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CONVOLUTION TRANSFORMS WHOSE INVERSION
FUNCTIONS HAVE COMPLEX ROOTS

JOHN DAUNS AND DAvID V. WIDDER

The convolution transform is defined by the equation

(1.1) f@) = g‘” G — Het)dt = (Gxp)@) .

—oo

If the kernel G(t) has a bilateral Laplace transform which is
the reciprocal of an entire function E(s), then E(s) is called
the inversion function of the transform. This terminology is
appropriate in view of the fact that the transform (1.1) is
inverted, in some sense, by the operator E (D), where D stands
for differentiation with respect to x:

(1.2) ED)f(x) = ¢(x) .

It is the purpose of the present paper to prove (1.2) when the
roots of K(s) are allowed to be genuinely remote from the
real axis,

Formula (1.2) was first proved by Widder [7] in 1947 for a large
class of entire functions E(s) and by Hirschman and Widder [3] in 1949
for the whole Laguerre-Polya class. The latter functions have real
roots only, indeed are the uniform limits of polynomials with real roots
only, see p. 42 of [5].

In 1951 Hirschman and Widder [4] extended this inversion theory,
allowing the roots of E(s) to be complex. However, the roots were
asymptotically real in the sense that their arguments clustered to 0 or
to w. At the same time A. O. Garder [2] allowed the approach to
the real axis to be slower. We require only that they should occur in
pairs symmetric in the origin and in a sector inside the sector
|tan (arg s)| < 1. More precisely:

Es) = 1] (1 —~ Z_k> St < oo

T T
arga, | = — —7, 0 —.
larg kl_4 7 <77<4

We wish also to call attention to some new asymptotic relations.
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428 JOHN DAUNS AND DAVID V. WIDDER

It
G0 = 11(1 - 260,
we show that
(1.3) G, () ~ k(t, v,) (n— =2)

umiformly for —c <t < «. Here k(t, v) is the fundamental solution
of the heat equation,

k(t, v) = (4v)~"* exp (—t*/40)

with —oco < ¢t < o0, with Rev > 0, with the square root one-at-one,
and where v, is given by

v, = >, ap.
n+1

In order to establish (1.3) we are obliged to make an additional assumption
on the distribution of the roots of E(s), see Condition B in § 4.
As a consequence of (1.3) we prove that

(1.4) | 1Gutt) dt ~ (o8 , — sin’ @) (=),

where ¢, = (1/2) arg v;*. This result tends to indicate that present
methods cannot be employed for the inversion of (1.1) if the roots of
E(s) lie outside the 45° sector used above.

Finally we compute explicitly the functions G,,(f) corresponding to
E(s) = cos as where |arg | < w/2. Here all roots lie on a line through
the origin. In this case the integral (1.4) tends to infinity with » when
|arg «| = w/4. This result indicates clearly that our arguments must
fail if the roots of E(s) are not restricted to lie inside the 45° sector.

2. A first inversion theorem. Let us introduce the following
conventions,

Condition A. The sequence a,, @, - -+ of complex constants satisfies
Condition A if

ol T
;|ak|_2<°° and |argaki§2‘—‘7]

for some 7 in 0 < < mw/4. It is assumed that the a, are arranged in
an order of nondecreasing real parts with ERea, > 0, i.e.

0< Rea,< Rea, = Rea,,, (k=1,2, ).

DEFINITION. The class of entire functions A consists of all entire
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functions FE(s) of the form

o sz
B = I (1 - 2-)
i a?ﬁ
where the roots a, satisfy condition A.
For example, cos (2 + 7)s belongs to the class A.
We now state the main theorem of the present section, a result

that will be improved in § 3 by more complicated methods.

THEOREM 2.1. If for —e <t < oo

. 1 100 est
1. Go) = 271 S—iee E(s) ds (Es)e 4) .

2. o(t) is bounded on compact sets and

p(t) = O(e”™) (jt|— =,0< 0 < Rea,) .

8. fie) =" G — vttt

then

lim [T (1 %)f(m) = o(x)

n—oo 1

at any point t = x of continuity of @(t).

We shall establish this result by the series of Lemmas 2.2, 2.3,
and 2.4,

Consider a fixed function E(s) in the class A. Then let E,,(s) be
defined by

2.1) E,,(s) = ﬁ (1 — 3: ) m=0,1,2, ).
n+1 a/k R

Define S, by

(2.2) Sn:;ilakl"z (n=0,1,2--+).

