BOUNDARY KERNEL FUNCTIONS FOR DOMAINS
ON COMPLEX MANIFOLDS

L. BUNGART

1. Introduction. Let D be a domain with piecewise differentiable
boundary on a complex manifold X on which the holomorphic functions
separate points. L*do) is the space of square integrable functions on
the boundary 8D of D with respect to a surface measure do on 8D
associated with a given riemannian metric on X. We can consider the
space H(D) of holomorphic functions on D as a subspace of L*do).
Let H? be the closure of H(D) in L*do).

The restriction mapping from H(D) into the space H(D) of holomo-
rphic functions on D is shown to extend to a continuous mapping
9. H* —'H(D) (Lemma 4.1). A kernel k: D— H?* is associated with this
mapping; k is conjugate holomorphic, and % = iok is a holomorphic
kernel function on D X D* where D* denotes the space D with the
conjugate structure (Theorem 5.1). In 8§86 we discuss the special case
of Reinhardt domains in C*, and in § 7 an attempt is made to generalize
Theorem 5.1 to domains on analytic spaces.

The author would like to thank E. Bishop for the hint that the
results of this paper could as well be proven for complex manifolds on
which the holomorphic functions separate points rather than only for
Stein manifolds as was originally done, with only minor changes in
the proofs.

2. Nowhere degenerate mappings. In the following X will
always be an analytic space of pure dimension n. We assume that X
is “countable at infinity” i.e. that it can be covered by a countable
number of compact sets. We also assume that the holomorphic functions
on X separate points.

Under these hypotheses there are nowhere degenerate holomorphic
mappings from X into n-dimensional complex affine space C*; a nowhere
degenerate mapping is a map f: X— C™ such that for any peC™,
{f(®) = p} is a discrete set on X. In fact it is proved in [1] that the
set of all mowhere degenerate holomorphic mappings from X into C™
18 dense in the Frechet space of all holomorphic mappings from X
wnto C" (Theorem 1 in [1]).

If f: X— C” is a holomorphic nowhere degenerate mapping then
each point x € X has a neighborhood U, with the following property:

F(U,) ts a polycylinder in C™ with center f(x); f is a proper
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mapping from U, onto f(U,), and there is a proper subvariety
4, of f(U,) such that U, — f~(4,) — f(U,) — 4, is an s,-sheeted
covering map; the set f~(d4,)N U, is closed and nowhere dense
wm U,

This can for instance be verified as follows. Let 5 be an embedding
of a neighborhood U, of 2 into some C*; (f,j) gives an embedding of
U, into C™ X C* and (f(x), 7(x)) is an isolated point of (f, 7) (U,) N {f(x)} X
C"* so that the assertion is a well known fact (see for instance the
discussion in [5, section 2]).

LEMMA 2.1. Let U be a relatively compact open subset of X and
ye U. There is o nowhere degenerate holomorphic mapping w: X —
C" such that {x € X: n(x) = n(y)} does not conlain any point of the
boundary 08U of U.

Proof. The set of all holomorphic mappings g: X — C* with
{xe X: g(x) = g(y)} NOU = ¢ is clearly open in the space of all holomor-
phic mappings X — C”. Thus, by the previous remarks, it suffices to
prove that this set is not empty.

Let @ be a relatively compact open subset of X containing the
closure U of U. Let f be any nowhere degenerate holomorphic mapping
from X into C*. For simplicity we assume that f(y) = 0. Let hy, +--, h,
be holomorphic functions on X vanishing on f~%0) N U such that
{hy=+++=h, =0 NOU = ¢; this can be done since the holomorphic
functions on X separate points. Notice that the difficulty lies in proving
that one can choose % such functions.

Let S=@Q x C" and denote the projection of S on @ by ¢ and
the projection onto C™* by p. Define the functions

Fy(o, 1) = £z) + 3 tahu(o)

holomorphic on S. We want to show that we can choosz ¢ in such a
way that {Fi(z,t) = 0,1 < j < n} does not meet aU.
There is a neighborhood N of 0 in C™* such that for each te N

{Fi@, )=+ =F(,) =0 NQ

is finite because there are no compact subvarieties on X.

