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V EXPANSIONS IN TERMS OF GENERALIZED
HEAT POLYNOMIALS AND OF THEIR

APPELL TRANSFORMS

DEBORAH TEPPER HAIMO

The object of this paper is to characterize functions which
have L2 expansions in terms of polynomial solutions Pn,*(x, t)
of the generalized heat equation

( * ϊ ΓJ!_ + 2ύL J-Ίu(r t) - JLu(x f)
L dx2 x dx J at

and in terms of the Appell transforms Wn,»(x, t) of the Pn,»(x, t).

H* denotes the C2 class of functions u(x, t) which, for a<t<b,

satisfy (*) and for which

G(x, y\ t - t')u(y, tf)dμ(y),

0

dμ(x) = 2W*^\r(v + ±

for all t, V, a < V < t < 6, the integral converging absolutely,
where G(x, y; t) is the source solution of (*). The principal
results are the following:

THEOREM. Let u(x, t)eH*, —σ^t<0, and

u(x, t)[G(x; —t)ψ e L2

for each fixed t -σ^t<0, 0 ̂  x < oo. Then, for -σ ^ t < 0,

S oo JV 2

\J~\iky V) (Λ/\J/f v) >̂ t υbγiJΓn, v\Jjf v) U/μ\Jϋ) — \J ,
0 w = 0

and
C oo oo

y> -f\ I Ίl(/γ f\ I 2 rϊ ftf/y\ X 1 I sy (2 ?Λ 1 / 2W

Jo

where

6W = p^w!]" 1 -

and

Γ oo

n,v(y, —t)dμ{y) .
0
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THEOREM. If u(x, t)eH*, 0 < t ^ σ, and if

u(ix, t)[G{x\t)Y^eLz

for each fixed t, 0 < t ^ σf 0 ̂  # < oo, then, for 0 < t ^ <x,

lim ί~G(»; dμ(x) = 0 ,

and

[°G(x; t) I u(ix, t) |2 cl/i(*) = Σ I a - 1 2 ί*™1 *2" »
JO n=^0

where bn is given above and

an = bn\ u(ix, t)Wn,»(x, t)dμ(x) .
Jo

THEOREM. If u(x, t)eH*, 0 < σ S t, and if

for each fixed t, 0 < σ £ t, 0 ̂  x < oo, then, for 0 < σ ̂  ί,

lim G(ix;f) u(x, ί) — n,v(x, t) dμ(x) - 0 ,

and

(ίa?; t) I v(α, t) i

where bn is given above, and

α* = &n\ w(fl5, t)Pn,v(x, —t)dμ(x) .
Jo

The theory is an extension, in part, of recent results of P. C.
Rosenbloom and D. V. Widder.

1* Preliminary results. The generalized heat polynomial Pntt,(x, t)
is a polynomial defined by

(1.1) Ux, *) =
Γ(v + 1

|

v a fixed positive number. Note that when v = 0, Pu>0(#,£) = vau(a?,t),
the ordinary heat polynomials defined in [8; p. 222]. For ί > 0, Pn>l/(α?, t)
has the following integral representation.

(1.2)
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As may readily be verified, for — co < χf t < oo, PntU(x, t) satisfies the
generalized heat equation

(1.3) ΔΛu(x,t) = -ζ-u(x,t),

where ΔJ(x) = f"(x) + (2v/x)f'(x). We denote by H the class of all
C2 functions which satisfy (1.3). The source solution of (1.3) is given
by G(x; t), where

d.4) a«.r.f>

with ^(z) = Czw-" /,_(1/2)(z), Cv = 2<1'2>-> Γ(v + (1/2)), Ir(z) being the
Bessel function of imaginary argument of order r, and where G(x; t) —
G(x, 0; t). For a detailed study of the properties of G(x, y; t) see [1].

Corresponding to the generalized heat polynomial Pn,v(x91) is its
Appell transform Wn,u(x, t) defined by

(1.5) Wn,M,t) = G(x,t)Pn,v(^, - 1 ) , t > 0, n = 0,1, 2, . . . ,

which is also a solution of (1.3). It follows readily from the definition
of Pn,v{x, t) that

(1.6) WntV(x, t) = t-*nG(x, t)PUlU(x, - t ) , t > 0, ra = 0, 1, 2, .