Let G,,(t) and G(t) be defined by

2.3) Gn(t) = 2}” g_: Efs('s) ds ., G(t) = Gi(t)

(_OO <t < w;n:071y29 "')-
If P,(D) is defined as
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(2.4) P =T1(1-2) (n=0,1,2---),

ay
then the next lemma will show that the integral (2.3) converges, that
P, (DYG(t) = G.,(t) ,

and furthermore it will give lower bounds of the function KE,,(s) in
terms of both s and #. It will become clear later that exactly these
lower bounds are the ones needed to obtain the required information
about the kernels G,,(%).

LEMMA 2.2. Let the roots a, = rie®s, n, B, (s), and S, be as in
Condition A and equations (2.1) and (2.2).

A. Let re® with r>0 be any point in the angular sector defined by

Itanﬁ[gtan(%—%).

Then
| By (re®)| =1 + 7S, siny
and also

| Ey(re®) | = 1 + rsin’y 3, 75,

<1< <o

B. Define K to be the constant

K:lsin—v—.
2 2

Let n be arbitrary, n =0,1,2, «--, but fized. Let re® with r > 0 be
any point in the triangular region defined by the imequalities

ltan0|§tan<%—_g.>, [reosd| = KS;v,

Then

i0 2
| Eun(re™) | 2 5.

Proof. A typical term of the infinite product £, (re®) satisfies
[1 — rri’e® @] [1 — riri%e @ 0f] = 1 — 212 cos 2(0 — B,) + ririyt.

Since in case A, the argument ¢ satisfies either 7/2 — /2 < 0 =< /2 4 7/2
or —m/2 — /2 <0 = —7/2 + n/2, and since the argument B, of any
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voot satisfies —m/4 + n = —B, = n/4 —n, it follows that in case A
we have —cos 2(¢0 — 8,) = sin7. Consequently, by multiplying out the
infinite product, we obtain

| B, (re®)| = 11 1 + rri*sing > 1 + 2°S, sin7p .
n-+1

Similarly, we also obtain the second ineguality in A.

For the proof of B, take k& > n and restrict r¢'® = ¢ + iy to the
angular sector |y|=<|o|cotn/2. By using the latter inequality, we
see that a typical term of the infinite product E,,(¢ + 4y) has the
lower bound

Y 2 2 2
R Gl ) 21- 20 21— 7 (1 et 1)
rie?Pr 7y r: 2

This latter lower bound is positive. The inequalities 73S, > 1 and
o] < KS;¥* imply that

o? N\ _ O 1
—~ ({1 ct2—>~ —.
a»z<+°2 rEr 4

By use of the latter and by multiplying out the infinite product we
obtain

| Eolo +1y) | > 1 — >, 47787 > Tt = Tilo) s
p=1 n<k(l)< -+ <k(p)<oo
where the indices k(1), ---, k(p) range over the integers.
Use of the ineguality

—2 —2 P
ety Titey < Sk
n<k(1)<s +<k{p)<oo

leads to

| B, (re?) | = % :

Thus conclusion B has been established.

The next lemma gives some facts about the kernels G,,(f). Once
the lower bound given by part A of last lemma is available, the next
lemma can be proved exactly as in the case of real roots a,, see [6;
p. 265] and [5; p. 108]; we omit the proof.

LEMMA 2.3. Let E,(s), G, (t), and P,(D) be defined by (2.1),
2.3) and (2.4). In particular, the roots a, defining K, (s) satisfy
condition A, and consequently

0 < Rea, = Reay,, k=n+1,n+2 ).
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Let n=0,1,2, --- be arbitrary.

A. For any o in |o| < Rea,,,
o+i00 est

d
o—iee Zn(s)

Gost) = PuDIG®) = = | 5.
2w
B. Let a, as a zero of E,(s) be of multiplicity pr + 1. Then
there s a polynomial p(t) of degree p such that for any k in —Rea, ., <
k< Rea,., and any tnteger vy = 0,1, 2, --- the following holds

(L) e = () e w1 + 0@+, (t]— ).

C. For all s=o0+ it with || < Rea,., and —o <7 < oo

1 .
E;,(s)

S” Gy (t) dt | r G () dt =1 .