Let B=0UXC"CS and V= {1t Fiz,t)=0,1=7 =< n}.
We show that 0 is not an interior point of (BN V). We prove in
fact that NN p(BN V) is of first category.

q: V — Q is certainly locally open at every point (%, t) with A;(x) = 0
for some %, thus in particular at every point of BN V. Since
¢(BN V)calU, BN V cannot contain interior points. Hence BN V
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is a closed nowhere dense subset of V. p~'(f) N V is finite for all te N.
Therefore p™(N)N V is of pure dimension nk and every point
zep ™ (N) N V has a neighborhood W, such that p: W,— p(W,) is a
proper mapping onto a neighborhood of »(2) which is a covering map
off some proper subvariety of p(W,).

Thus p(B N W,) is closed and nowhere dense in p(W,). Therefore
p(BN V)N N is of second category since p~(IN) N V is second countable.
This .completes the proof.

3. The martinelli integral formula. For z,{eC" 2z #{, let

3.1) g=-_$ Z=l

where
O;=dz, NdZ, N\ «+« Ndz; N[dZ;] N «++ A dz, N\ dZ,

the term in brackets being left out
The Martinelli formula ([2], [12]) asserts that

(3.2) o=\ fa, ceD

for every function f holomorphic in a neighborhood of the closure D of
the bounded domain D in C™ with piecewise differentiable boundary 6D,

That D has piecewise differentiable boundary shall mean the
following:

There is a finite simplicial complex K in C™ with these properties:

(1) Every simplex se K is a C~ mapping from a neighborhood
of a standard simplex 4* in some R*, k < 2n, into C” which yields a C*
embedding of the closure of 4* into C™.

(2) The support of K is D.

(8) @D = 0D and there is a subcomplex K, of K whose support
is 0.

We consider the 2n-dimensional simplices in K with the orientation
induced by C™ and the (2% — 1)-dimensional simplices in K, with the
natural orientation that they carry as boundaries of 2n-dimensional
simplices in K i.e., they are oriented in such a way that the positive
normal points into the domain D.

The integration in (3.2) is then to be interpreted as integration
over the chain XYC , where C , are the (2n — 1)-dimensional simplices
in K,, and the integral is independent of the particular choice of
the complex K.

Suppose now X is a complex manifold of pure dimension % and D
a relatively compact domain in X with piecewise differentiable boundary
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0D. Suppose that the holomorphic functions on X separate points.
Let 7 be a nowhere degenerate mapping from X into C*. Let a;, (e C*
be the (n — 1)-form on C" — {{} defined by (8.1). For ye C we denote
the form n*a,, on C — {Z'n(y)} by B,.

LemmA 3.1. Suppose n7'n(y) N 0D = &. Then for every function
f holomorphic in a relatively compact neighborhood U of D,

(3.3) > fi)= Sapfﬁu

texr~lx(y)ND

counting multiplicities in the summation.

Proof. Choose neighborhoods P,, «--, P, of the points y = ¢,, ++-, ¢,
in 77'7(y) N D such that P, N P; = @ for © # j, P; C D, n(P;) = n(P))
and 77'z7(P) N D= P, U -+-+- U P,; shrinking the P; if necessary we
may assume that there is a nowhere dense subvariety 4 of #(P,) such
that 7 is biholomorphic at every point of P; — 77(4),1 = j <s.

Let 9’ be any point in P, with 7#(¥')¢ 4. Choose neighborhoods
v,-.---,U P of the points y' =%, ---,t, in 7#7'n(y’) N D such that
UnNnU,=@ for ¢ #+J, U;c D, and 7 is biholomorphic on U;, 1 < 1,
j <4 We can modify a triangulation of D in such a way that there
are triangles D, «-+, D P such that ¢} is an interior point of D; and
D;,cU,lsj=+4 Let D'=D-—DU --- UD/

For any function g holomorphic in an open set Win C”, d(ga;) = 0
on W — {{}. Therefore d(fB,) = 0 in a neighborhood of any point in
U — n'n(y’) at which 7 is biholomorphic. Since the set of such points
is open and nowhere dense in U — 7~'n(y’), d(fB,) = 0 on U — n'n(y’).
Thus by Stokes’ theorem

