
PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 3, 1965

RATIO LIMIT THEOREMS FOR MARKOV CHAINS

SIDNEY C. PORT

In an irreducible, recurrent, Markov chain, with integer
states, let Nn(A) be the occupation time of A by time n,
where A is a finite set of states. Our principal concern in
this paper is to investigate various *'ratio limit theorem" for
Px(Nn(A) = k). Criteria are given for various ratio limits to
exist. The limits (when they exist) are shown to be expressible
in terms of an integral over the set of states E completed
with its dual recurrent boundary B. Applications are given
to several specific Markov chains.

Throughout this paper {Xn} will be an irreducible, recurrent Markov
chain with states in a denumerable set E and with nth step transition
probabilities P*y. For convenience we may take E to be the integers.
For discrete time Markov processes, ratio limits for the quantities
Px(Nn(A) = k) were first investigated by Kac [4] for certain special
cases of partial sums of independent random variables with a common
distribution. Recently these quantities have been intensively studied
by Kesten and Spitzer [9] for the irreducible chains formed by the
successive partial sums of independent, identically distributed, integer-
lattice-valued random vectors in r dimensions. They show the remarka-
ble fact that in all such chains, for any two states x, y, any integer
k ^ 0, and any finite nonempty set A, the limits

exist and they explicitly find their values.
Now, in general, limits (1.1) exist in very few recurrent chains

and we shall have to be content with much weaker types of ratio
limits if we want results of any generality. The weakest form of
these ratio limits asserts that for any two states x, y, and any finite
nonempty set A,

Σ t*Pm(Nn(A) = A)
(1.2) lim -£=2

= 0)

exists for all k ^ 0. Although limits (1.2) exist in every positive-
recurrent chain, there are null-recurrent chains in which these weak
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limits fail to hold even for sets A having just one point. In §3 of
this paper, we will show that a necessary and sufficient condition for
the limits in (1.2) to exist for all finite sets A, arbitrary states xf y,
and arbitrary nonnegative integers k, is that for some state, say 0,
the limits

(1.3) Σ ( Λ )
t-*l~n=0

exist for all states x. We will also show (in § 3) that if the series

(1.4) Σ (PA ~ Pti

converges for all states x, then we may conclude that the Doeblin-type
ratio limits,

Σ P.(Nn(A) = k)
(1.5) l i ^ L

7ϊ = 0
Py(Nn({y}) = o)

exist and have the same value as those in (1.2).
In § 4 we establish an interesting representation for these limits

by using the boundary theory for recurrent chains. In § 5 we investi-
gate several conditions under which the strong ratio limits (1.1) exist.
We conclude the paper, in § 6, with the application of the results of
the previous sections to several specific examples.

2* Notation* In this section we shall introduce the notation to
be used throughout the remainder of the paper.

Letters A, B etc., will denote nonempty subsets of E.

VA = inf {k > 0 : Xk e A}

if xeA,

I
V, dΛ(Xk) (the occupation time of A by time n), »>0

As defined above, Fn

A(x, y) = 0 if y £ A and F°A{x, y) = 0.

Qn(x; A) = PX(VA >n) = Px(Nn(A) = 0) ,

ΠJp, V) = Σ Fl{x, y) ,
n=l

[ΠΛ(x, y) , xeA,PΛ —
•*• xy ( 0 ,
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Pxy is the transition matrix of the Markov chain, "restricted to A"

HA{x,y)=\
[δxy , x 6 A

HA(x, y) is the "harmonic measure" of A.

, V) = Σ ^ ( ^ > %, -SΓ, = »
0Σ

n=0

OA(%fV) is the expected number of visits to y among (XQ9Xlf )
before the first entrance into A among (Xlf X29 •). As defined above,
OA&f y) = δxy if ye A.

(0 , xe A

y) is the "Green's function" of A.

{PΛV{Z} ^ n, Xn = y) , 7* > 0 ,
p n =

\dxy it x =£ z 0 it x = z, n = Q ,

π — F *
2/ — 0 Oy

(Recall that πy is the unique stationary measure of the chain with
τr0 = 1. See [1] Theorem 7 p. 50)

KA{x, y) = gA(x, y)π-χ,

lδ.y, r = 0,
ΠA(x,y) = \j<Π ( α

v t Λ

Γ*n _ Dn _ On
^ xy — •*• yy ± xy 9

Cxv = lim Ύ\ CZyV1

xy

provided the limit on the right exists.

C* V
xy — ZΛ

n=o

provided the series converges.

The dual chain to P is the chain with transition matrix Pxy =
(πy/πx)Pyx. Quantities which refer to the dual chain will be denoted
by A. For example GΛ(x,y) is the Green's function for A for the
dual chain. Finally, for any random variable Z,
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3* W e a k r a t i o l imits* We shall commence our investigation
with t h e weak rat io limits for PX(VΛ > n).

THEOREM 3.1. In order that the limits

V tnQ (x' A)
(3.1) lim - ^ — = My(x; A)

" ΣFQniy Λv})

should exist for all states x, y and for all finite nonempty sets A, it is
both necessary and sufficient that for some state, say 0, and all states x,
that the limit

(3.2) lim Σ C20ί = Cx0

exist' If we further know that the series

(3.3) Σ ^ϊo — ^χo

converges for all states x, then we may conclude the stronger fact
that the Doeblin-type limits

Σ QΛ%; A)
(3.4) lim -ψ = M*(x; A)

exist for all states x, y and for all finite nonempty sets A. In this
latter case My(x; A) = M*(x; A). The My(x; A) satisfy the following
relations:

(3.5) My(x; {z}) = (πy/πz)[Cxz + dxz]

and if B = A U {z}, z$A,

(3.6) My(x; B) = My(x; A) - ΠB(x, z)My(z; A) .

For ease we shall divide the proof into several lemmas.

