MEASURABLE SETS OF MEASURES

LESTER DUBINS AND DAVID FREEDMAN

1. Introduction. Let M be the set of all countably additive,
finite, signed measures on a o-field X of subsets of a set X. There
is a natural definition of measurability in M, namely, a subset of
M is measurable if it is an element of X*, the smallest o-field of
subsets of M such that: for each AeZX the function g — p(4) is
measurable from M to the Borel line. The purpose of this note,
motivated by questions arising from (Dubins and Freedman, 1963) is
to investigate the measurability and category of interesting subsets
of M, under the assumption that Y is countably generated.

Here are some results. If X is compact metric, and ¥ is the
o-field of Borel subsets of X, then any subset of X with the Baire
property is measurable for a residual set of probability measures
(8.17). If also X is uncountable, there are weakly open, but not
2*-measurable, subsets of M; see (3.2). There is a G5 in the three-
dimensional unit cube whose convex hull is not Borel (3.22). If F is
a continuous, strictly monotone, purely singular distribution function
on the unit interval, then F' is differentiable only on a set of the
first category (4.8).

2. The abstract case. Let X be a nonempty set, . a countable
field of subsets of X, and 5 the smallest o-field including &

2.1. Let &7 be a o-field of subsets of a set 2, and let ¢ map
2 into M. Then @ is measurable from (2, ) to (M, 2*) if and
only if the function @ — P(w)(A) is measuradble from (2, ) to the
Borel line for each Aec 7.

Proof. Routine.

2.2. If ¢ is a measurable map from (2, ) to (M, 2*), and f
18 a bounded, measurable function from (2 X X, & X 2) to the

Borel line, then w — xf(w, 2)p(w)(dx) is a measurable function from
(2, &7) to the Borel line.

Proof. Extend from indicators of measurable rectangles.

2.3. The o-field X* is countably generated.
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Proof. Use (2.1).
2.4. For each pre M, the set {1} is measurable.
Proof. {#} = Nueglv|ve M, v(4) = ((A)}.
2.,5. If ¢, and @, are measurable maps from (2, 7) to (M, 3*),

then so are @,+ @, and cp, for any real number ¢, and {0 | ® € 2, (W)=
Py} e

Proof. Use (2.1) for the first two assertions, and (2.4) for the
third,

2.6. IfpeM, and AcZX, for any 0 > 0 there is a set A(¢, 0) € F
whose symmetric difference with A has p-measure less than o.

Proof. (Halmos 1958, Theorem D, page 56.)
Let M+ be the set of nonnegative measures on (X, X).

27. The set of nonmegative measures is measurable; so is the
set of probability measures.

Proof. M*=esltt| e M, 114) = 0).

If & is a o-field of subsets of the set 2 and W, then W~
is the o-field of subsets of W having the form WNA, Ae
Abbreviate M*3* to X*. Recall that pe M is the difference of two
unique, nonnegative, mutually singular measures g#* and pg~. Let
] =g + p~ and || p]] = | £ |(X).

2.8. THEOREM. The maps p— pt and p— p= are measurable
from (M, X*) to (M*, X7).

Proof. By (2.5), it is enough to check the first assertion. By
(2.6), if Ae 2, then p#*(4) = sup {#(ANB):Be . #}. Hence pt— put(4)
is measurable and (2.1) applies.

+ 2.9, The map p— || is measuradble from (M, 2*) to (M*, 2+).
The function p— || ¢l ts measurable from (M, 2*) to the Borel line.

Proof. (2.5) and (2.8) imply the first assertion, and it implies
the second.

Recall that for ¢ and v in M there are two unique elements
S(y, v) and A(y, v) of M with:

(i) p=S8(,v) + Ay, v);
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(ii) S(y,v) and vy are mutually singular;
(iii) A(y, v) is absolutely continuous with respect to v.

2.10. THEOREM. ThemapsS: (#,v)—S(y,v)and A: (¢, v)—A(, v)
are measurable from (M XM, 3*xZ*) to (M, Z*).

Proof. If p,veM* and Ael, then  S(x, v)(4) =
lim,_.. sup{#(ANB): Be &, v(B) < n™}, by (2.6) and (Halmos, 1958,
Theorem B, page 125). By (2.1), S restricted to M*x M+ is I+ x I+-
measurable; apply (2.8) and (2.5).