Z 4
(3.9 [, 78 = 3, 780 =S58

The left hand side of (3.4) is a continuous function of ¥'€ P, and so
is the right hand side. Since the equality (3.4) holds on the dense
subset P, — 7w7%(4), it holds on all of P,. This completes the proof.
Now we make use of a device of [1] (Theorem 7) to write Lemma
3.1 in a more general form.
Let w be a holomorphic function on U. Define

W@, ¥) = (@) — w(y)) --- (w,) — wy))

where s is the number of sheets of D over zn(x) and 7 'n(x) ND=
{x =2, 2, +++, ®,} counting multiplicities. wW(x, ¥) is clearly holomorphic
in y. It is also holomorphic in (x, ¥) in a neighborhood of every point
=, ¥") with 77'n(x°) N 6D = @. One writes
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W(w, y) = 3 =+ a,(x) (w(y))

where the a; are elementary symmetric polynomials of {w(z,), - - -, w(zx,)}.
Every such polynomial is a linear combination of an elementary sym-
metric polynomial @ of {w(z,), ---, w(x,)} and the product of w(x) =
w(x,) with a polynomial a;x) of lower order. Thus if each o is
holomorphie, one can prove by induction that the @; are holomorphic.
As before let P=P U -+ U P, be a neighborhood of 7#'z(z°) N D
such that = is a covering map off some proper subvariety 4 in w(P)
and 77'7(P) N 8D = @.  can then be considered as a function on
7(P).  is holomorphic on 7w(P) — 4, hence @ is holomorphic on all of
w(P) by a well known theorem on removable singularities (see for
instance [13]).

LeMMA 3.2. With the notation of Lemma 1.1

[, 5@, )8, = 2w) fw)
where W(yY) = W(y, ¥) 18 holomorphic in a meighborhood of Y.

Proof. By Lemma 3.1

4
[, 78, 8, = 3w B, v)

where 7w7'm(y) N D={y, +-+,¥,} (counting multiplicities). Since
W(y, ¥;) = 0 for y¥; # vy, the lemma is proved.

4. H%spaces. Let X be a complex manifold of pure dimension
n such that the holomorphic functions on X separate points. Let ds’
be a riemannian metric on X. Assume D is a domain on X with piece-
wise differentiable boundary. Let do be the volume element on 8D
associated with the metric induced by ds®. L?= L*do) is the Hilbert
space of square integrable functions on 8D. The space H(D) of functions
holomorphic in a neighborhood of D is in a natural way a subspace of
I?, the natural map H(D)— L? being injective by the maximum
principle. Let H? = H*@D) be the closure of H(D) in L.

Consider now the restriction map r: H(D) — H(D) from H(D) into
the space H(D) of holomorphic functions on D. H(D) is a Frechet
space in the topology of uniform convergence on compact sets. We
would like to extend 7 to a continuous mapping from H* into H(D).
For this it suffices to prove the following lemma.

LEMMA 4.1. The restriction mapping r: H(D)— H(D) s continuous
if we consider H(D) with the topology imduced by L2
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Proof. Suppose f converges to 0 in H(D). Let xe D. We show
that f converges to 0 uniformly in some neighborhood of x.

According to Lemma 2.1 we can find a nowhere degenerate mapping
7 from X into C" such that 7#7'7(U) N 8D = @ for some neighborhood
Uc D of . By Lemma 3.2,

@D o) [fW) = |, Sy, 8, for yeU.

If we can prove that the integral on the right of (4.1) converges
uniformly to 0 in a neighborhood of «, then f will also converge
uniformly to 0 in a neighborhood of #. This can be proved as follows.
By the closure of modules theorem [8][15], W generates a closed ideal
W(H(W)) in H(W) for every open subset W of X. Thus by the open
mapping theorem, the mapping H(W) — @(H(W)) which is multiplication
by @ is a homeomorphism whenever it is one-to-one; but for every
point in U there is such a neighborhood and a suitable % since the
funetions on X separate points. In fact, we can choose w in such a
way that @ is different from zero in some neighborhood of a given
point in U and thus avoid the use of the closure of modules theorem.
However, the above argument using the closure of modules theorem
will generalize to analytic spaces that we are going to discuss in § 7.

