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ON A COINCIDENCE THEOREM OF F. B. FULLER

E. FADELL

Our objective is the following theorem.

THEOREM (1.1). Let X denote a space dominated by a finite
^-polyhedron K such that Hn(X\ Z) is torsion free. Let M be
a compact topological ^-manifold which is 1-connected and
let f,g\X->M be two given maps. Then, there is a map
g' ~ g: X —> M such that / and g' are coincidence free if, and
only if, the (rational) Lefschetz coincidence class L(f,g) = 0.

If X is a finite ^-polyhedron and M is a triangulated, 1-connected
compact manifold, the theorem is implicit in the work of F. B. Fuller
([5], [6]). In this case, one shows that the obstruction to deforming
f x g: K—> M x M to a map / ' x g': JK"—> M x M — Δ, Δ the diagonal
of M x M, is zero. Thus, one obtains maps / ' ~ /, g' ~ g, such that
/ ' and g' are coincidence free. Then, as shown in Fuller's thesis [6],
one observes that since M is a manifold (local homogeneity is all that
is necessary), deforming both / and g to obtain coincidence free maps
is equivalent to deforming just one of them to achieve coincidence
freeness. We will use a direct approach, employing general obstruction
theory for deforming cross sections into fiber subspaces, simple techniques
in fiber spaces to relax the conditions on X and the fact that the
classical computations relating Hn(M x M, M x M — Δ) and Hn(M x M)
where M is a triangulated manifold remain valid for topological mani-
folds by employing the techniques of tangent fiber spaces [4] or the
recent result of Kister [7] that microbundles are bundles. An immediate
application of this theorem is an obstruction theory proof of the following
converse of the Lefschetz Fixed Point Theorem for compact 1-connected
topological manifolds.

COROLLARY (1.2). Let M denote a compact 1-connected topological
manifold, f: M —+ M a given map and Lf the Lefschetz number for f.
If Lf — 0, there is a map g, g ~ f, such that g is fixed point free.

The corollary for triangulated manifolds, because of our previous
remarks, is implicit in Fuller [6]. The triangulated case (which is
doubtless classical but hard to find explicitly stated anywhere) may also
be shown using the theory of Nielson-Reidemeister fixed point classes
and results of Wecken [11]. An alternative proof of the corollary in
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the topological case, without obstruction theory, may be given using
Nielson-Reidemeister fixed point classes, results of Weier [12] and the
existence of a local index theory for fixed points in the category of
ANR's ([2] or [3]). Finally, we remark that (1.1) was discovered by
the author before he became aware of Fuller [6] in order to answer a
question, raised to him by E. E. Floyd, which is answered by (1.2).
(1.2) is easily seen to be false for polyhedra in general.

Singular homology is employed throughout.

2* Preliminaries* We recall first the necessary obstruction theory

[6].
Let ξ = (E, p, B, F), f0 = (Eo, pQ, B, Fo) denote locally trivial fiber

spaces over B such that E0(zE, pQ = p\E0 and for each xoe B there is
a neighborhood U of x0 and a homeomorphism of pairs

(P-W), PΛU)) ^-(UXF,UXFQ)

such that pφσ{x, y) — x, (x, y) e U x F.

DEFINITION (2.1). (ξ, ξ0) is called a locally trivial pair, with fiber
(F, Fo).

Suppose now that (ξ, ξ0) is a locally trivial pair, as above, such that
the fibre (F, Fo) is ^-simple. Then, πn(F, Fo) is a local system of groups
on B. Suppose further that B is a locally finite simplicial complex,
with λ -skeleton denoted by Bk, and /: B —> E is a given cross section
such that /OB71"1) c Eϋ. We paraphrase Theorem 3.2 of [6] as follows.

THEOREM (2.2). There exists an obstruction class

dn(f)eHn(B;πn(F,F0))

such that if dn(f) = 0, then f is homotopic (rel Bn~2) to a cross section
f:B~^E such that f{Bn) c Eo.

REMARK (2.3). It is understood that when cross sections are
homotopic we mean homotopic in the family of cross sections.

Suppose now we add the assumption that πk(F, Fo) = 0 for k < n
and πλ(B) acts trivially on πn(F, Fo). If g: B—>E is a given cross section,
then by (2.2) there is a cross section f:B-^E, homotopic to g, such
that f{Bn~λ) c Eo. Lundell [6, p. 167] has computed dn(f) as follows.
Designate πn(F, Fo) by π. The Hurewicz homomorphism h:π—+ Hn(F, FQ)
is an isomorphism. Let Θn € Hn(F, Fo; π) denote the fundamental class
of (F, Fo), i.e., the class corresponding to h~x under the universal coef-
ficient isomorphism Hn{F, Fo; π) ^ Horn (Hn(F, Fo); π). Consider the
diagram
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H"(E, Eo; π) > R\E; π)

H*(F, Fo; π) > H"(B; π)

where ί and k are inclusion maps.

PROPOSITION (2.4) ([6]). d'(f) = f*k*i*-\β%).

Since / * = g*, dn(f) depends only on g and we may employ the
notation dn(f) = d"(g) and state the following.