In the next lemma a sufficiently good upper bound of the kernel
G,,(t) in terms of both ¢ and % is proved in order to have an inversion
formula as an immediate consequence.

LEMMA 2.4. Let G, (t) and S, be as defined by equations (2.3)
and (2.2). Then there exist constants M and K independent of both
n and t such that

lG2n(t)| = ]‘4-87_1-1/2 eXp(—‘KS;llzltl) (—OO <t < o, N = 0’ 1’ 2’ .t ') .

Proof. Use of the fact that G.,(t) is an even function of ¢ and
use of Lemma 2.3 shows that

G (t) B 1 g“ e—(u‘+i?/)t d

T wm B
provided ¢ satisfies 0 < 0 < 7,4, cos 8,4+, (Where 7,.,6*»+1 is that root
of E,,(s) with smallest positive real part). Let K be as in Lemma 2.2
the constant K = (1/2) sin (7/2). Assume for the rest of the proof that
o is restricted to 0 < o = KS;'>. Then since cosfB,, > 1/V2, it
follows that

0< o= @1/2)sin (9/2)r,1 < 7,41€08 B4y «

By setting A = tan (7/2 — 7/2) and using the lower bounds of
Lemma 2.2 we obtain

34 et (= 1
G,,@) | = == ge " S
Gu®) = 5 7 ca 1+ y*S,siny

Replace the lower limit 6A in the last integral by 0, set o = KS;'
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and let M be the constant M = 3AK/2w + (1/2)(sinn)~"*. Since G,,(t) is
an even function, the last inequality shows that for all n and ¢, the
function G,,(t) satisfies the conclusion of the theorem

|G.(t) | = MS;'" exp (— KS;* [ t]) .

ReMARK. In the previous lemma the constants M and K are
functions of » only. As 7 tends to 0, M tends to o and K tends to
0, thus making the upper bound of the theorem meaningless as 7 tends

to 0. These are phenomena which are typical of the theory and which
we will encounter again.

Now we are in a position to prove Theorem 2.1.

Proof. By letting M, be the constant guaranteed by hypothesis
2 of Theorem 2.1, i.e. for any fixed « and all ¢,

lp@ —8) — @) | = M,
and by using Lemma 2.3 we find that for any 6 > 0
PL(DNG p)@) — 9@)| = sup | pe — &) = p@) | || Cuult) |

+ MS |G, (t) [ e dt

8<t|<eo

Replacement of |G,,(¢)| by its upper bound given by Lemma 2.4,
|G.(t) | = MS; exp (—KS; L)),
and use of the continuity of ¢(¢) at ¢ = x immediately give the theorem.
3. A second inversion theorem. We now remove the bound-
edness condition on ¢(t), assumed in Theorem 2.1, assuming here instead

only local integrability. The inversion formula will be valid not only

at points of continuity of ¢(¢) but at all points of the Lebesgue set
for that function.

THEOREM 3.1. If G(t) and f(x) are defined as in Theorem 2.1
with o(t) e L* in every finite interval and 4f

[ipdu = oGy (11,0 <0< Roa),
0

then

lim 11 (1 = 22) f@) =)

n—oo 1 a?z

Sor all x in the Lebesgue set for o(t).
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We first prove a result about the derivative of G,,(t).

LEMMA 3.2. Let the roots a, = rie, 9, G, (t), and S, be defined
by Condition A and equations (2.3) and (2.2). Then there exist
constants M,, K,, M,, and K, independent of both m and t such that
Jor all n=20,1,2, -+ the following holds:

A. If n satisfies S, = 4r;},, then

| G2.(8) | = MS;" exp (—K.S;"* | t]) (—oo <t < o).
B. If w» satisfies S, < 4r;%,, then

| G2 (t) | = Myrnsoexp (— Ky, | ) (—oo <t <o),

Proof. First conclusion A will be proved. Let K be the constant

K:lsinl.
2 2

Restrict 0 to 0 < o =< KS;¥*. The latter guarantees that 0 < o <
P.41€08 B,+, and hence G, (t) is given by

@) = —1 S"" oo 1 iy)

i dy .
27 Jow By (0 + 1Y)

With A = tan (/2 — 1/2), the above becomes

—ot rfod
L G; 0 < e g+ Iyl _
(1) |Gt | = o 3~vA | By, (0 + 1Y) |
e S _o+lyl
2w Joa<iwi<e | Ky (0 + 19) |

The assumption that S, = 4.}, guarantees that S, — r;*=1/2S, for
all & > n. Hence the second lower bound given by part A of Lemma
2.2 becomes

1

; ssinty S, (s, — L
B+ i)z 1+ 2oty 5 (8- )

+
=1+ (%yzsn sin 17)2 .