Thus we have to concentrate on the integral on the right of (4.1).
WY, +) is uniformly bounded on 8D for ¥ in a neighborhood of z, so
we need only show that

@2) [, 1 £E 181

converges to 0 uniformly on some neighborhood of x. Or it suffices
to prove that for any triangle 4 in the triangulation of 8D,

@3) [ e8]

converges to 0 uniformly in a neighborhood of #. There is a submanifold
M D 4 containing 4 as an open subset, and M has global coordinates
by, oo, bty (M is the diffeomorphic image of a neighborhood of a
standard (2» — 1)-dimensional simplex). Since B, depends continuously
on y if y is restricted to a suitable neighborhood of x we have an
estimate

@) [irriase] rrdt A - Adb,,

for 9 in a neighborhood U’ C U of #. Let do = g(t) olti A oo A digpse
There is a constant ¢’ > 0 such that g(t) > ¢’ for te 4. Thus
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@s) ¢\ [FPat A Adtun S | I FPgdt A e At < 1R

where || f]|l; is the norm of f in L?. This shows that the right hand
side of (4.4) converges to 0 as f tends to 0. This completes the proof.

We say that fe H” possesses a “holomorphic continuation” f = i(f)
into D. Though it seems plausible that two different elements of H?
have different holomorphic continuations into D (as is the case if D is.
the unit disc in C?), I see no way of proving this in this general setting.

5. The boundary kernel function. Let 7, be the continuous.
linear functional on H(D) which is evaluation at w € H(D), ,(f) = f(w).
Nw ot is a continuous linear functional on H? i.e. 7, is an element of
the dual H? of H?. We do not identify H* with H? but think of H*
as the space H*@D*) where D* is the domain D considered as a subset.
of the space X*, which is the complex manifold X with the conjugate
analytic structure. Thus H? are the conjugates of the functions in
H?, and the pairing between elements in H? and H? is given by

o= Sapfydo, feH,ge H?.

Let k, = 7, o 4€ H*. For fe H* we have {f, k,» = i(f) (w); thus {F, k,>
is holomorphic in w, or k, defines an H®= valued holomorphic function
k on D (cf. for instance [10] or [4, Theorem 4.1]).

Suppose now f,, ks, +++ is an orthonormal base for H? then /i, &,
is the dual orthonormal base for H? and

by =2 lny ko b,

where the sum converges~uniform1y on compact sets in D because of
the contirluity of k. Let £ be the function (z, w) — #(%,) (2) defined on
D x D*, k =<k,, k.>. Then

k(z, w) = 2 i(h,) (2)+i(hy,) (w) ,

where the sum converges uniformly on compact subsets of D X D*
because of the continuity of 7. Hence & is holomorphic on D x D*.
We recollect:

THEOREM 5.1. Let D be a domain with piecewise differentiable
boundary on a complex manifold X. We assume that the holomorphic
Junctions on X separate points. Let do be the surface element on 8D
associated with a riemannian metric on X, H?*is the closure of H(D)
in L¥do). There is a natural continuous mapping i: H* — H(D) that
extends the restriction mapping H(D) — H(D). There is a conjugate
holomorphic H*-valued function & on D such that
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i(f) (w) = Sapfkw do, weD.

i(k) = k is a holomorphic fumction on D x D* where D* is the space
D with the conjugate structure. If {h,} is an orthonormal base for
H?* then

and the sum converges uniformly on compact subsets of D x D*,

Similar considerations have been made by various authors, especially
by S. Bergman and G. Szego (cf. the introduction in [11]). However,
Theorem 5.1 seems to be the first general result concerning the
convergence of the kernel function. It has been obtained before in
the thesis [11] for the special case of holomorphically convex complete
Reinhardt domains with smooth boundary in C?®. We are now able to
extend some of the results of [11] to arbitrary dimensions.

6. Boundary kernel functions for certain Reinhardt domains.
Recall that a Reinhardt domain in C™ is a relatively compact connected
subdomain D of C” such that for every ze D, ¢tz = (t,:2y, «++, t,2,)
belongs to D for ¢ an element of the torus T™ = (e', +--, ), 0 <
@; < 2w,

In the following we assume always that D is a Reinhardt domain
with piecewise smooth boundary satisfying

2°€0D and 2}, = --- = 2§, = 0 for certain j; implies
6.1) that there are ze D arbitrarily close to 2° with

zj1:ooo:zjk=0.