2.11. The set of (¢,v) tm MXxM with p absolutely continuous
with respect to v is in T* X 3I*, as are the set of pairs (, v) with
L equivalent to v, and the set with p and v mutually singular.

Proof. Use (2.10) and (2.5).

Recall that an atom of Y is a nonempty 2-measurable set with
no proper nonempty X-measurable subset. Write a(X) for the collec-
tion of atoms of X. It e M, then {A: Aea(X) and p(4) > 0} is
countable. If this set of atoms is empty, g is continuous; if
Nell =2{ mA)]: Ae a(2)}, then p is atomic. Any pe M is the sum
of a unique atomic f, € M and a unique continuous g, € M.

2.12. THEOREM. The maps pt— M, and p— ., are measurable
Srom (M, 2*) to (M, 2*).

Proof. As usual, it suffices to verify that, for a fixed A€ X,
the function ¢t — pt(A) is X*-measurable on M*. For this purpose,
let {II,: »=1,2, ..} have the following properties:

(i) each II, is a partition of A into a finite number of elements
of X;

(ii) 11,., is a refinement of II,;

(iii) AZY is the smallest o-field of subsets of A which includes
U.1,. Ford>0,let @,s(¢) =2{u(B): Be Il,, M(B) <d}. Clearly, @,,s
is XY*-measurable on M™*, and increases to a Xt-measurable function
@s on M* as m increases to o. As 0 decreases to 0 through a
fixed sequence, ®; decreases to a X*-measurable function @ on M™.
The argument will be completed by showing that o(#¢) = ¢, (4) for
preM+. If A,ell, and A,DA,+;, for 1 = n < o, then N4, is
empty or an atom of ¥, and in either case has f,-measure 0. The
famous lemma of Konig (1936, Theorem 6, page 81) then implies
lim,..max {¢#,(B): Be lI,} = 0; so ®s(¢t) = #,(A). For the reverse
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inequality, if ¢>0 there is a positive ¢ so small that X{¢,(B): Be a(2),
Bc A, p,(B) <0} <e, which implies @5(2t) < f,(4) + e.

2.13 Both the set of atomic measures and the set of continuous
measures are measurable.

Proof. (2.12) and (2.5).

2.14. The set G of probability measures with max{¢(A): A € a(X)} >
9/10 ¢s measurable. Lel g be any function from G to X such that,
Jor all pe@, the pu-measure of the Z-atom containing g(t) is greater
than 9/10. Then g is GX*-measurable.

Proof. Adapt the argument for (2.12).

- 3. The compact metric case. If £ is a topological space, o(f2)
means the smallest o-field of subsets of 2 which includes the topology.
In this section, X is a nonempty compact metric space, and Y is 0(X),
the o-field of Borel subsets of X. According to a famous theorem of
Riesz, M can be identified with the dual of C(X), the Banach space
of all continuous real-valued functions on X with the sup norm:
[| ]l = max {|f(x)|: € X}. Unless otherwise noted, M has the weak
* topology; and subsets of M have the relative weak * topology.

3.1. The smallest o-field including the weak * topology of M
s X*; that s, 3* = a(M).

Proof. Easy.

Let P Dbe the set of probability measures on (X, ). Then P is
a compact metrizable subset of M*; and M+ is a closed subset of M.
It is less widely known that M* is metrizable; it is complete and
separable in this metric:

’

o) = 5,27 1551 [ — [

where {f;:1=<J < w} is dense in C(X). Thus 3* = o(M™*) is the
Borel o-field of M*, and PXY* = o(P) is the Borel o-field of P.

3.2. THEOREM. If X s uncountable, there is a weakly open
subset of M which is mot X*-measurable.

Proof. Let N be a nonanalytic subset of X, and E = {¢: pe M,
P} > 9/10 for some x€ N}. Then E is weakly open. If EP were
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an analytic subset of P, then—using the notation and result of (2.14)
EPc G and N = g(EP) would be analytic, a contradiction.

Recall that the support C(¢) of pe M is the smallest closed
subset K of X with |¢|(X — K)=0. It is familiar that a closed

subset E of X includes C() if and only if Sfd)u = 0 for each fe C(X)
vanishing on E.

33. If p,eM,1=<n< o and p,— prc M, then C(¢) is a sub-
set of the closure of Up-.C(tt,).

Proof. Easy.