Use of the last inequality and the estimate of part B of Lemma 2.2 in
equation (1) gives

(2)  1GLO|S 2 A0+ Aoer + T TEY gy,
T Tty (—2—:1/28” sin 7))
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Replace the limit 0A by 0 in the last integral; define the constants ¢,
and ¢, as

CI:SO° 1 du , czzgw " du ;
o 1+ o 1+ ut

let K, and M, be the constants

K=K, M= 41+ K+ 92 gingp)rK+ 26
2 T T sin Yy

and set 0 = KS;"?. Then equation (2) gives
[ G;n(t) I § M1S;1 €xp (—KIS;U2 ! ¢ |)

for all ¢ and all » satisfying S, = 4r;2..
For the proof of part B, G,,(t) has to be expressed in the form

(3) G2.() = (9% Gapia) (2)

where g(t) is the function
0(t) = a0 (—oo << o).

Differentiation of (3) under the integral sign and an integration by
parts gives

(4) Gl (t) = — San S M geniniGy ot — ) du
2 e Tu]

By use of the estimate
| Guia(t) | = MSTY exp (— KSAT | )

of Lemma 2.4, equation (4) becomes

(5) |G|
< %Mrzﬂgl exp (‘71——2— wirl ]S54 exp (— KS7 | w — t) du

By integrating equation (5) by parts we obtain

(6) |GL.(0) | = MK~'r},,, exp (— 17177"“1[ ¢ I>
%Efriﬂg:, exp (— %mﬂ |u| — KS;32|u—t |> du .

If » satisfies S, < 4r;2, as in conclusion B, then

Spr — rati =8, — 2r73, < 273 and S;E >, /V3 .
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Substitution of the latter together with the inequality |t|—|u| =<
| — t] in equation (6) gives

() 16O = ME i exp(— =runlt])

M
212K
Let M, and K, be the constants

=+

3., exXp (—%Kmﬂ |t |> S: exp (— V—3—‘é{l/_§rn+l | % l) du .

-l/-

M,= MK + MVSEK*(\/3 — KVZ)', K, = 1—/%1{

Then equation (7) shows that
I G;n(t) | = Myr;, ., exp (—Kr, | t])

holds for all ¢ and all » satisfying S, < 4r;%,. Hence conclusion B
has been ectablished.
Now we prove Theorem 3.1.

Proof. If +(t) is given by

t
0

¥t = | [o — ) — p@)] du (—eo <t <o),
then by the hypotheses of Theorem 3.1 there is a constant M, for which

[ () | < M (—oo <t < o).

If ¢t =« is in the Lebesgue set of ¢(t) then for any & > 0 there is a
0 > 0 such that |y ()| < ¢|t| for any ¢ in |t| < 0. An integration by
parts, easily justified by Lemma 2.3, yields

| PuD)G*9)@) — p@) | = ¢|” |80 |dt + ML) | GL) e

§<it}

Replacing | G},.(t)| by either one of the two upper bounds given by the
last Lemma 3.2, we easily obtain the conclusion of the theorem.

4. Asymptotic estimates, For the estimates of the present section
we need to place further restrictions on the roots of the inversion
function.

Condition B. The sequence of complex constants a,, ., -« - satisfies
Condition A and in addition

lim |a, [* 3 [a, |7 = e .
n—oco n
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For example the sequence a, = n satisfies Condition B. The sequence
a, = 2" satisfies Condition A but not Condition B. In the latter case
the above limit becomes

lim2es(—4 Y=o
nsoo q.9m :

DEFINITION. The entire function E(s) belongs to the class of
functions B if

1 (1- 5

B =11 (1 ai>

where the roots of E(s) satisfy Condition B.