LEMMA 3.1. If the limits in (3.2) exist for all states x, then
for any state y and all states x

(3.7) lim Σ tnCn

xy = Cxy
t-*V n=0

exists. Similarly, if series (3.3) converges for all states x, then for
any state y and all states x



RATIO LIMIT THEOREMS FOR MARKOV CHAINS 993

CO

(3.8) 2 C"V — CχV .

In this latter case C*y — Cxy.

Proof. It is readily seen that for n > 0 and any two states x, y,
/O Q\ nn V Ck Ώn-k V Ck Pn-k ι D« Γ>n
\°»*7} ^ x y — J-i ^ a OO 1 Oy J-Λ ^yOO-L 0y T o-L y y Q-L xy

k=l Λ=l

Since the chain is irreducible, the series

p p p p
/ i o-* 0i/> / J 01- xy? / i 01- yy f
n—0 n—0 n—0

all converge (See [1], p. 45). Taking generating functions in (3.9) we
see that (3.7) follows from (3.2) by AbePs theorem. Similarly, if
series (3.3) converges, then the convergence of series (3.8) follows
from (3.9) by Merten's theorem ([3], p. 228). Finally, the equality
of C*y and Cxy, when the former exists, is a direct consequence of
AbePs theorem.

Next we will show that the return times to fixed states are always
"weakly" asymptotic.

LEMMA 3.2.1 In any irreducible, recurrent Markov chain we
have, for any two states z and y,

R

Kz Σ Qn(Z', M)
(3.10) lim — ψ = 1 .

B-

Proof. Assume y Φ z. Familiar generating-function relation for
the tail of a power series show that for | ί | < 1,

Σ tnQn(z; {«}) Σ t'PZ
(3.11) ^ = •;' = Ryz(t) .

Σ t»QM {y}) Σ tnPZ

Now from a "last entrance decomposition," we see that

P n — On I V 1 pk pn-k
yy zx yy ' JLΛ ± yz zx zy

p p
yy ' JLΛ

 ± yz zx zy
k=0

and thus
OO CO OO CO

Σ f-nΊDn V^ 4-n ΊDn i V fnJDn S? 4-n T>n
0 Γyy — 2-i ° zΓyy ι~ 2-i b Γy* 2-t ϋ z^zyn = 0 n — Q n=0

1 Added in proof. Under the assumptions of the lemma, we also have that

Σ Σ π(x)Px(Nn(B) = k)~Σ π(y)Py(Nn({y}) = 0)

for any integer k ̂  0 and any finite nonempty set B.
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Using the above relation and well-known generating-function relations
(see [1], p. 53 eqns. (1) and (2)), we see that Ryz{t) may be written as

RΛt) = Σ t\P;y\ι - Σ
(3.12) n=\ L l

Now Ryz{t) is a power series in t which converges at t = 1 to the
value 7ϋyjπz. To see this, observe that the second term on the right
in (3.12) is the product of two power series with positive coefficients
which converge at t = 1 to the values 1 and zPfy, respectively. Thus
the product series converges at t — 1 to zP*y. On the other hand, the
first term on the right in (3.12) is the product of a power series with
positive coefficients which converges at t — 1 to tP*y, and a power
series which converges at t — 1 to 0. Thus Merten's theorem [op. cίt.]
implies that the product series converges at 1 to 0. We have thus
shown that Ryz(l) = tP*. But by [1] (Corollary 1, p. 49, and Theorem
7, p. 50) we have zP*y = πy/πz.

Denote the coefficient of tn in Ryz(t) by τn

yz. Then from (3.11) we
easily obtain

(3.13) Σ Qn(z; {z}) = Σ Qn(V, M Σ* ?t

Since JΓ, τj

yz converges, and since
0

^ Σ QM

we have, by a well-known Abelian theorem on Norlϋnd summability
(see [3; p. 64[),

Σ QΛz; H)
(3.14) lim^p = 2 r;, = πjπ, .

* Σ QM {y}) κ'°Σ
n=0

This completes the proof.
As a corollary of the proof we have the following:

CoROLLAry 3.1. In any irreducible, recurrent Markov chain,
the series Ryz(t) defined in (3.11) converges at t — 1 to πy/πz.

We of course have that the weaker, Abelian version, is also
universally valid.
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COROLLARY 3.2. In any irreducible, recurrent Markov chain,

(3.15) Urn -J£ί = πjπ, .
" ~ Σ Q.(v; {y})tn

» = 0

Proof. This follows directly from Corollary 3.1 (by AbePs theorem).
We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We shall proceed by induction on the
number of points in A. Let us first assume that the series (3.3)
converges for all states x and show that this leads to the conclusion
that the limits in (3.4) exist for all states x, y and for all finite non-
empty sets A. Suppose A — {y}. If x = y, then obviously the limit
in (3.4) exists and has the value 1; so assume that x Φ y. Since for
x Φ y we have

71 = 0

> i 0 JΓy.
w = 0

Σ Qn(χ, v)t* = (l - ί)-fi - Σ tnF^(x,y)\ = (l -1)
w=0 L »=1 J

we see that for x Φ y9

(3.16) Σ * W Q ^ ; {»}) = Σ Ck

xyt
k Σ ^Q.(i/; {»}),

n=0 fc=0 « = o

and thus

(3.17) Q.(aj; {»}) = Σ Ck

xy Qn_k(y; {y}) .

Consequently,

Σ QΛχ; {y}) Σ Q*(v; {v}) Σ* c ς
(3.18) -ψ = -2^-^ ^ .

Σ Q Λ W) 4ΣoQn(y;{y})

By Lemma 3.1,

lim Σ Ciy = CĴ  ,

and thus, by the same Abelian theorem as used in the proof of the
previous lemma, we see that the limit as R—> oo in (3.18) exists and
has the value C%.