The importance of Pn>v(ίc, t) and Wn,v{x, t) in our theory is t h a t
they form a biorthogonal system on 0 ̂  # < co. We have, for t > 0,

(1.7) (>..,,(*, ί)P«,,(^, -t)dμ(x) = ±δmn,

where

(1.8) K = r(v + ψ)j\v*n\r(v + i . + %)] .

A consequence of (1.7) is a fundamental generating function for the
biorthogonal set Pn,>(x9 — t), Wnti,(x, t). We have, for 0 ̂  x, y < co,
—s < t < s, s > 0,

(1.9) G(α, y; β + ί) = Σ δ . ^ . d / , β ) ^ , ^ , ί) .Σ
n = 0

2. Inversion. For t > s, let us set
OO / Λ.

(2 1) ^(Ύ 11' <? f) — V h ( ) p(x2l8t)-(y2l8s) Ύjσ (r f\p (n, __<Λ
\£ι,±j <y<i \«v, t/, o, U) — 2-Λ "n\ / ^ ** n,v\'*/9*')JΓn>l/\y, o) ,

71 = 0 \ S
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where bn is defined by (1.8). Then, as a consequence of the defi-
nitions and of (1.9), we have

(x, y; β, t)

(2.2)

From the well known properties of G(x,y;t) — see [1; § 4] — the following
results are immediate.

LEMMA 2.1.

(2.3) (a) ^Γ(x, y; s, t) ^ 0, 0 S %, y < oo, s < t ,

(2.4) (b) lim ^Γ(x, y; s, t) = 0, 0 S x < °°, s < ί ,

(2.5) ( c ) l i m 3ίT(x9 y ; s , t ) = 0 u n i f o r m l y 0 ^ x , y < ^ ,

12/ — # I ^ 5 > 0, δ α ^ jΐα eίί positive number.

(d) For a? fixed, 0 ^ a? <

(2.6) Jί™ [ JΓ(x, y; s, t)dμ(y) = 1 , 0 ^ α < x < δ ^ o o ,

= 0 , 0 ^ α g 6 < α ; < o o ,

= 0, 0 ^x < a <b ^ oo .

It is now easy to establish the following fundamental inversion
theorem.

THEOREM 2.2. // φ belongs to 1/(0, oo) and is continuous at x,
then

(2.7) lim SΓ{x, y; s, t)φ(y)dμ(y) = φ(x) .
s-*t~JO

3* The Huygens property* A function u(x, t) is said to have
the Huygens property for a < t < b if and only if u(x, t)e H there
and for every t, t', a < V < t < 6,

(3.1) u(x, t) = \°°G(x, y; t - t')u{y, tf)dμ{y) ,
Jo

the integral converging absolutely. We denote the class of all functions
with the Huygens property by ϋ * . Functions of class i ϊ * have a
complex integral representation as given in the following result.

LEMMA 3.1. // u{x, t) e if*, a < t < b, then for a <t <t' <b,
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(3.2) u(x, t) = \°G{ix, y; V - t)u(iy, tr)dμ{y) .
Jo

The fact that PntV(x, t)eH* for - co < t < co, and Wn,u(x, t) e H*
for 0 < t < co enables us to conclude that certain integrals involving
functions of i ϊ* are constant. A general result was proved in [5],
but we state here the specific forms required in this theory.

THEOREM 3.2. If u(x, -t) eH* for 0 <t < oo, then

(3.3) [°u(x, —t)WntU(x, t)dμ(x)
Jo

is a constant.

THEOREM 3.3. // u(x, t)eH* for 0 <t < oo, then

(3.4) [°u(ix, t) Wn v(x, t)dμ(x)
Jo

is a constant.

THEOREM 3.4. / / u(x, t) e H* for 0 < t < co, then

(3.5) \~u(x,f)PnfU(x, ~t)dμ(x)
Jo

is a constant.

