generalized analytic funec-
tion on T, if there exists v such that f is in A4,, where A, = A} U A%,
and A} is defined as follows:

f is in A} if there exists an m, such that if m = m, and
(m — m,, v) <0, then F(m) = 0.

We shall say that f(x) in L' on T, is a strictly generalized ana-

Jdc function on T, if there exists a v such that f is in B,, where
3, = B, U BY, and B; is defined as follows:

f is in B; if there exists an m, and a ¥ with 0 <v <1 such
that if (m — m, v) < ¥|m — m,|, then f(m) = 0.

It is quite clear that B, C A,. In this paper, we shall obtain a
result which is false for bounded functions in A, but which is true
for bounded functions in B,. It is primarily with the class B, and its
extension to finite complex measures that the classical paper of Bochner
[2, p. 718] is concerned. On T,, it is essentially with the class A,
that the papers of Helson and Lowdenslager [5], [6], and de Leeuw
and Glicksberg [4] are concerned.

‘We shall be concerned in this paper with a class of functions C,
which for bounded functions is intermediate between the two classes
B, and A,.

We first note that if f is in B;, then 3..|f(m)|e™ < o for
every ¢ < 0. For with ||f||,, 1 < » < o, designating the L*-norm of
f onT,, we see that there exists a v with 0 <v <1 and an m, such
that
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SIFmyemr S| flh X emee,
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Next, we note that if 3, |F(m)|e™" < oo, then

(1) there exists a function g(x) in L* on T, which is continuous in
an open subset of T, and which furthermore has >, F(m)emoogitma)
as its Fourier series.

We use (1) to define the eclass C, = C,;” U C%,. In particular we
say that f is in C,;5 if the following three conditions are met:

(i) fisin L on T,,

(ii) fis in Aj,

(iii) there exists a g, < 0 such that (1) holds.

We note once again that if (ii) is replaced by

(i) fis in B,
then (iii) follows automatically.

With every unit point v = (v, -++, v,) there is also associated a
one-parameter subgroup of T, which we shall call G, where

G, :'{x; —T < %; =T, %; = tv;mod 2w, —o0 <t < oo},

If v is linearly independent with respeet to rational coefficients, then
G, is dense on T,. If v is linearly dependent with respect to rational
coefficients, G, is not dense on T,. (We say v = (v,, *++, v;) is linearly
dependent with respect to rational coefficients if there exist rational
numbers 7y, +++, 7, with 7} 4+ <<« + 7} = 0 such that >, r;v; =0.)
In either case, however, the statement that a set £ C G, is of positive
linear measure is well-defined. In particular, we set E* = {{; there
exists an  in & such that «; = tv;mod 27 for j=1, -+, k}. Then
E* is a set on the real line —o <t < . We say that E is of posi-
tive linear measure if £* is a set with positive 1-dimensional Lebesgue
measure. .

In the sequel, we shall work primarily with functions f in L* on
T,. Also, all functions initially defined in 7T, will be understood to
be extended to all of E, by periodicity of period 27 in each variable.

Given a function f in L on T,, we shall set

(2) (@, b) = 3 f(m)eim=e=mi for h > 0.
We shall say that f vanishes at «, if

(3) lim f (2o, h) = 0 .

We note that the changing of f on a set of k-dimensional measure
zero does not affect its vanishing at the point z,. (In classical termi-
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nology, (3) says that the Fourier series of f is Abel summable to zero
at x,.)

We shall say that f vanishes on a set E if f vanishes at all points
of E.

With B(x, h) representing the open k-ball with center x and radius
h and | B(x, h) | representing the k-dimensional volume of B(x, k), we set

(4) fi@) = | Ba,w) | fwdy

and note that if lim,.,fi(x) =0, then f vanishes at =z, i.e.,
lim,_,, f (2, k) = 0 (See [10, p. 55]).
The theorem that we shall prove is the following:

THEOREM. A necessary and sufficient condition that every f in
C, which wvanishes on a subset of G, of positive linear measure be
zero almost everywhere on T, is that v be linearly independent with
respect to rational coefficients.

We first note that the sufficiency of the above theorem is false
for bounded functions in A,. This fact will be established in § 4.