From Lemma 3.2, we then have



996 SIDNEY C. PORT

Σ Q.(s, {«})
lim _^° = (πJπ.)[C*. + dj ,

Σ QΛr, {y})
R

which establishes the existence of the limits in (3.4) for all sets A
having exactly one point. Suppose we have established the existence
of these limits for all sets A having exactly r > 0 points. Let B —
A U M, where zgA but is otherwise arbitrary. It is readily seen that

(3.19) Qn(x; B) = Qn(x; A) - Σ F£(x, z)Qn_k(z; A) ,
k = l

and thus

Σ Qn(χ; B) Σ Qn(χ; A) ± Qn(z; A) f f Fi(x, z)
(3.20) -ψ = 5=2 £ = ° 1 *

Σ Q Λ M) ΣQ.(»ίtol) ΣQ.ίi/ M)
ίi = O n — 0 «.=0

By the induction assumption, the first term on the right converges to
Mf(x; A). If we multiply and divide the second term on the right by
Σ5=o Q»(s; A), and apply the Abelian theorem mentioned above, then
we may conclude that the second term on the right in (3.20) converges
to ΠB(x, z)M*(z; A). Thus the limit in (3.20) exists and has value
Mf(x\ A) — ΠB(x, z)M*(z\ A). By induction, we then have that the
limit in (3.4) exists for all finite sets A, and moreover, that relation
(3.6) holds.

Now let us assume that the limits in (3.2) exist for all states x9

and show this leads to the conclusion that the limits (3.1) exist as
required.

From (3.16), Lemma 3.1, and Corollary 3.2 we have at once that
the limits in (3.1) exist for all sets A having a single point, and
moreover, that My(x, {z}) = (πy/πz)[Cxz + δxz\. Suppose we have es-
tablished the existence of the limits in (3.1) for all sets A having
exactly r > 0 points. Again let ΰ = 4 u {z}9 ziA. From (3.19) we
have

oo oo oo oo

n—Q n=0 k = l n=0

Σ QM {y})tn Σ QM {»})«• Σ QM {y))tn

n—Q n=0 n—0

and thus, by the induction assumption and AbeΓs theorem, we have
that the limit on the right, as ί-> 1", exists, and has the value
My(x; A) — ΠB(x, z)My(z; A). Hence, by induction, we have that the
limits in (3.1) exist for all finite sets A. This establishes the suffici-
ency portion of Theorem 3.1.
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Now suppose we know that the limits in (3.1) exist for all finite
sets A and for all states x, y; then, in particular, they exist for A —
{0}. From (3.16) we see at once that this implies the existence of the
limits in (3.2) for all states x, and thus condition (3.2) is necessary.

Finally, a simple Abelian-type argument shows that My(x; A) =
My(x) A) whenever the latter exists. This completes the proof of
Theorem 3.1.

Before proceeding further let us make some comments on the
preceding results.

Whenever series (3.3) converges for all states x, then as noted in
the proof of the above theorem, Abel's theorem gives us that the
limits in (3.2) exist for all states x. On the other hand, if the limits
in (3.2) exist for all states x, then series (3.3) may fail to converge
but we do have that it is at least (C; 1) summable.2 To see this,
observe that if

Λ—1

Σ
k=0

(3.21) &

then, for x Φ y,

S:y = Σ E[y](x, v)[EyNn({y}) - EyNn_r({y})] + Qn(x; {v})EvNn({y}) ,
r = l

and thus Sly ^ 0. Consequently, whenever the limits

lim Σ c:yt
n - cxy

t-*l~ n — 0

exist, we have by a well-known Tauberian theorem (see [3], p. 154),

lim n~x Σ Sly = C^ .
n—>oo r=0

If the chain is positive recurrent, then EXVA < co for all nonempty
sets A. But Σ~=oQ™(̂ ; A) = EXVAJ and thus the limits (3.4) exist in
all positive recurrent chains. Moreover, in this case, My(xm, A) —
(EyV{y])~1ExVA. Since series (3.3) need not converge in a periodic
positive recurrent chain, we see that this condition is not necessary
for the existence of the limits in (3.4) (at least in the positive recurrent
case). In this regard let us point out that the series (3.3) does converge
for all states x in every aperiodic positive recurrent chain (see [6])

Under the same conditions as Theorem 3.1, the following extension
also holds.

THEOREM 3.2. // the limits (3.2) exist for all states x, then for
any nonempty finite set A, any two states x, y, and any nonnegative

2 This fact will be needed in §4.
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integer k,

Σ PΛNn(A) = W
(3.22) lim -Jώ! = Σ Π>Λ(x, z)My(z; A) .

Moreover, if series (3.3) converges for all states x, then

Σ . ( . ( ) - fc)
(3.23) lim - ^ = Σ # « * , z)M,{z; A) .

Σ Py(Nn({y}) = 0)
n=0

Proof. For brevity we shall only prove the assertion in (3.23).
The proof of (3.22) is very similar. We proceed by induction on k.
For k — 0 the assertion in (3.23) is just that of Theorem 3.1, and
thus (3.23) holds for k = 0.

Suppose we have established the result for all k ^ kQ. Now,

(3.24) Px(Nn(A) = k0 + 1) = Σ Σ Fί(x, z)Pz(Nn_3{A) = k0) ,

and thus

R R R—n

y1 P (N (A) — k + 1) y p Λ^ C [̂\ == /> \ v1 FJ (x z)
(3.25) - ' / ^ = Σ "= 0 ' / ° i=1_ Λ

Since we may write each term on the right in the above expression as

Σ P.(Nn(A) = k0) Σ" F{(X, z) Σ P,(Nn(A) = h)

= k0) Σ Py(Nn({y}) = 0)
n=0 w=0

and since Σ Γ ^ ^ ί ^ , «) = ΠA(x, z),

= k) = 0
R

Σ
71 = 0

we see (by the induction assumption and the same Abelian theorem as
used in the previous proofs) that the limit, asiϋ—> oo, in (3.25) exists
and has the value

Σ ΠA(x, z) Σ nh

A\z, u)My(u; A) = Σ Π\«+\x, u)My(u; A) .
zEA uEA uβA

^Thus, the assertion of the theorem is true for k — k0 + 1, and thus,
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by induction, the theorem holds for all values of k. This completes
the proof.