PROPOSITION (2.5). Given a locally trivial pair (ξ, £„) satisfying all
the assumptions imposed above, then a given cross section g: B—+ E is
homotopic to a cross section g':B-+E such that g'(Bn)(zE0 if, and
only if, d'(g) = g*kH*~\θn) = 0.

Let ξ = (E, p, B, F) and ξ0 = (Eo> p0, B, Fe), where (ξ, ξ0) is a locally
trivial pair. Let φ:K—*B denote a map. Then, φ induces a locally
trivial pair (£', ξ'o) = φ~\ξ, ξ0)

 o v e r K in the usual manner as follows.
f' = (Er, p', K, F), where

E' = {(x,y)eKxE:φ(x) =

p'(x, y) — χ.

ξ[ = (ES, PΌ, K, Fo), where

Ei = {(*, y)eKx Ea\ φ(x) = po(y)}

Suppose g: B —»E is a given cross section in ξ. Then, #'(a;) = (x, gφ{x)),
x e K, defines a corresponding cross section in g'. Letting φ(x, y) — y
we have the following commutative diagram

v' IV v

and φ(E'Q) c Eo.

LEMMA (2.6). Suppose γ0: i? —• Eois a map (not necessarily a cross
section) such that g ~ τ 0 (as maps). If (|, ξ0) is a fibered pair in the
sense of [1] (e.g. if B is paracompact), g is homotopic to a cross
section g0: B —> EQ.

Proof. This lemma is a special case of Lemma (5.1) given in § 5.
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LEMMA (2.7). Suppose φ: K-^B is a dominating map, i.e., there

is a map ψ: B~+ K such that φψ ~ 1, and (ξ, ξ0) is a fibered pair.

Then, there is a cross section g0: B —> Eo, g0 ~ g, if, and only if, there

is a cross section g'Q: K—+Ei, g'o ~ gr.

Proof. The necessity is simple and hence we confine ourselves to

the sufficiency argument. Suppose, therefore, that there is a cross

section g'Q:K—>EQ such that gΌ~g'. Let η — φgf^r and Ύo = φg'oir.

Obviously 7 ~ 70. On the other hand, 7 = gφψ ~ g. Therefore, g ~ τ 0,

70: B —* Eo. Lemma (2.6) applies to give the cross section g0: B —• Eo,

θo ~ 9-

Continuing with the above notation where (ξ, ξ0) is locally trivial

fibered pair and g: B —> E is a given cross section let us assume further

( i ) π^F, F0) = 0i<n, πn(F, Fo) is simple ,

(ϋ) πάB) acts trivially on πn(F, Fo) ,

(iii) there is a dominating map φ:K—*B where

finite polyhedron of dimension S

is a

We have the following commutative diagram where {ξ, ξ[) is the locally

trivial fibered pair induced over K by φ, gf is the cross section in ξ

associated with g as above, and π = πn(F, Fo).

Hn{E', Ei; π) — H*(E'; π)

(B)

i*\

Q; π) ; π)

Hn(K; π)

H"(B; π)

i, if, k, h' are inclusion maps.

PROPOSITION (2.8). The cross section g:B~^E is homotopic to a

cross section g0: B —> EQ if, and only if, g*k*i*~\θn) — 0, where θn is

the fundamental class of (F, FQ).

Proof. The assumptions (A) tell us that, via (2.5), the associated

cross section g!\K—>E' is homotopic to a cross section g'0:K—>Eό if,

and only if, dn(g') = gf*kr*if*-\θn) = 0. Thus (2.7) implies that there

is a cross section g0: B —> Eo, g ~ g0 if, and only if, g'*kf*i'*-\θn) — 0.

But diagram (B) gives

φ*g*k*i*-χθn) = g'*k'*ϊ*-χθn) .

Since φ* is injective the proposition follows.

The preceding material will be applied to the following situation.
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Let M denote a topological w-manifold (connected, separable metric).
Let ξ — (M x M, p, M, M), where p(b, y) — b and

& = (MxM-4, pQ, M,M-b)

where A is the diagonal in M x M and pQ is the restriction of p. Then,
(ξ, ξ0) is a locally trivial fibered pair with fiber (M, M — b),be M. Let
R denote a principal ideal domain and suppose M is 12-orientable, i.e.,
7Γi(Λf) acts trivially on Hn(M, M — b; R) or, alternatively, (ξ, | 0 ) is 12-
orientable. Then, the inclusion map i: (M, M — b) —> (M x M, M x M — A)
induces an isomorphism (see [4])

i*: Hn(M x M, M x M - Δ\ R) -^-> Hn(M, M - b; R) ** R .

Suppose now that /: X—> M is any given map where X is an
arbitrary space. Let E = X x M, Eo = X x M — Af, where Δf is the
graph of /. Let q:E—>X be projection on the first factor and qQ =
q I Eo. For fixed x e X, q~\x) = x x M = M and q*\x) = x x (Λf - /(a?)) =
AT - f{x). Let | ( / ) = (£7, q, X, M), | 0 ( / ) = (Eo, q0, X, M - /(«)).