Let 2% be the space of nonempty closed subsets of X, endowed
with the usual compact metric topology (Hausdorff, 1927, Section 28).

3.4. If M, is a metrizable subset of M and does mot contain
the zero measure, the restriction of C to M, is lower semi-continuous
iwn the sense of (Kuratowskt, 1932, page 148).

Proof. Use (3.3).
Let M, be the set of nonzero elements of M.
3.5. The map C is measurable from (M, o(M,)) to (2%, d(2%)).

Proof. M, is the countable union of metrizable sets. Then use
(3.4) and (Kuratowski, 1932, page 152).

3.6. For each Ke2%, the set of probability measures whose
support s K is a G; in P.

Proof. Use (3.4) and (Kuratowski, 1932, page 151).

3.7. The set of mnonnegative measures whose supports have no
1solated points is an F,s in M*, as is the set of nonnegative measures
whose supports have nmo interior.

Proof. Since the set of perfect, nonempty subsets of X is a G;
in 2% ag is the set of closed, nowhere dense, nonempty subsets, (3.4)
and (Kuratowski, 1932, page 152) apply.

3.8 The real-valued function (¢, K)— t(K) 1s upper semi-
continuous on M+ x 2% with the product topology.

Proof. Endow C(X) with the norm topology. There is a natural
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embedding of 2% into C(X): assign to Ke€2%f the function KeC(X)
whose value at e X is

1 — [(distance from x to K)/(diameter of X)].

As is eagily verified, K -—>I§'A is continuous (and 1-1, although this
will not be used); moreover, K™ decreases pointwise to the indicator

of K as n increases to o. Since the funection (z, f)— S Jdy is con-
tinuous on M* X C(X), the functions (¢, K) — SK”dﬂ are continuous

on M* x 2%, This sequence decreases pointwise to the funection
(¢, K) — ((K) as n increases to oo,

3.9. The function (g, K)— ((K) is measurable from (M x 2%,
o(M) x o(2%)) to the Borel line.

Proof. Use (2.8) and (3.8).

3.10. The function (¢, v) — p[C(v)] ts measurable from [M x M,
o(M) x a(M)] to the Borel line.

Proof. Use (3.5) and (3.9).
3.11, The set of (¢, K) in M+ X 2% with (K) =0 is a G,.
Proof. TUse (3.8).

3.12, For each dense subset G of X the set of p in P with
Ht@G) =1 is dense in P.

Proof. Approximate ¢£€ P by a finite linear combination of point
magses.

3.13. The set P, of p in P assigning positive probability to
all nonempty open subsets of X is a dense G5 in P.

Proof. For each open subset V of X, {u: pecP, p(V)=0} is
closed. Let {V,: 1 <n < o} be a basis for the topology of X. Then
P— P, is Uf{¢: peP, (V,) =0}, an F,. Plainly, P, is dense.

3.14. The set of continuous tt in P is & G, It is dense in P
if and only if X has mo isolated points.

Proof. For the first assertion, if 6 >0, then {¢#: peP, and
p{x} =0 for some x€ X} is closed. For the second, if X has no
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isolated points, then each open subset of X has cardinality ¢ and
supports a continuous g€ P, The converse is easy.

3.15. If G is a dense Gs tn X, then the set G, of p in P with
MG =1 1is a dense G; in P.

Proof. Let {U,: 1 < n <oo} be open sets whose intersection is G.
Then G, = N N=fp: pe P, (U,) > 1 — 57, and (3.12) applies.

Any superset of a dense G; is 7residual. The complement of a
residual set is of the first category. A set not of the first category
is of the second category.

3.16. If F s of the first category in X, then F has outer
measure 0 for a residual set of ¢ in P.

Proof. (3.15).

Reecall that Bc X has the property of Baire if there is an open
subset of X whose symmetric difference with B is of the first
category. For a discussion, see (Kuratowski, 1958, Section 11). If
X is uncountable and g€ P, there are f-measurable sets without the
property of Baire; if g is continuous, there are sets with the property
of Baire whose inner g-measure is 0, and whose outer y#-measure is 1.
According to (Kuratowski, 1958, pages 421-423), there is a subset of
X which is p-measurable for no continuous g€ P. There is, however,
a connection between measurability and the property of Baire:

3.17. THEOREM. If B s of the second category in X and has
the property of Baire, then B is p-measurable and of positive p-
measure for a residual set of p im P.