Observe that in the special case in which A = {y} and k > 0, the
limits in (3.23) have the value 1. For this special case we can show,
by the same methods as used to establish the result in general, that
this result holds in every recurrent chain.

The same arguments we used to establish the above results enable
us to show that limits of the more general expressions

Σ Pv(Nn({y}) = 0)
n = 0

exist, and to compute their values. Since these results are quite compli-
cated to write down, however, we shall not pursue these generalizations.

4* Representation* By using the boundary theory for recurrent
chains, as developed by Kemeny and Snell in [8], we may establish
interesting representations for the limits found in the last section.
For convenience, we shall summarize below that portion of this theory
which we shall need. For details we refer the reader to [8].

We shall be interested in the dual, i.e., exit boundary, of the
chain. If we choose a state y as a "taboo" state, then a boundary
point ζ corresponds to a sequence {ij of states such that | tn | —> <χ>
and the limits

lim K{y}(x, tn)
n-*oo

exist for all states x. The set of boundary points, B, so obtained
does not depend on which state y is chosen as the taboo state, and
ϋ/* = £ r U . B i s a compact metric space which gives a discrete topology
to E. For each x and A, the functions KA(x, •), GA( 9 x), and HA{*,x)
can be extended to £/* as continuous functions. For a fixed y, let

yQxt = Pxt if t Φ y, and let yQxy = 0. Then yQxt is the substochastic
transition matrix of a transient chain (the yth associated transient
chain). A function / is called superregular for yQ if yQf{x) S /(#).
If yQf = /, then / is called regular for yQ. A nonnegative regular
function is minimal if every nonnegative regular function g ^ / is a
multiple of /. A point ζ e B is called minimal if K[y)( 9 ξ) is a minimal
regular function for yQ. (Again, the minimal points of B can be
shown to be independent of y.) If h is a nonnegative superregular
function for yQ, then the transient chain with transition matrix,
yQxtHfyHxy1 is called the /̂ -process for yQ. The following represen-
tation theorem follows by applying the results in § 5 of [8] to the
measure v(x) = f{x)ΊZxπ~γ on the dual chain.
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THEOREM 4.1. Suppose (i) f(x) ^ 0, (ii) f(y) = 0, and (iii) Pf(x) S
f(x) + δxy. Then, there is a unique probability measure Γf, vanishing
on the nonminimal points of B, such that

K{y){x, ξ)Γf{dξ)

Finally, if h(x) — f(x) + δxy, then h is a superregular function for yQ.
Let θA(x) be the probability that, starting from y, this h process last
visits the set A at the point x, (θA{x) depends on y and / ) . Then for
xe A, by results in [8], we have

(4.1) Σ (/ - PΛ).tf(t) = [θA(x) - δxy]πy/πx .
tβA

Moreover, if {An} is a fundamental sequence of sets, i.e., the An are
monotone increasing and U nAn = E, then for any continuous function
g on E*,

(4.2) lim Σ θAn{χ)g{χ) = \ g(ξ)Γf(dξ) .
%-»oo x JE*

That is, the θAn converge weakly to Γf.
We are now in a position to establish the following result.

THEOREM 4.2. Suppose the limits in (3.2) exist for all states x.
Then, for any finite nonempty set A, and any two states x, y we
have, for x£ A,

(4.3) My(x; A) - (πjπx)\ 0A(ξ, x)β{dζ) ,
JE*

while for xe A,

(4.4) My(x; A) = (πy/πx)\ HA(ξ, x)β(dζ) ,
JE*

where β is a unique probability measure on E* which vanishes on
the nonminimal boundary points.

We shall first establish the desired representation for all sets A
having exactly one point. This will be an immediate consequence of

(3.5) and the following lemma.

LEMMA 4.1. For each y and all states x,

(4.5) Cxy - (πjπx)\ Glv](ζ, x)β{dζ) ,
JE*
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where β is a unique probability measure on E* which vanishes on
the nonminimal boundary points.

Note. In [8] a corresponding representation was shown to hold
for Cxy. In the proof given below to establish (4.5), we shall use
techniques similar to those used in [8] to establish the result for C*y.

Proof. In the remarks following the proof of Theorem 3.1, we
showed that

(4.6) lim n-1 Σ Sk

xy = Cxy .

From Fatou's lemma, we then have

Σ PxtCty ^ lim inf vr1 £ Σ PΛ ^ Cxy + dxy .

Consequently, for each fixed y9 we see that Cxy satisfies conditions
(i)-(iii) of Theorem 4.1, and thus there is a unique probability measure
β[y], vanishing on the nonminimal boundary points, such that

Cxy + δxy = πy\ K{v](x, ξ)β{y](dζ) .
JE*

But since for each ζeE*,

(4.7) K{v)(x, ζ) = [G{y}(ξ, x) + δuy[π? ,

we have

G \ G{,,(f, x)βM(dξ) .

To complete the proof we must now show that the measure β{y} is
independent of y. In order to do this we may proceed as follows.
Let A be any finite set containing x; then,

Σ PytHA{t, x) = HA(V, α ) + P v i - δyβf x e A .
t

If we iterate the above relation n times, we obtain the identity

Σ PZt+lHA{t, x) = HA{y, x) + Σ PZtHA{t, x) = HA{y, x) + Σ
t teΛ

where N;t = (I + P + + P»)yt. Now, Σί πtPtί = π*9 and thus we
may rewrite the above identity as

(4.8) Σ PyT'HΛU x) = HA(y, x) + Σ \(^
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But

(πt/πy)Ny

n

y - Nζt = (πt/πy)S?y .

Using this identity we obtain from (4.8) the identity

v {N^-I)ytHA(t,x)
t n + 1

= HA(y, x) + (πjπy) Σ(I- PA)*\——Γ Σ SU .
t€A V-Ύl + 1 k=o J

Consequently, from (4.6) we have that the limit, as w—> ©o, on the
right-hand side of the above expression exists and has the value

For a fixed a? and A, let

w + 1

From the above, we then have that lim^oo φn(y) = <£>(#) exists. But

iVw+1 - / = PN» ,

and thus

<PΛV) = Σ Pyt9n-i(t)n/n + 1 + fl^(y, a?)(% + I)"1 .