We can now state the principal result of this section. To do so
we adopt the notation of §1 for the function k(f, v). Set

(4.1) 8, =3 lal™
and
4.2) v, =3 ap

THEOREM 4.1. If

_ 1 100 est
GO) = 5= Lw P (E(s)€ B) ,
_al1_D
G.() =TT (1~ )60
then
4.3) Go(t) = k(t, v,) + O( @, |7°S7*?) (n— )

untformly on —oo <t < oo,

Observe that the remainder term in (4.3) tends to zero with v,
under the assumption E(s) € B.

LeEMMA 4.2. Let E,(s),v, and S, be defined by (2.1), (4.2) and
(4.1) with the roots a, = r,e'P* satisfying Condition B. Then there
exist two strictly positive constants ¢ and 0 such that for any u in
—0=u =0 we have

1

——————— = exp (—r;w,) + O[r,S,u' exp (—eri .S, u))] .
Ezn(/br'rﬁ—lu)

The O-term denotes a function of both m and u such that for some
constant M and all w and n the absolute value of this function does
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not exceed M times the quantity inside the O-symbol.
Proof. Let J,(u) be the function
) = —— — exp (—rt ) (n=0,1,2,--").
B (i)

Let 0 be arbitrary in 0 < 0 < 1/2 and assume that % is restricted to
|%| < 0 throughout the proof. If ¢,,(n) is defined as

CZp(n) - (_1)”(1/1))7':5—1 k=§+1 a;’? (’I’l/ = 09 17 2’ ey D = 1, 27 °c ') ]
then
(1) T =exo(—rhoad e[S | -1} (ui=9.
P=2
It is interesting to observe that lim,_..|c,,(n) | = < for all p, if r, = k*
with « in 1/2 < a < 3/2. Next it is shown that c¢,,(n) satisfies the
inequality

lcw(mlé%-rzﬂsn n=0,1,2-;p=12 ).

If N(t) and 6(t) are the functions

NO = 31, 60) = | AdNe) 0=t< ),
<t t
then |c¢,,(n)| is given by
lewm) | = — Lo 7 t=edoqe) .
p -]”n+1

An integration by parts gives the required inequality

(2)  lewm)| =228, — (0 — 1>r3:;1§°° trrg(t)dt < Lo2,.8,
» Tp41 p

Use of the inequality Re v, = S, sin 27 and (2) in equation (1) gives
(3) | Ju(w)] = exp (—774,S,u" sin 27) {exp [(1 — &) 7"r71.S,u'] — 1} .
Choose any 6, in 0 <, < 1 and consider the two cases:
Case 1. (1 —0) i, Su*=<9,,
(4) Case 2. (1 — 02, Su*>0,.

In Case 1, an application of two geometric sum estimates to (3) give
the conclusion of the lemma, i.e.
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(5) | Juw) | = @ — )71 — 6)7771,S,u" exp (—u'r;,.,S, sin 27) .
For the proof in Case 2, the inequality (3) gives

(6) | J.(w) | = exp (—u’r; .S, sin 27)
+ exp {r2.,S, w1 — ¢*)~'u* — sin 27]} .

Now choose ¢ as ¢ = (1/2)(sin 29)"*. Then using the inequality
(1 — 0w — sin2p = —(2/3) sin 2p

and by multiplying (6) by (4), we obtain the conclusion of the lemma
for Case 2:

(7)) | m)| =21 — &)o', .S, u! exp [ —u'r}.,S,(2/3) sin 277] .

Thus (5) and (7) together prove the lemma.
Next Theorem 4.1 is proved.

Proof. The change of variable ¥y = #,,,% in the integral

1 (= cosyt
G2n )y == ————d
® T So E,.(1y) Y

and Lemma 4.2 imply that
8

(1) G,,(t) = 1;‘—;—‘S cos (7, . tu) {exp (—754.0,u%)
0

+ O[S, ut exp (—eri .S, u?)]idu + r Mdy .
srag1 By, (1Y)
The hypothesis that lim,_. 7{2.S, = < guarantees that for all »
sufficiently large we have S, — #;? > (1/2)S,. Hence for all large »
the second lower bound of part A of Lemma 2.2 satisfies

2
.

B (i) =1 + —;—y sit 3,1 (s, — L)z1+ <%yS sin )

PE rl
The latter inequality shows that
r = 1 N
(,2) ‘—-—"_‘dy - O(Tnj Snz) (’n—) o .
SOy IE‘.’n(zy) ] ! )
Note that
r 087 = O(r;1S*) (n— o).