4* L2 expansions* We establish criteria for a function u{x, t)
so that the series ^ α ^ ^ , —t) converges in mean, with weight
functions G(x, —t), to u(x, t).

THEOREM 4.1. Let u(x, t) e H* for —σ^t<0, and

u(x,t)[G(x, -t)]ll2eL2

for -σ ^ t < 0, 0 ^ x < co. Then, for ~~σ g t < 0,

N 2

ηi(γ f\ V a P (v t\ dtt(τ\ — 0(4.1) limΓ(?(^, - t )
J

(4.2) ΓG(B, -1) I %(a?, t) |2 dμ(x) = ± i ^ - Ί
Jo w=o o w

where bn is given by (1.8) and

(4.3) αw = bλ~u(y, t)WntU(V, ~t)dμ(y) .
Jo



870 DEBORAH TEPPER HAIMO

Proof. For t fixed, let φ(x, t) be a continuous function vanishing
outside a finite interval and such that, for ε > 0,

(4.4) Γ | u(x, -t)[G(x, t)]1'2 - φ{x, t) |2 dμ(x) < ε, 0 < t <> σ .
Jo

Now set

(4.5) ψn(x, t) = Pnt1f(x, -t)[G(x, t)]1'2 , 0 < t S σ .

Then, by (2.1), we have

(4.6) 3f(x, y; β, t) = Σ U-2nψn(x, t)ψn(y, s) ,

where bn is defined by (1.8). Hence

, y; s, ί)^(i/, t)dμ(y) = Γ^(», t)dje£(y) Σ Kt~2nfn(x, t)fn(y, s)
JO 0

= Σ Kt-^fn(x, t) [ΨM s)Φ(y, t)dμ(y).
n = 0 Jθ

If we set

(4.7) . An(t) = bnt-
2A~ψn(y, t)φ(y, t)dμ(y) ,

Jo

and apply Theorem 2.2, we find that

(4.8) Σ An(t)ψn(x, t) = lim \~JΓ(x, y; β, έ)^(i/, t)dμ(y) = φ{x, t) .
0 ί~ JO

If we multiply both sides of (4.8) by φ(x, t)dμ(x) and integrate between
0 and co, W e obtain

Σ An(
?ι=0 JO

or, by (4.7),

(4.9) Σ η£- AW) = Γ φ\x, t)dμ(x) .
%=o 0 w Jo

Now, let

(4.10) cn(t) =

Consider

(4.11) I = Γ W -t)[G(x, t)]1'2 -
Jo L
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Since, by 1.7, we have

(4.12) , t)dμ{x) = ζ- δmn ,

with bn given in (1.8), it follows that

1 =

- Σ
k0

, t)dμ(x) + Σ —

= \°°[u(x, -t)]2G(x, t)dμ(x) + Σ — A\(t) - 2 Σ — Ak(t)ck(t)
Jo A=o ok k=o ok

, — t)[G(a?, t)\12 - Σ Λ(£)^(a;, ί)Vcί^(α )
k=O J

, -ί)[G(α?, ί)] 1 / 2 - φ(x, t)}2dμ(x)

\φ(x, t) — Σ Άfc(£)Ψ (̂#> ί)f ώ//(a?) .

0 I /5=0 J

By (4.4), we have

/ < 2ε +

ẑ (x, t)dμ(x) Σ ΆfcίO ĵfcί̂ ί )̂

< 2ε + 21 02(ίϋ, ί)d^(a?) + 2 Σ -AUί) —
Jo /c=o ftw

— 4 Σ AcOOl ^(», t)Ψk{%> t)dμ(x)
k=o Jo

< 2ε + 2JΓ ^2(x, t)dμ(x) - Σ A?(ί)—} .
U o A=O 5 W J

It follows, therefore, by (4.9), that if n is sufficiently large, I < 4ε.
Hence

(4.13) lim (*
î -^oo Jo

?, -t)[G(x,
yfc=0

= 0 ,

or, by (4.5), we have (4.1) with ck(t) = ak. Theorem 3.4 establishes
the fact that ak is independent of t.