We next note that if f(x)isin C,, so is f(x + «,). Consequently,
the above theorem implies that if f is in C,, v linearly independent
with respect to rational coefficients, and f vanishes on a subset of
2, + G, of positive linear measure, then f is zero almost everywhere
on T,.

We finally note that for ¥ — 1 the above theorem reduces to the
well-known theorem of F. and M. Riesz for holomorphic functions on
the unit dise in the form that they first proved it, i.e., for bounded
functions, [9]. There have been other extensions of the F. and M.
Riesz Theorem to higher dimensions (see [5, p. 176] and [4, p. 188]),
but these always involve the vanishing of f on sets of positive k-
dimensional measure. Here, we only ask that f vanish on particular
sets of positive 1-dimensional measure, but on the other hand, we deal
with a more restricted class of functions.

2. Proof of sufficiency. Since C,=C_, and G, = G_, with no
loss in generality, we can assume from the start that f is in C,.

Since f is in C;f, it is in AF. Consequently there exists an m,
such that f (m) =0 if m = m, and (m — m,, v) < 0. If we set a(x) =
e~ime® f(x), then a(x) is in A} with m, = 0. Furthermore, it is clear
that since f(x) satisfies (1), a(x) does also. If we can show that

(5) if lim f(x, ) = 0, then lim a(x,, h) =0,
h=0+ h—0+
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it will be sufficient to prove the theorem for a(x).

To establish (5), set b(z) = a(x) — e~mo=?f(x). Then a(x, h) =
b(x, ) + €™ f(x, h), and by the remark after (4), (5) will follow
once it is shown that b,(x)) — 0 as h— 0. But

le—i(mo,x) — e—i(mo,zo) ldx
sh)

e | < 0 1 £11
< O [ fllelmel| 10— o] do
=o(l) as h—0,

and (5) is established.
We now replace a(x) by f(x) and proceed, i.e., we set

(6) M = {m; (m, v) = 0}
and assume
(7) if m is not in M, then Ff(m)=0.

Setting P(z, k) = >, ¢'™* ™ for b > 0 and noticing that P(z, k) >0

for z on T, and h > 0, [3, p. 32], and that (211')"‘S P, h)de =1 we
T
see that f(x, h) defined in (2) is given by y

f, 1) = @0 | @ - »P@, by .

Consequently,
(8) |f(®, h)| = ||flle for >0 and « on T,.
Next, with 2 =0 + 4t and ¢ < 0, we set
(9) F(z, h) = 5 F(meitomeremgmint
= 3 f(m)ernrg=ims
where
(10) Mp = (m, v) for m in M.

By (6), (7), (9), and (10), F'(z, h) is, for fixed h > 0, analytic in
the left half-plane ¢ < 0 and continuous in the closed half-plane ¢ < 0.
Furthermore, since F'(it, h) = f(tv, h), we have by (8) that

11) sup |F@it, )| = || fll. for h>0.

Algo, it is clear that for 0 < 0, | F(0+it, h) | < S in ul f(m) | 67™1* < oo
and therefore that
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lim sup |F(o +it, h)| < | FO)]| = || fll -

0—o—o00 —oo {0

Consequently, it follows from the Phragmen-Lindelof theorem,
[1, p. 137], that

12) NF@E h)||=||flle for c <0 and b >0.
But then by Montel’s theorem ]1, p. 132],

(13) there exists a function F'(z), analytic for ¢ < 0, and a sequence
hy>hy,>¢+++>h;> +++—0 such that lim,_, F'(z, h;) = F(z) uni-
formly on any compact subset of the open left half-plane ¢ < 0.

We propose to show that F'(z) is identically zero. To do this we
look at F'(it, h;). By (11), {F'(it, h;)}7-, is a bounded sequence of con-
tinuous functions on the interval — o <t < «. Consequently, it
follows from the notion of weak* convergence that there exists a
function ¢(¢) in L™ on —o0 <t < oo, with |g(t)| =||f]l. for almost
every ¢ and a subsequence {k; };_, of {7, with lim,..h; = 0 such
that for every &) in L N L' on —oo <t < o,

1 lim |~ e (it, by, )t = |~ ewarat .