For any v with Rewv > 0, the function %(¢, v) has the representation

(3) k(t, v) = lre"'““z cos tudu (—o0 <t < ),

T Jo
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Use of (2) and (3) in equation (1) together with some elementary power
series estimates of the exponential function give the conclusion of the
theorem.

We saw in Theorem 2.1 that the essential step in the proof of the
inversion formula was to show that

Sl[ Gin(t) | dt = O(1) n— o) .

The next theorem gives a more precise asymptotic formula for the
L’-norms of the kernels G,,(¢).

If » and v, are as in Condition A and in equation (4.2), let ¢, be
defined by

(8. v, = o, e

with |@,| = /4 — 7. The latter implies that in the next corollary we
have

(cos’ @, — sin® pn)~* =< (sin 29)~* .,

COROLLARY 4.3. Let G,(t), p,, and n be as in Theorem 4.1,
equation (4.4) and Condition A respectively. Then

| 16,0 1dt ~ (cos* @, — sin® p,) (n— o) .

Proof. Our first estimate of G,,(t) from Lemma 2.4,
| Go,(t) | < MS;* exp (—KS;**|t]),
shows that
Sl‘ Go(®) |t ~ S_; Gon(d) | dt (n— ) .

An elementary integration shows that

|kt 0,0 ldt = (cos’ p, — sin’ ,) ",

and that

1im§ | (t, v,) | dt = 0 .
1<t <o0

n—oo

Finally, our second estimate of G,,(¢) from Theorem (4.1),
Gun(®) = K(t, v,) + O( @41 |78,

together with the assumption B that |a,.,|?S;** goes to zero with 1/n,.
gives the conclusion of the theorem,
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|1Gu®dt ~ (cos' p, — sin® @) (=)

REMARKS 1. If the roots a, defining the kernels G,,(t) are
of the form a, = 7.6 for some | 8| < m/4, then ¢, = 8 for all n, and
the asymptotic formula of the previous corollary becomes infinite as
B—m/4. The latter fact suggests that our present methods cannot be
used to generalize the inversion theorem 3.5 in order to allow the roots
to lie in any angular sector about the real axis exceeding or even equal
to forty five degrees.

2. It is an open question whether all the results of this section
are valid if the hypothesis that lim,_. #2.,S¥* = <> is replaced by the
weaker assumption that lim, . 7%.,S, = co.

3. It is also an open question whether under some assumption
similar to Condition B the integral

RECACIES

is asymptotic to a constant times (cos® @, — sin®¢,) %2,

5. An explicit example. In this section the sequence of kernels
G,,(t) is explicitly evaluated corresponding to E(s) = cos (we=*s) where
B is some number in | 8| < n/4.

If E,,.(s) is the function

E.(s) = 11 1-#) —0,1,2,---),
n(S) 11;—[1( (k _ 1/2)262”3 (n )
then as in equation (2.3), the kernel G,,(¢) is given by
. 1 qoo est , ) _
G, (1) = S ds (—oo <t <eosm=0,1,2 +--).
21 J—ie H,,(3)

Let ¢ and w be a = ¢*® and w = ¢**. For k > n, the residue of the
integrand e*'/E,,(s) at s = (k — 1/2)a is

@ kv VT _ (k=12 N Y wei (B +m — 1)
Ly 1)11(1 (j—1/2)2> w1y R

=1\
where ¢ is defined as

__ aexp (at/2)2"n!®
T(2n)!* )

The kernel G,,(t) is easily seen to be the sum of the residues in the
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right half plane Res > 0, i.e

<t < eo;m=0,1,2,-44) .

iy .

GZn(t) = C’w”( dw 1 + w

By use of the Leibnitz rule for differentiation of products, we obtain

(5.1) Gu(b) = (21“3" dfsech L[ (= << in= 0,120

REMARKS 1. Although the above computation is also valid for any
B with /4 <|B]| < w/2 it can be shown that

limS |Go(t) | dt = <o

and
lim S” (4Gl | dt = o
for such a B.

2. Perhaps the inversion Theorem 2.1 remains valid if the roots
a, are allowed to lie in an angular sector of exactly forty-five degrees
provided the function ¢(f) is continuous and of bounded variation at
the point ¢ = 2 at which its value is to be recovered. The latter has
been shown to be true in [1] for the special kernel G(t) given by (5.1)
with 8 = w/4.
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