By dominated convergence, we then have that φ(y) satisfies the relation
Pφ(x) = φ(x)f and as the P chain is recurrent, we must have that
φ(x) is a constant (independent of y).B Denote this constant by Xjx).
We have thus established the following identity:

[XA(x) ~ HA(V, x)]πy/πx = Σ ( I - PA)&y, ^ 4 ,
tβA

and, in particular, for y e A we have

(4.9) [>UaO - δyx]πy/πx = Σ (/ - P') A , a?, y e A .

However, from (4.1), for any finite set A containing x,

(4.io) ^

where ^̂ (αj) is the probability that, starting from y, x is the last state
to be visited in the set A by the h process for yQ determined by the
function C.v + δ.y = h(-). From (4.9) and (4.10) we see that if ye A,

See Theorem 3 on p. 226 of [6].
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then ΘA(x) — XA(x). Consequently, (by (4.2)) for any fundamental
sequence of sets {An}, we have that {λ^J converges weakly to β{y},
and as the XAn are independent of y, we must have that β{y} is too.
This completes the proof.

We may now complete the proof of Theorem 4.2. First, observe
that from (4.7), we see that (4.3) and (4.4) for the set A — {z} are
equivalent to the single relation,

(4.11) My(x; {z}) = πy\ K{z](x, ξ)β(dξ) .
JE*

Now suppose we have established the relation

(4.12) My(x; A) = πy\ KA(x, ξ)β(dξ) ,
JE*

for all sets A having exactly r > 0 points. Let B = A U {z}, where
zgA but is otherwise arbitrary. From the relation

PX(VB >n,Xn = t) = PX(VA >n,Xn = t)

- Σ Fϊ(x, z)Pz{VA >n-k, Xn.k - ί) ,
k = l

we obtain the identity

9B(%, V) = gA{%, y) ~ ΠB(x, z)gA(z, y) ,

and thus for each ξeE*,

KB{x, ξ) = KA(x, ξ) - ΠB{x, z)KA(z, ξ) .

Consequently, by the induction assumption and equation (3.6),

My(x;B) = πy\ KB(x, ξ)β(dξ) ,
JE*

which establishes (4.12) for the set B. By,induction, we then have
that (4.12) holds for all finite nonempty sets.

If x&A we have that gA(x, t) = GΛ(x, t), and thus for x $ A, (4.12)
becomes (4.3). On the other hand, for any x, t we have

flU(a, *) = Σ P..GΛ(z, t) + Kt ,
z

and thus

KA(x, t) = [ Σ GA(t, z)Pzx +

But if xeA, the expression in braces is HΛ(t,x). Consequently, from
(4.12) and the above we obtain (4.4). This completes the proof of
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Theorem 4.2.
From the proof of the above theorem we have the following:

COROLLARY 4.1. For any two states x, y and any finite nonempty
set A,

(4.13) My(x; A) — πλ KA{x, ξ)β(dξ) ,
JE*

provided the limits in (3.2) exist for all states x.

COROLLARY 4.2. Under the same conditions as Theorem 4.2 we
have My(x; A)π~x is independent of y. Moreover

(4.14) Σ π*My(x; A) — πy .

Let us see what the representation in Theorem 4.2 becomes in a
positive recurrent chain. If the chain is positive recurrent, then it is
readily seen that the representation in Corollary 4.1 is equivalent to
the identity

{πyEyV{y))-1ExVA = Σ KΛ(

However, it is a well-known and easily verifiable fact that

(4.15) EΛVA = Σ Λifo *) = m~" Σ KJxf t){mπt) ,
ί t

where m = (Σ* rc*)"1. By the uniqueness of β we must then have

β(B) = 0, and β({t}) = mπt .

From the above results on the positive recurrent case we see that
we may view the resuls of Theorem 4.2 as an extension of the identity
(4.15) to those null chains for which the limits in (3.2) exist for all
states x.

5* Strong ratio limits* Let us now turn our attention to the
problem of the strong ratio limits. It is quite easy to give examples
of aperiodic recurrent chains (both positive and null) in which series
(3.3) converges for all states x (and thus the weak ratio limits (3.4)
exist), but in which the strong ratio limits fail to exist. The following
is a sufficient condition for null recurrent chains which is frequently
satisfied.

THEOREM 5.1. If the limits (3.2) exist for all states x and if
for some state, say z09 we have
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(5.1) Σ *nQ»(v, {So}) ~ (1 - t)~aL(—-—\ t -> 1- ,

where a > 0 ami L(%) is α slowly varying function, then for any
state y,

(5.2) Qn(y; {y}) ~ (π»J''

/or cm?/ jfϊmίβ nonempty set A, arbitrary states x, y, and arbitrary
nonnegative integer k,

(5.3) lim *f**\Al = ® = Σ ΠA(x, z)My(z; A) .
n-*co Py(Nn({y\) = 0)

Proof. We know (see (3.15)) that

Σ t*Q»(v; {y})
lim - ^ = πjπy ,

and thus, if (5.1) holds, we have

Σ rQ»(v; {y}) - (i - O - ^ ί ^ — V ^ ^ * -»1-

Since Qn(i/; {y}) is nonnegative, by Karamata's Tauberian theorem ([3],
p. 154) we have

(5.4) Σ Qk(y;

and since Qn(y; {y}) is monotone, another Tauberian theorem ([2], p.
517) asserts that from (5.4) we may conclude that (5.2) holds. Now
if the limits in (3.2) exist for all x, then by Theorem 3.2 and (5.1)
we have

\ 0 Σ Πk

A{x, z)My(z; A) ,
1 -

and thus,

V *»P (AT ( Λ\ < ΊA ~ tr-UΛ — +\-«T.f ^ \ π V V,0 Σ Σ
1 — t / z 3=0

Since Nn(A) is nondecreasing, P ί̂iNΓ̂ ίA) ^ fe) is nonincreasing in n for
each fixed &. Consequently, by applications of the Tauberian theorems
mentioned above, we may conclude

P.(Nn(A) ^k)~ π-ψia^n^Lin^ Σ Σ ΠA(x, z)My(z; A) .
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Thus we must have

P.(Nn(A) = *) ~ π?Γ(a)-*n"-*L{n)πH Σ Π\{x, z)My(z; A) .