Let e, - -+, e, be those coordinate functions #; for which {z; =0} N D =
@, and €, ***, e, those for which {z; =0} N D= @. It has been
shown [7,13] that the polynomials in e, ---,e,, %, ++-, e;* are dense
in the closure A(D) of H(D) with respect to the sup norm.

Let H? be defined as before; H? is the closure of A(D) in the space
L? of square-integrable functions on 0D (with respect to Lebesgue
measure).

LemMMA 6.1. The monomials {eft: -«« <eir, a; = 0 for 5 > m} are
orthogonal in H*.

Proof. Let T" be the m-dimensional torus {t:|¢, | = -« =|¢,| =
1} c C*. The elements of T act on 8D by toz= (t2, *-+, t,2,) for
teT*, ze0D. We consider 8D with this structure. 8D is essentially
the disjoint union of a countable number of open subsets U, isomorphic
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to V. X T under a nonsingular C? map, where V, is an open set in
R i.e., we can find a disjoint union of such U, having a complement
of measure zero on 8D. Namely, let U be the open set of regular
points on 8D; these are the points that have a neighborhood on 8D
which is a C? (2n — 1)-dimensional real submanifold of C”. Notice
that T*"o U ='U. 8D — U has of course measure zero on 8D, The set

UnU{z =0}

has measure zero on U since the set |J {#; = 0} has (2»n — 1)-dimensional
Hausdorff measure zero. (For the definition of Hausdorff measure see:
‘St. Saks, Theory of the Integral, Chapter II, § 8). |z, +--, |2.|, arg
2, *++, arg %z, have rank 2n at each point of C* — U {z; = 0}. Thus
at each point

zeU—-UNU{z =0}
|21, ==+, |2,|, arg 2, -+, arg 2, have rank 2n — 1, But
Trozc U—UNU{z =0}

so that |z,|, +--,|2,| must have rank % — 1 at 2; hence 2z has a
neighborhood U, in which #» — 1 of the |z;| and arg z,, -+, arg 2z,
are coordinates. These are then also coordinates for each point in
T"o U,. Thus we can write U— UN U {#; = 0} essentially as the
disjoint union of a countable number of open subsets U, isomorphic to
Vi x T™ as described above. Now let x = (x,, + -+, %,—;) be a coordinate
system for V, and @ = (@, « -+, @,) a coordinate system for T such
that ¢t; = ¢ for t€ T". Let g;; be the coefficients of the metric tensor
in the coordinate system (x, @). Since 7" acts isometrically on C*, it
acts isometrically on V, X T", hence the g;; are independent of the
coordinates @. For do the Lebesgue measure on 8D we have

S efle cov vgiuigh. oo @i dg
D
= ZkS 1/det (9:;) dw, - - deS W€ e 2B dp, e do, .
Vi Ly :

The integral over T™ is nonzero if and only if a; = 8;,1 < j < n.
We define

(6.2) hy= GO (>0 for 5> m) .

” ele coe cpn “2

COROLLARY 6.2. The {h,} form an orthonormal base for H*. Now
by Theorem 5.1,

k(z, w) = 2 ho(2) ho(w)



1160 L. BUNGART

converges untformly on compact subsets of D x D. But we can do
better in this special case:

TH_EOREM 6.3. For each compact set K < D there is a netghborhood
U of D such that

k(z, w) = 3 ho(2) ha(w)

converges uniformly on U x K. Thus k(z, @) can actually be considered
as a hoiomorphic Junction on D* with values in A(D). For each
w, € D, k(z, w,) belongs to H(D).

Proof. Let K D be compact and choose a compact set K, D
containing K in its interior. Let 2°€ 8D and find 7€ C" 7 % 0 such
that 1:2° = (D2y, + -+, N2,) € D. We can choose the 7); arbitrarily close
to 1 (condition (6.1)). Now

2 ha(12") haly)

converges uniformly in y € K,. Let we K and consider (2} + ¢;)w;. If
2} # 0 define y;€ C by

0 Niv: = 1028 nt 2] W, = 22V .
@ + eym; = 0 + S, = 0,

%3

and y; = w; otherwise. For 7 close enough to 1, ¥y = (y;)e K, as w
runs through K and e = (¢;) stays in a small neighborhood U of 0 in
C*. Thus if 2} = 0 for all j,

(6.3) 3 ha(@ + €) Fra(w)

converges uniformly in e U, we K., In general define . € D by (2.); =
723 if 2} # 0, (x,); = ¢; if 23 =0. Then if U is chosen small enough,

2 hol@e) Ba(y)

converges uniformly in ec U, y € K,, and we [can conclude as before
that (6.3) converges uniformly in ec U, we K.
This proves the theorem since D is compact.