Proof. B differs from a nonempty open set by a set of the first
category. Apply (3.16) and (3.13).

3.18. If peP and either X has mo isolated points or p s
continuous, then there is a demse Gs in X of p-measure 0.

Proof. As in (Halmos, 1958, (4) on page 66).

3.19. The set P, of pairs (Y, v) with p and v mutually singular
8 & Gs in P X P. It is dense if and only if X has no isolated
points.

Proof. Let {f,:1 =n < =} be dense in the unit ball of C(X),
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and let F(4, v) = maxX, ;<. | Sf,dy — Sf,dv I Then F’, is continuous on

P x P for each m, and the sequence {F,} increases pointwise to
F: (¢,v)— || —v]|l. So F is lower semi-continuous, and P, = F~{2}
is a G;. For the second assertion, use (3.12) in one direction, and
(3.13) in the other.

3.20. THEOREM. UFor each p in P, the set p, of v in P
singular with respect to pt is a Gs. If X has no tsolated points or
U 18 continuous, then p, is dense in P.

Proof. p, is a Gy by (8.19), and dense by (3.12), (3.18).

There are reasonable sets of probability measures which are not
Borel. A first example.

3.21. If X s uncountable, the set of probability measures with
uncountable support is analytic but not Borel; the set of probability
measures with countably infinite support is analytic but not Borel.

Proof. As reported in (Kuratowski and Szpilrajn, 1932, pages
166-169), the set of uncountable closed subsets of X is analytic but
not Borel in 2%, To obtain the first assertion in (3.21), apply
(Kuratowski and Szpilrajn, 1932, Proposition IV, page 163). The
second follows from the first, because the set of probability measures
whose support has k points or fewer is closed, for every natural
number k.

A second example: it is natural to guess that the convex hull
of a Borel set is Borel, especially since this happens to be true in
two-dimensional Euclidean space. However,

3.22, THEOREM. There is a Gs of the wunit cube in three-
dimensional Euclidean space whose convex hull is not Borel.

Proof. Let A be a G; of the unit square whose projection A*
on the z-axis is not Borel. Let 4, ={(x,¥): 0= =<1, —0o <y < oo,
(x,y —n)e A}, and A, = U _. A,,.. Let f be a homeomorphism of
(0,1) onto (—o, ), and let B={z,9): 0=z=1, 0<y<l,
(x, f(y)eA.}. For any e in (0,1), the projection of BN {(x, ¥):
0s2=1 0=y=<et or of BN{kx,9): 021, 1—exy=s1}
onto the x-axis is A*.

Let ® map the unit square into the unit cube by o(x,y) =
{®, y,1/2 — [1/4 — (x — 1/2)]3}. Thus ® maps the unit square homeo-
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morphically onto a half-cylinder C, and ®(B) is a G;. If its convex
hull H were Borel, then =(C N H) would be Borel. Also the sec-
tion of @ X(C N H) by the line y =1/2, 0 < 2 =<1, namely A* trans-
lated upward by 1/2, would be Borel, a contradiction.

4. The unit interval. In this section, X is the closed unit
interval.

4.1. The set of p in P with well-ordered support is comple-
mentary analytic but not Borel in P.

Proof. The set of closed, nonempty, well-ordered subsets of X
is complementary analytic but not Borel in 2% (Kuratowski and
Szpilrajn, 1932, page 166).

We conjecture that the set of probabilities whose support has a
given order-type is Borel, but have verified this only for well-
ordered order-types. More generally, for any compact metric space
X, the collection of elements of 2%¥ homeomorphic to a fixed K€ 2%
may be Borel. These conjectures have been confirmed in: Dana Scott,
Invariant Borel sets, Fund. Math. 41 (1964) C. Ryll-Nardjewski, On
Borel measurability of orbits, to appear , On Freed-
man’s problem, to appear.

Other questions arise from differentiation. For each z in [0, 1)
and real-valued function f on [0,1), the wupper and lower right
derivatives of f at x are

SH@) = H‘}L sup YL@ + y) — f(x)]

and
Fa(®) = lir}llﬂggf Y[ f@ + y) — f@)] .

The next main result is (4.5). For the preliminaries (4.2)-(4.4), let
AecX* and for ptc A suppose the real-valued funection f, on [0, 1) is
continuous, and for each x€[0,1) the function g — f.(®) is measur-
able from (A4, 0(A)) to the Borel line.