Now (5.3) follows from (5.2) and the above expression.

REMARK. Again observe that in the special case when A = {y},
the limit value is 1 for all k > 0. If we trace through the above
proof for this special case, we will see that we never use the assumption
that the limits in (3.2) exist. Thus we have

COROLLARY 5.1. If (5.1) holds for some state z, then (5.2) holds t

for any state y, and moreover, for any integer k > 0,

Observe that whenever (5.5) holds, we have the curious result
that for 0 ^ j ^ k.

(5.6) lim Px(Nn({y}) = 3 I Nu({y}) ^ k) = (k + I)- 1 .
?l-»oo

In the case when the dual boundary has only one point we may
establish the existence of the strong ratio limits for one point sets
with less assumptions. In fact we have the following.

THEOREM 5.2. Suppose that the dual boundary of the P chain
has only one point and Qn(y; {y}) > 0 for all n. Then for each fixed m,

( 5 7 ) l i m Qn+m(%, {y}) = \(πv/πχ)μχy, % =£ y ,

- - QΛv'Λv}) (l, χ = y9

if and only if

(5.8) ιim^Qn±MML = i /
•— QΛv iv})

Proof. Clearly if (5.7) holds, then setting y = x and m = 1, we
obtain (5.8). To establish the converse, we need only consider the case
m — 0. If x = y, there is nothing to prove; so from now on assume
x Φ y. Now we have

= Σ F[yV+n(χ, {y}) - Σ GU^ t) yPt

n

y

+1,
r=0 t

4 If the chain is null recurrent, then Qn(y, {y})> 0 for all n. (See the proof of
Theorem 5.3). The author has constructed an example of a recurrent chain in which
the dual boundary has exactly 2 points and such that (5.8) holds, but in which the
limits in (5.7) fail to hold. However, in this example it is not known if condition
(3.2) holds, so that the weak limits may also not exist.
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and thus
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Since the P chain is irreducible, we have, for some m0, that Pt™° —
a > 0, and as

P , ( n < F { , } ^ n + mo + l)^ Py(V{y} > n

we have,

From (5.8) and the above inequality, we then have, for each fixed t,

(5.12) lim Rn(t) = 0 .
n-*°o

The assumption that the dual boundary has only one point is equivalent
to the fact that the limit

(5.13) lim G{v}(t, x) = μxy
|ί|-»oo

exists. From (5.8) and (5.9), we see that to establish (5.7) it is only
necessary to show

lim Σ G{y](t, x)Rn(t) = μxy .
n—>oo t

However, this is an easy consequence of (5.11), (5.12), and (5.13).
Although the conditition that the dual boundary have only one

point is very restrictive, we shall see in § 6 that it applies to some of
the important chains of practical interest. In particular, it was shown
by Spitzer [13] to hold for all partial sums of independent, identically
distributed, integer-valued random variables except those with mean 0
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and finite variance.5 The above theorem for this class of chains was
established by Kesten and Spitzer in [9], and the proof given above
was patterned after their proof.

Theorem 5.1 includes certain cases not covered by the present
theorem. For example, it was shown in [9] that, for the partial sum
of independent, integer-valued random variables with a common distri-
bution having zero mean and finite variance, the conditions of Theorem
(5.1) hold; but in this case it was shown that the dual boundary has
two points. On the other hand, the present theorem clearly includes
cases not covered by Theorem (5.1)—notably, some positive recurrent
chains are included in the present result.

If the chain is null recurrent and has only a single point in its
dual boundary, then, as was noted in [8], we must have that C%
exists for all states x, y. Moreover, in this case we must have that
Cty — (πy/πx)μxy. On the other hand, if the chain is positive recurrent,
the weak and strong limits need no longer be the same.

Usually it is not easy to verify when condition (5.8) holds. In
the null-recurrent case, a simple sufficient condition is the following.

THEOREM 5.3. //, in a null-recurrent chain, P£y is a monotone
function of n, then (5.8) holds.

Proof. We must have Qn(y; {y}) > 0 for all n. For if QnQ(y; {y}) = 0,
then Qn,no(y; {y}) = 0 for all n ^ 0, and thus Σ?=o Qn(v; {v}) < ~ . But
this cannot be true in a null-recurrent chain. Thus we have

Qn(y; {y})

Qn-i(v; M)

Now, it is well-known that

and thus

QΛv; {y}) + Σ (P,T* - P:^k)Qk(v; {»}) = o .
k=0

Since Pfy is nonincreasing, we have

The fundamental limit theorem for Markov chains (see [1]) then gives
us

5 Of course, the partial sums must also be such that they constitute an irre-
ducible, recurrent chain.
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lim inf Q»(f' ψl ^ lim (1 - Py*v) = 1 .
— Q—i(y;{y})

Let us now extend the result of Corollary 5.1.

THEOREM 5.4. / / for a state y, Qn(y; {y}) > 0 for all n and there
is a positive a ^ 1/2 such that

(5.14) sup
<

QΛv; {y})

and (5.8) holds, then (5.5) holds for any k > 0 ami aw?/ initial point x.