COROLLARY 6.4. The map i: H®— H(D) constructed in Theorem
5.1 is tmgjective.

Proof. Suppose fe H* and ¢(f) = 0. Then
(6.4) () (W) = ZLF, by hg(w) = 0,

But (6.4) is a Laurent expansion; thus by the uniqueness theorem for
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Laurent series, {f, k.> = 0 for all @, hence f = 0.
For instance, the boundary kernel function for the unit ball in
C" is '
2t (n — 1)!
@y (1 —z-w)" '

o(z, w) =

where 2% = 2,0, + -+ + 2,W,. For m = 2, this formula has been
caleulated in [11]. However, I do not know whether anybody has
established this formula for a general » before. Here is the calculation,
a joint effort of H. Rossi and mine. Let v, be the volume of the torus
x-T". Then the square of the L*-norm of 2% = 29t .. 2% ig

S s S xfb"‘n ’den = (27‘[)” S xf‘”l"’l e w?fn"‘l d‘)?
x20 z20

where d7 is the Lebesgue measure on the unit sphere in R". Denote
the last integral by a,.

We have
Qg Swe—ﬂ pREei+—1 (Joe
0
= S eee S e“"'z x%“l"’l cee xzwn*‘l dml cee dxn
0 0
n o 2
=11 S e rxitt day,
=1 Jo
thus

1 al - a,l

Ay = .
2 (Sa; + m — 1)

For k we get therefore
k(z, w) = @n)™ S, a3t 2*w”
2=t
= 2n1.(27) kfj (b +m— 1)« (k + 1) (Sz;@,)*
=0

_ 2 (n—1)!
@2r) (1 — zw)*

7. Generalization to analytic spaces. We are now going to
discuss some ways of generalizing Theorem 5.1 to Stein analytic spaces.

To generalize the definition of a domain with piecewise differentiable
boundary to domains on a complex analytic spaces we have only to
define what we mean by differentiable and diffeomorphic mappings from
a differentiable manifold M into an analytic space X. A mapping
f: M — X is called differentiable if f maps the sheaf of germs of dif-
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ferentiable functions on X (as defined in [9]) into the sheaf of germs
of differentiable functions on M. If a neighborhood V of 0e X is
realized as a closed subvariety of a neighborhood U of 0 in some C*
then the germs of C= functions on V are the restrictions of germs of
:C* functions on U. The tangent space T, to a point « € X is the space
of point derivations on the ring of germs of real C* functions at «.
If xe V, T, is naturally embedded in the tangent space ,,T, to the C*
manifold C* at «; the tangents in T, are exactly those tangents in
], that vanish on the germs of C* functions at x vanishing on V.
The C= mapping f: M — X is called diffeomorphic at ¢ e M if it induces
an injection from the tangent space to M at ¢ into Ty,.

In order to establish Lemma 3.2 for analytic spaces we have to
say what we mean by a C= differential form on an analytic space; or
it suffices to define the sheaf 2, of germs of C~ differential k-forms
on an analytic space X. Let 0 X and V be a neighborhood of 0 that
.can be embedded as a closed subvariety of a neighborhood U of 0 in
C*. Let ,Q2, be the sheaf of germs of C> differential k-forms on U
and Q% the subsheaf of .02, of germs w which are finite sums of germs
ho + dhy N\ B, the h; being germs of C= functions vanishing on V.
2, = .2./.2% (restricted to V) is called the sheaf of germs of C*®
differential k-forms on V.

If V’ is another neighborhood of 0 on X that can be embedded as
a closed subvariety of a neighborhood U’ of 0 in C™, and 2 is the
sheaf on V' associated with this embedding, then by applying Lemmas
2.4c and 2.5b of [14] we find easily that 2, and 2, must coincide in
some neighborhood of 0 on X. Thus the sheaf 2, is well defined on X.