4.2. The function (x, tt) — f¥(x) s measuradble from {[0,1) x A,
o]0, 1) x o(A)} to the extended Borel line.

Proof. By a familiar argument, the function (x, ft) — fu(x) is
measurable; and

f#(x) = lim sup {f“(x + "2 —ful®. ¢ <r<alhr rational} .

43. If 0=a <b<1, then the functions Sy, : ¢t — sup {f¥(x):
a = v < b and I, : ¢ — inf {f¥(x): @ < x < b} are measurable from
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(4, 0(A)) to the extended Borel line.

Proof. By a theorem of Dini (Saks, 1937, page 204),
Ste.s () = sup {f"(y)——ﬁi@lz asr<y< b} ,
Y—

where  and y can be restricted to rational values. An identical
argument shows that I, is measurable.

4.4, The set A, of pc A with f. continuously differentiable on
{0, 1) s measurable.

Proof. By the same result of Dini, f, is continuously differentiable
on [0,1) if and only if f is continuous there. Hence A, = N.Bj,
where B; is the set of e A with —oo < Iy 53 () < Spoa—iy(t) < o0
and

lim max  {Sia-nsmmeem() — Tu—y (@)} = 0.
n—reo 15k52M—2"—J

It peM, its distribution function F, is defined as F.(x) =
¢[0, z] for xe X.

4.5. THEOREM. The set C, of pe M whose distribution function
F, has a kth continuous derivative F¥ on [0, 1) is measurable; and
the function (x, F{¥)— F#(x) is measurable from {[0,1) x C,,
a[0, 1) x a(C,)} to the Borel line.

Proof. For k=0, use (2.12). Then apply (4.4) and (4.2)
inductively.

If a real-valued function f on [0,1) is infinitely differentiable
there, let S,(f, %, %) = S0 f9(2)/7! (x — x). Then f is analytic
on [0,1) if each =x,€[0,1) has a neighborhood N(z,) in [0,1) on
which S,(f, %, +) converges uniformly to f.

4.6. THEOREM. The set of p im M with F, analytic on [0, 1)
is measurable.

Proof. The set C. = (), C, is measurable, and for each z,¢ X,
the funection (g, x) — S, (F,, ®,, ) is measurable from {C. x [0, 1),
o(C.) X 0[0,1)} to the Borel line. If J is an interval, then
Rozyeg s t— 8UDses o521 | Fu(®) — Su(Fy, @, ©)| is measurable on (C.,
0(C.)), since x can be restricted to rational values. Therefore, the
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set A(x,, J) of peC, with lim, ... R,;,.,(#) =0 is in 0(C.). The set
of ¢ with F, analytic on [0, 1) is

" A28 [ — 1)/2, (5 + 1)/28]) .

Let Pr be the set of ¢ in P which are continuous, singular
with respect to Lebesgue measure, and assign positive measure to all
nonempty open sets.

4.7. The set Pr is a dense Gg in P,
Proof. (3.14), (3.20), (3.13).

According to (Saks, 1937, Chapter 1V), if pe Pr, then F, is
differentiable with derivative 0 on a set of Lebesgue measure 1, and
differentiable with derivative o on a set of #-measure 1. Topologically
speaking, however, F, is differentiable essentially nowhere:

4.8 THEOREM. The set of pairs (x, p) with F}(x) = o and
Fu(x) =0 is a Gs in [0,1) X Pr. Each of its section is dense.

Proof. Let W be the set of pairs (x, #) in [0,1) X Pr with
F.(x) =0, and W* the set with F}(x) = . It is enough to prove
that W and W* are G;’s with dense sections.

The complement of W in [0,1) X Pr is Uz, C,., where C, is the
intersection over all rational s in [0,1) of {(%, #): 0 =2 <1, pe Pr,
and either x = s or Fu(s) — Fu(x) = (s — x)}. Since each C, is
closed, W is a G,;. Being disjoint from the dense set on which F),
has zero derivative, the section of C, by ¢ in Pr has no interior.
The section of C, by « in [0, 1) has no interior because, for ¢ in Pr,
arbitrarily small translates modulo 1 of ¢ have distribution functions
with 0 derivative at ®. Then the sections of W are dense according
to Baire’s category argument.

The similar proof for W* is omitted.

There is, of course, an analogous theorem for derivatives from
the left.
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