Proof. Consider first the case x — y. Let Vk denote the time of
the kth visit to y.Q Then clearly,

Py(Nn({y}) = k) = Σ P , ( ^
r=l

By (5.8) we have

To complete the proof, we must therefore show that for all k > 0,

(5.15) limϊΐm" ± Py(Vk = τ)Q^r(y; {y})QM {2/})"1 = 0 .
m—»oo fi-»oo r = m + l

If a? = y, then clearly (5.5) holds for k = 0. Suppose we have already
established that (5.5) holds for all k < k0 when x = y. Then,

lim < fc°> - lilim ^

Now, decompose the sum in (5.15) as follows:

Since

we obtain from (5.14)

n [an] n—m n

r=m+l r=m+l [αw]+l n—m+1

[an]
v k0

[w]

lim lim Σ
m—*oo n—*oo r—m+1

I] f) (ηι η \ []

That is, Vi = V{yh and for k > 1, F* = inf {r > Vk-ϊ. Xr=y}.
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Next,

V < 0 (v

and thus, by (5.14) and (5.16),

lim lim Σ = 0 .

Finally, since

f g Py(VkQ >n-m) Qn_m(y, {y}) Py(Vko > n) ^

n±ά+ι - Qn_m{y, {y}) Qn(v, M ) Q»(v, M )

from (5.8) and (5.16) we obtain

n

lim lim Σ = 0
m—»oo n—*oo n — m + 1

Thus, when x — y, (5.15) holds for k = fc0, and consequently (5.5) holds
for all k Ξ> 0. Now for an arbitrary x we have for k > 0,

= fc) = Σ ni(»,
r = l

and thus

^ L J •*• {2/}V^ . . . . . . . . . .

lim lim -^ ———— = 1 .
QΛv, {y})

To complete the proof, we must therefore show that

(5.17) lim lim Σ = °
m—>oo ίi—»oo r—m + 1

If x — y> then, by what was just shown above, we must have that
(5.17) holds. If x Φ y, we have

and since ΣΓ=o yPyχ — Kχ/πy, we must have tfP^° > 0 for some m0. Thus,
if we set β = yP™x\ we have

^ ^ •+?» F;(y, {y})Py{Nn+m^r{{y}) = k - 1) Qn+mQ(y, {y})

Qn(y, {y}) '

and accordingly (5.17) holds in general. This completes the proof.

6* Examples* In this section we shall apply the results of the
last section to various specific Markov chains. We note again that
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for the important case of partial sums of independent, identically-
distributed, integer-lattice-valued random vectors in r dimensions,
Kesten and Spitzer [9] have shown that the strong ratio limits (1.1)
exist for all nonempty finite sets A.

EXAMPLE 1. Random Walk on the Nonnegative Integers. The
state space of this chain is the nonnegative integers, and its transition
matrix is given for x ^ 0 by

(6.1)

x, V = x + 1 ,

, V = x - 1 ,

.0, elsewhere,

where px + qx + rx = 1. For x Ξ> 0 we have qx+1, px > 0, while for
x = 0 we have q0 = 0. Let

(6.2) π. = Pχ-1

and observe that

(6.3) pxπx = qx+1πx+1 .

We gather together below some essential facts about random walks
which we shall need. For details we refer the reader to [5].

Associated with each random walk is a sequence of polynomials
Qx(t) on [ — 1,1], and a probability distribution Ψ{t) with support on
[ — 1,1]. Each polynomial Qx(t) is of exact degree x, and the poly-
nomials satisfy the reccurrence relation

tQM = ί>βQβ+i(«) + τxQx{t) + q.Q.Λt), x^O,
( ' Qo(t) = 1 , Q-i(ί) = 0 .

M o r e o v e r , w e h a v e

(6.5) P:y =

and, in particular,

(6.6) δxy = PI, = πy^Qx(t)Qy(t)d¥(t) .

The integrals in the above expressions include the mass m1 at 1 and
m_! at — 1. If the walk is symmetric (i.e., rx = 0 for all x), then
m_! = m1# If the walk is asymmetric, then m_x = 0. If the walk is
positive recurrent, then mγ = (Σxπx)-\ while for a walk that is not
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positive recurrent we have m1 — 0. From (6.3) and (6.4) we obtain

(1 - t)πxQx(t) = -πxPx(Qx+1(t) - Qx(t)) + *r.-iJV-i(Q.(t) - Q.-i(*)) ,

and thus

- ( 1 ~ ί) Σ π.Q,(t) = πyPy(Qy+1(t) - Qy{t)) .

Another summation yields

(6.7) Qx+1(t) = 1 - (1 - t) ± {pyπyy ± π,Q,(t) .
y=0 2=0

Setting t = 1 in the above, we see that

(6.8) Qx(l) = 1 all x ^ 0 .

We are now in a position to establish the following important
property of random walks.

THEOREM 6.1. In every null-recurrent random walk and in
every positive-recurrent asymmetric random walk, the series

• > * ^ (On D»\
Jxy ZJL \ Σ yy x xy)

w=0

converges. Moreover,

(6.9)

v-l

rΣ ) - 1 Σ tf* ,

(6.10)

x < y ,

•̂yΣ (PkKk) \i-^Σ^ , « > y ,
k=y I j=Q )

0 , a? = y .

Proof. From (6.5) we see that

N

V (Pn Pn\
/ i Vx 2/2/ — x a;?//

S I
/I /^-1Π _ /iV'+1^D (f\\f) (f\ Π (tWrlW(f\
\X. — ϋj \JL 0 / v̂2/\*vL^*2/\ / — ^*X\v)Jw-i \^/

—1

Suppose y > x. Then from (6.7) and (6.10) we have

V (Pn Pn\
S Λ \ X 2/2/ X ίC2//

n=0

Σ (^.π,)-1 Σ πrQr(t)dΨ{t) .