If Y is another analytic space and f: X — Y is a holomorphic map
then there is a cannonical map of sheaves f*:Q,— 2., 2, being the
sheaf of germs on C=~ differential k-forms on Y. This map can be
locally defined as follows.

Suppose a neighborhood V(V') of 0€ X(f(0) =0€ Y) is embedded
as a closed subvariety of a polyeylinder U(U’) in C"(C™). We may
assume that f maps Vinto V'. We extend f to a holomorphic mapping
F from U into C™, and we may as well assume that F(U)c U’
(shrinking U if necessary). Then F'* maps ,2; (the sheaf of germs
S(hio; + dhj A B;) where ki vanish on V') into ,2%, and thus induces
a map f*: Qs — 2w. It is easy to check that f* does not depend on
the extension F of f, nor does it depend on the choice of the embeddings
as can be seen by applying Lemmas 2.4c and 2.5b of [14] as above.

The operator d: ,2, — ,2,+: passes to the quotient and yields an
operator d: 2, — 2,,, which is independent of the local embedding of
X. Also Stokes’ theorem will hold for C* chains on X (finite formal
sums of C* mappings from standard simplices into X) since that theorem
is of formal nature.
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With these definitions Lemmas 3.1 and 3.2 hold on any analytic
space on which the holomorphic funections separate points.

Also the proof of Lemma 4.1 is valid for such an analytic space
X with the following definition of a Riemannian metric ds* on X, ds?
is an inner product on the real tangent spaces 7, to X with the
following regularity property. If V is a neighborhood of 0€ X which
can be embedded as a closed subvariety of a neighborhood U of 0 in
some C* then there is a neighborhood W of 0 contained in U and a
C= Riemannian metric on W that induces ds® on each T,,xe VN W.

THEOREM 7.1. Theorem 5.1 is valid also for an analytic space
X of pure dimension on which the holomorphic functions separate

Ppoints.

Unfortunately, there may not exist many domains with piece-wise
differentiable boundary on a given analytic space X. For instance, a
relatively compact domain D on X which is the closure of its interior
and whose boundary is a real analytic variety, is not necessarily a
domain with piecewise differentiable boundary. We will call these
domains with real analytic boundary. Though it is true that a domain
with real analytic boundary admits some kind of triangulation [3], such
triangulations are not suitable for our estimates in §§ 3 and 4. However,
we have shown in [5] that we can integrate differential forms on 6D
if D is a domain with real analytic boundary. (Note that 0D is
orientable). Now Lemmas 3.1 and 3.2 will again follow as before
provided we konw that Stokes’ theorem holds for domains with real
analytic boundaries.

CONJECTURE 7.2. Stokes’ theorem holds for domains with analytic
boundaries.

We will deal with this problem in a later paper.

Now let D be a domain with analytic boundary on the analytic
space X of pure dimension 7 on which the holomorphic functions
separate points. Suppose we are given a Riemannian metric on X,
Let do be the surface element on 0D (do is actually only defined on
the set of regular points of D). We have proved in [5] that every
function holomorphic on D is in LXdo). As before let H*® be the
closure of H(D) in L?. Then Lemma 4.1 is valid if conjecture 7.2 holds.
The proof is similar to the one given in § 4; we embed a sufficiently
small neighborhood V in X of a point € 6D into some C*. We can
find a coordinate system ¢, - - -, t,, for C* such that for any permutation
wof (1, +++,2k), o, +**, tran are coordinates for a subset 4of 0D N V
that differs from the set of regular points of @D N V by a set of local
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Lebesgue measure zero (see the first two paragraphs of §3 in [5]).
Then estimate (4.4) takes the form

@) LIFE1 S e 2| 1F1 by -+ b

where the sum runs over all permutations 7. Let do = ¢.dt,, « +  dt o,
then by Lemma 4.4 in [5],

(*.5) ¢ 5| 177 b - At

é Zz' S4|f‘|2 g:rdtzl VANEREIVAN dt:r(%—l)
= FI,

where is the norm in L*do). Thus

.

THEOREM 7.3. If conjecture 7.2 holds then Theorem 5.1 holds for
domains with real analytic boundary on an analytic space of pure
dimension on which the holomorphic functions separate points.
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