Choosing £ in (14) to be the function
&u) = —olo* + (u — t)’ 't~ where ¢ < 0,
we see from (13) that
(15) F(o + it) = lim F(o + 1t, h;,)

n—oo

- lim —7'0 S“ Fiu, by )[o® + (u — tP]du

n—rco

= —lg S:q(u)[a2 + (u — t)’]"du .

Since | F'(o + it, h)| £ || f]l. for b >0 and ¢ £ 0, it follows from
(18) that |F(o + )| =||fll. for o < 0, and consequently from (15)
and [7, p. 447] that

(16) lim F'(o + 1t) = q(t) for almost every ¢ .
o—0—
If we can show that ¢(tf) = 0 on a set of positive measure, then
it will follow from (16) and the F. and M. Riesz Theorem for a half-

plane, [7, p. 449], that F'(¢ + 4t) is identically zero for ¢ < 0.
To show that q(t) = 0 on a set of positive measure we set

E* = {t, lim £ (tv, b) = o} :
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By hypothesis, £* is a set of positive linear measure in the infi-
nite interval —o < ¢t < . Let B* be any measurable subset of E*
of finite measure and let &;.(t) be the indicator function of B*. Then
by (14)

an lim Sf En(t)F(it, h; )dt = g q(®)dt .

However, F'(it, h;)) = f(tv, h; ), f(tv,h;)— 0 as n— o for ¢ in
B*, and | f(tv, h; )| = || f|l.. We conclude from the Lebesgue dominated
convergence theorem that

(18) lim S": Ep(t)F (it iy )it = 0 .

From (17) and (18), we obtain that S qt)dt = 0. B*, however, is
B*

an arbitrary subset of E* of finite measure. Therefore ¢(tf) must
equal zero almost everywhere in E*. Consequently, q(f) = 0 on a set
of positive measure, and we have that

(19) F(o+it)=0 for 0 <0,

By hypothesis, there exist a ¢, < 0, an open set UC.T,C and a
function ¢g(x) in L' on T, such that the following facts prevail:

(21) g(m) = f(m)e®™™* for every m :
(22) ¢ is continuous in U.
From (9), (13), and (19), it follows that

(23) lim Zf(m)e(v,m)o-()ei(tv,m)e—\mlhj — 0 for —o < t < oo .
On the other hand, as is well-known (see [10, p. 55]), (21) and
(22) imply

(24) lim S F(m)emooogitmeig=imiti — g(g) for x in U.

We conclude from (23) and (24) that g(x) =0 for = in U N G,.
However, since G, is dense in T, and U is open, U N G, is dense in
U, and consequently, g(z) = 0 in all of U.

Suppose that B(x,, k) € U. Then for 0 < h < h, and g,(x) defined
by (4), we have that g¢,(x) is a continuous periodic function which for
each fixed % is zero on an open set. In particular, g,(x + ,) is zero
on a subset of G, of positive linear measure. Since

ﬁ,.(m) = f(m)e(m,v)u'o ] B(O, h) l—-l S gt o ,
B(0sh)
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we conclude from the argument previously given that g,(tv + 2)) =0
for —o <t < o and 0 < h < h,. But then the continuous function
g,(x) is zero on a dense subset of T, and therefore for 0 < h < hy, g,(x) =0
for all # on T,. Consequently, g(x) =0 almost everywhere on T,.
We conclude from (21) that 7(m) = 0 for every m. Therefore f(x) =0
almost everywhere, and the proof of the sufficiency is complete.

3. Proof of necessity. Let v = (v, **+, v,) be linearly dependent
-over the rationals with v} + <+ + v; = 1. We shall show that there
exists a nonzero trigonometric polynomial f(x) in B," (and therefore in
C) such that f(x) =0 for « in G,.

Two cases present themselves. Either there exists a coordinate
v;, of v which is zero or all the coordinates of v are different from
zero. We handle the former case first.

Since |v| =1, there exists a coordinate v; of v which is different
from zero. Let m’ be the integral lattice point with 1 in the j,-
coordinate, sgnwv; in the j-coordinate, and zero at all other coordinates.
Similarly define m” to be the integral lattice point with 2 in the j,-
coordinate, sgn v;, in the j;-coordinate, and zero at all other coordinates.
Then (m',v) = (m”,v) = |v;| >0, and the trigonometric polynomial
f(x) =¢itm®) — gitm’®) g elearly in B;r. Also, f(tv) = et — gitm0) —
for —o <t < oo; f(x) is zero on G,, and the first case is settled.