ParsevaΓs equation (4.2) follows since

[~G(x,t)\u(x, -t)\2dμ(x) =
Jo 0

V 1

Σ< n(x, t) dμ(x)

f»
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with the last equality a result of (4.12).
An example illustrating the theorem is given by u(x, t) = ea2

This function satisfies the hypotheses for — oo < t < 0 and we find that

(4.14) \~G(x, t)^r\ax)e~2aHdμ{x) = ^(2a2t) , 0 < t < oo ,
Jo

whereas

(4.15) Σ I α J 8 1 1 = Σ bn(a2t)2n2^

) , 0 < t < oc ,

since

(4.16) 0 < t

Although, in this example, iφs, t)eH* for — oo < £ < co, the ex-
pansion (4.1) does not hold in the extended strip. Note that, in this
case, the requirement that u(x, t)[G(x, — t)]1'2 be in L2 fails for
0 < £ < o o . A modification of Theorem 4.1 when u(x, t)eH* for
0 < t ^ σ is given by the following result.

THEOREM 4.2. If u(x, t)e H* for 0 <t S σ, and if

u(ix,t)[G(x,t)γ'2eL2

for each fixed t, 0 < £ ^ o o , 0 ^ # < o o , then for 0 < t ^ σ,

(4.17) lim ("(?(&, t)
N-*oo Jo

u(ix,t) - = 0 ,

(4.18) f"G(αjf t) I M(iaj, ί) |2 dμ(x) = ± ζ- \ o, |«,
Jo »=o 0 Λ

where bn is given by (1.8)

(4.19) αw =

Proof. As in the preceding proof, we have

S CO

0

- Σ Cn(t)fn(x, t) dμ(x) ~ 0 ,

with
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iy, t)[G(y, tψ2ψn(y, t)dμ{y) .

Hence (4.17) holds with cn(t) — an, which, by Theorem 3.5, is inde-
pendent of t. Further,

[~G(x, t) I u(ix, t) |2 dμ(x) - Γ
Jo Jo

dμ(x)

which is the Parseval equation (4.18).
The example of the preceding theorem satisfies these hypotheses

for 0 < t < co, and we have, for 0 < t < co,

~G(x,

whereas

so that

M{x, t)dμ(x)

I an

Criteria for expansions in terms of Wn,v(x, t) are given in the following
result.

THEOREM 4.3. If u(x, f)eH* for 0 < a ^ t,

S oo JV 2

CHow i\ uίv /̂  V /7 1/17* (rr ί\ rl n(Ύ*\ — Π
0 n = 0

and

(4.21) [~G(ix, t) I u(x91) I2 d^(a?) = Σ ^
Jo »=o on

where bn is given by (1.8) αwd

(4.22) α. - bn\~u(x, t)Pn,u(x, -t)dμ(x)
Jo

σ g t <

Proof. Again, as in Theorem 4.1, since u(x, t)[G(ix, t)f12 e L2, we

have
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(4.23) lim Γ u(x, t)[G(ix, t)f2 - Σ cn(t)ψn(x, t)
N-yoo JO n=0

dμ(x) = 0 ,

with

(4.24) cn(t) = bnt-
2n[°u(x, t)[G(ix, t)]ll2ψn(x, t)dμ(x) .

JO

Now, (4.23) can be written in the form

lim [°G(ix, t)
^o° J o

u(x, t) - dμ(x) — 0 ,

with (4.24) becoming

cn(t) = bjr2n u(x, t)PntU(x, -t)dμ{x) .

Hence, if we set an = cn(t)t2n(2ty+{ll2), an is independent of t, by
Theorem 3.6, and (4.20) is established. Moreover, ParsevaΓs formula is

u(ix, t) I u(x, t) |2 dμ(x) - Σ I ol(t) I2 4-
0 n=Q h

Note that the function u(x, t) = G(x, k; t) satisfies the conditions of
the theorem for 0 < t < ^ . In this case, we have

and hence

whereas

Σ t-2

an =

1 \2v + l / 3L2

2ί / V 2ί

is; t) I G(x, fc; t) \2 dμ(x) = ( J _ J + V ( | ^ ) .
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