By (6.6), we see that
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πy[ Q,(ί) Σ (P^)-1 Σ πrQr(t)dΨ(t) = 0 ,
J—1 k = x r=0

k_

= 0

and thus

N

Σ (pn __ pn\
\-L yy •*• xyj

= πλ tN+1Qy(t) Σ (PuTtuY1 Σ KrQr*
J - l A = » r=0

From the above, we obtain

)-1 Σ
λ;=0

+ lim ΊίyΎYi_\—^1) + Qy\~

and thus C*y exists if and only if m_λ — 0. In that case,

y—l n

n—x k=Q

Now suppose y < x. A similar computation to that used above
then shows that

y (Pn — pn)
/ \ \ x yy ± xyj

= 2r,jji - n<?»(ί)Σ (P^r'tπiQi

From (6.6), we obtain

)-1 Σ π&AtWit) = 7Γ, Σ
j = 0 k=y

and thus

iV

»-=0

- JΓ, Σ (Puπ*)-1 - πy [ tN+1Qy(t) Σ (p^*)-1 Σ π.Q^f
k-y J — 1 /c = y 7 = 0

Consequently, taking the limit as N—> oo? for m_x = 0 we obtain

% = πy Σ {Vkπky
ι ~ πvmi Σ

= π, Σ (p^J-'jl - mi Σ πΛ .
w = 2/ I k=0 J

This establishes the theorem.
As a corollary we have the following result.
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COROLLARY 6.1. Under the same condition as for Theorem 6.1
we have, for z Φ x,

(6.12) lim π^G{z](x, y) =
(o , z > x .

Proof. By Theorem 22 of [6], for z Φ x, y we have

(6.13) G[z}(x, y) = C* - C% + (πJπ,)C*. .

From (6.9), we see that when y > max (x, z),

C*
zυ —

Γ<* (y-1 y-lΛ n

7Γ« U = « n=x) fe=0

)"1 Σ
/c=0

-mί Σ (P
n=ίc

Thus if 7/ > max (α?, z), we have

z < x ,

% ^ X

(θ ,

« > 3 f

a? < z ,

which establishes (6.12).

REMARK. Observe that in the null-recurrent case the matrix C%
is triangular with 0's on and above the main diagonal. Also observe
that in the null-recurrent case the limit in (6.12) is C*z/πz, while in
the positive-recurrent case this limit is different from the above ex-
pression.

Theorem 6.1 shows that the stronger Doeblin form of weak ratio
limits always holds for null recurrent random walks. From Corollary
6.1 we see that Theorem 5.2 is applicable to all random walks except
symmetric positive-recurrent walks.

EXAMPLE 2. The Aperiodic Renewal Chain. This chain also has
the nonnegative integers as its state space. Its transition matrix is
given by

(6.14)

where 0 < Vx < 1,

y

X

~

>

Qx+i —

o ,
0.

1 - Px + 1 , v = o,
elsewhere,
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(6-15) _„ ^ , σ; c ί / 1 _ u* ) _L σt f ^ r

w h e r e l/α**, = 0 if OΌo = co.

If ί > max (x, y), we obtain

1 / σx __ σy

and thus, by (6.13),

(6.16) , *) = — (— - —

Again observe that this limit is C%jπy only in the null case. This
establishes the following:

THEOREM 6.2. In any aperiodic, recurrent renewal chain, C*y

exists for all states x, y. Moreover if y Φ x,

ίO , y > x ,
(6.17) limτrr1G{,J(a?,*)= , \

The above theorem shows then that all the stronger forms of the
weak ratio limits exist in every renewal chain, and that Theorem 5.2
is applicable. It is quite simple, however, to exhibit renewal chains
for which some or none of the strong ratio limit results hold. To
see this, all we need do is recall the familiar fact ([1], Sec. 8) that
given any sequence {Wk} of independent, identically distributed positive
integer-valued random variables, we may construct a renewal chain
such that the successive returns to 0 have waiting times Wk. Since
all the conditions for the various strong ratio limits to hold involve
conditions on the tails of the distribution of W19 and since we may
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readily construct such distributions which do or do not satisfy these
conditions, we see that there are renewal chains for which these
strong ratio limits hold, and renewal chains for which they do not
hold.

REMARK. The dual of the renewal chain presents another example
of a Markov chain with a single boundary point for which series (3.3)
always converges.

As our next example, we consider the reflecting-barrier process.

EXAMPLE 3. Reflecting Barrier Process. Let Ui be independent,
identically distributed, integer-valued random variables assuming positive
and negative values and such that E{eiθUl) — 1 if and only if θ = 2nπ,
and let

Tn = ( 2 U + Un)
+ = max(0, Tn^ + Un) .

It is a familiar fact (see, e.g., LH]) that

(6.18) P(Tn = 0\T0 = x) = P(M^ = 0,Sn^ - x ) ,

where Sn = U1 + + Un, and Mn = max (0, &,•••, Sn). From (6.18)

we see at once t h a t

( *00 Pχθ) = 0 y

and thus

n = 0

converges. As the Tn process is irreducible, by Lemma 3.1 0% exists
for all states x, y. Thus the Doeblin-type ratio limits are always valid
for recurrent Tn chains. By results in [12] (see eqn. 4.21) condition
(5.1) of Theorem 5.1 is satisfied if and only if

(6.19) l im rr1 Σ P(Sk ^ 0) = a , 0 g α < l ,
n-*oo

and thus, when the above condition is satisfied, the strong results of
Theorem 5.1 are applicable. In particular, if P(Sk ^ 0) converges to
a value < 1 (e.g., if U1 has a symmetric distribution), we see that
(6.19) holds.

Since

G{0}(x, y) = Σ P(Sn = y - x, Si > -x, 0 ^ i ^ n)

we see that G[0](x, y) is the same as the Green's functisn for the half
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line (-co, 0] for the Sn process. From results in [13] (see E3 P. 332)
it easily follows that the dual boundary of the Tn process has exactly
one point whenever the Sn are recurrent. But if the Sn are recurrent,
then the Tn must be null recurrent (see [11]), and since Po

n

o = P(Mn — 0)
is clearly a monotone function of n, we see from Theorems 5.2 and
5.3 that

(6.20) lim P*<y™ > n\ = C* + δx0

— P0(F { 0 } > n)

whenever the Sn are recurrent. In particular, (6.20) holds whenever
EU, = 0.
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