Next, suppose that all the coordinates of v are different from
‘zero. Since by assumption v is linearly dependent with respect to
rational coefficients, there exists a nonzero integral lattice point m
such that (m,v) =0. Let m; be the first coordinate of m which is
different from zero. We can assume sgnm; = sgnwv;, for otherwise
we can replace m by —m. Let m’ be the integral lattice point with
sgnwv;, in the jy-coordinate and zero elsewhere. Set m” =m + m/'.

“Then
(m",v) = (m + m',v) = (m,v) =|v,;,| >0,

and the trigonometric polynomial f(x) = ei™® — ¢™"® jg in B} and
is zero on G,. The second case is settled, and the proof of the theo-

rem is complete.

4. Counter-example for A,. Given v linearly independent with
respect to rational coefficients, we shall exhibit a function f(x) in L=

on T, and in A} such that
(25) lhim fi(@) =0 for every z in G,
-0

and such that f(x) # 0 in a set of positive measure on T}.
We note once again that (25) implies that f vanishes on all of G,.
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We start in the classical manner (see [11, p. 276 and p. 105]).
Observing that G, is of k-dimensional measure zero, we see that there

exists a sequence of sets {G,};-, each open in the torus sense on T
with the following properties:

(26) T.D20G, >G>+ DG, DG,;
27 the k-dimensional measure of G, is =n™*.
We set
(28) g9.(x) =n* for x in G, ,
=0 forzin T, —G,,
and
(29) 0@) = 3, 0,() -

Now S g(x)dx < v, n% Consequently, g(x) is a nonnegative func-
T

tion on ka, and the set {z; g(x) = + o} is of k-dimensional measure
Zero.

Next, we set a(x) = ¢ ?) and observe that a(x) is a Borel measur-
able function on T, with the following properties:

(30) 0=ax)=1 for xin T,,
(31) {x; a(x) = 0} is of k-dimensional measure zero.

Observing that G,C G, for every n by (27) and that by (29),.
a(x) < e we see from (28) that for fixed n and a fixed «, in
G,, 0,(x) < e for h sufficiently small. We conclude that

(32) lima,(z) =0 for = in G, .
h—0
From (381) and (32), we see that there is no constant such that.
a(x) is equal to it almost everywhere on T,. Consequently there exists.

an m, # 0 such that @(m,) # 0. Since a(—w) satisfies (30), (31), and
(32), with no loss in generality, we can also assume that (m, v) > 0.

Thus we have
(33) a(my) = 0 and (mg, v) > 0.

Next, as in [8, p. 60], we introduce the complex Borel measure p
on T, defined by

(34) Srkb(x)d;t(w) - S:b(tv)(l — it)dt
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for every bounded Borel measurable function on T,.
From the fact that

g” M1 — i)yt = 0 for A= 0
= —(27)re for A <0,

we see that f(m) = (277:)"‘S e~ mAd u(x) is such that
T

(35) H(m) =0 for (m,v) >0
=0 for (m,v)=0.
We set
(36) f@) = @)+ | al@ — 1)dp)

and shall show that f has the requisite properties set forth at the
beginning of this section. ’
In the first placce, we see from (30), (34), and (36)

If(@)] < @r)* 81(1 + )t for x in T,,

and consequently f(x) in L* on T,.

In the second place, we observe from (36) that f(m) = &(m)f(m)
and consequently by (35) that f(x) is in AF. Furthermore, by (33)
and (35), F(my)) = 0. Consequently, f(x) =0 on a set of positive
measure on T.

All that remains to establish is (25). Let x, be a fixed point in
@,. Then by (86) and Fubini’s theorem,

(37) @) fila) = || e — 1)dp)
- S"_" a,( — to)(L — it)>dt .

By (30), |a,(%)| = 1 for all  on T,. Furthermore, since , is in G,, so
is ¢y — tv for —w <t < . Therefore, by (32), lim,_,a,(x, — tv) =0
for —oo <t < . We consequently conclude from the Lebesgue
dominated convergence theorem and (37) that lim,_, f.(x,) = 0, and (25)
is established.
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