PROPOSITION (2.9). (^(/), | 0 (/)) is a locally trivial fibered pair with
fiber {M9 M - f(x)). If (f, ^0) is Λ-orientable, so is ( |(/), | 0 ( / ) ) .

Proo/. (§(/), ^(/)) may be identified with /^(f, f0).

REMARK (2.10). There is a natural map f:E=Xx M—>Mx M
given by f{x, y) = (f(x), y) which gives rise to a commutative diagram

E-^~>M x M

and f(E0) = f(X x M - Af)(Z M x M - A.
If M is 1-connected and dim M ^ 3, then Λf — 6 is 1-connected

and τr/c(M, M — 6) = 0 for k < n and πn(M, M — 6) is a simple system.
If furthermore, X is dominated by a finite polyhedron of dimension
g%, then (§(/), lo(/)) satisfies the conditions in (A).

REMARK (2.11). If M is a compact, 1-connected 2-manifold, then
M = S2 (the 2-sphere) and the preceding remarks remain valid.

3* Some computations* We discuss first Lefschetz coincidence
theory in this setting.

Let M denote an orientable ( = Z-orientable) compact topological
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π-manifold, R any principal ideal domain. Let μ e Hn(M; R), μ e Hn(M; R)
denote fundamental classes corresponding to a given orientation of M.
Then for beM, the inclusion map j : M—+ (M, M — b) induces an
isomorphism [8]

Hn(M; R) *£- Hn(M, M - b; R)

and we define Ub by j*(Ub) = μ. Now consider the fibered pair (ξ, ξ0)
where ξ = (M x Λf, p, Λf, AT), & = ( ^ x Λf - J, p0, M, Af - 6) (see § 2)
which gives rise to the diagram

i
iί%(M, ikf - 6; R) <r—H*(M x M,Mx M- A R) -^Hn(M x M; R) ,

where i and k are inclusions. Define U by i*(ϊ7) = i76 and set U =
k*(U). This class U is studied by Milnor [7] in case R is a field and
ikf is an jB-orientable differentiable manifold. The techniques carry over
to the topological situation by using the techiques of tangent fiber
spaces [4] or a recent result of J. Kister [7] and we will make use of
this fact. For convenience we refer to U as the basic R-class for M.
It is well-defined up to orientation

DEFINITION (3.1). Let M denote an iϋ-orientable compact topological
manifold with basic JS-class U. Let f,g:X—>M denote two maps from
a space X to M. These maps induce/ x g: X x X—>M x M. Further-
more, let δ: X-^ X x X denote the diagonal map. The class

δ*(f x g)*(U) = L(f, g; R)

is called the R-Lefschetz coincidence class for / and g.

REMARK (3.2). When R = Q, the field of rationale, L(/, g; Q) is
the Lefschetz class usually considered and we distinguish it by the
notation L(/, g).

The following theorem in which we employ the notation in (3.1)
is immediate.

THEOREM (Lefschetz). If f and g are coincidence free, then
L(/, g; R) - 0.

Let us assume now that R is a field and M is iϋ-orientable as above.
Following Milnor [7] arrange a basis

( 1 ) 1 = «i, oc2j , aN = μ .

for H*(M; R) in increasing order of dimension. We find it also con-
venient to introduce the notation
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(2) Kp — integer subscripts in (1) of p-dimensional elements.

Then, the basic iϋ-class U takes on the form

( 3 ) U = ΣciSat x a,- = Σ Σ Σ c{jaf x aj~p

v \ieκp jeκn_p

where the matrix

(4) Cp,w_p = \\ciS\\ , (i,j)zKv x K%.p

is square and if

( 5 ) Yn_VιV = || yiS || , yu = <α, U a,-, μ} , (i, j) e Kn_p x Kp ,

we have

( 6 ) (-1)%,,_ P 7 W _ M = I (an identity matrix) .

Define

(7) /9r* = ( - l ) ' Σ c ^ r , ieJKp.

Then it is easily verified that

( 8 ) <α? U /5ΓP, μ> = ̂ i , i,jeKp,

so that the /3's form a dual basis. A simple computation now gives
the classical formula

( 9 ) L(f, g; R) = Σ ((-1)P Σ /*(«?) U flf*^"

where /, g are as in (3.1). If X= M,f=l, and J? is the field of
rationale, another straightforward computation shows

(10) L(l, g) = (-l) (Σ (-l)pt«gi))μ = (-l)*Lgμ

where tτg% is the trace of g* in dimension p and Lg = Σ P (--l)pMf7*)
is the usual Lefschetz number for ^.

REMARK (3.2). It is clear that the preceding material is applicable
to compact topological manifolds which are not necessarily orientable
if Z2 coefficients are employed.

4* Proof of Theorem (l l) The necessity is immediate and we
confine ourselves to the "if part."

Let (ξ, | 0) denote the fibered pair in § 3, i.e., ξ = (M x Af, p, M, M),
ξ0 — (M x M — Δ, pQ, M, M — b). The given map f: X—> M induces

the fiber space (£(/), ξo(f)) over X (§ 2) which satisfies conditions (A)
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(§ 2). The fiber of (&/), &(/)) over xeX is (Af, AT - 6), b =f(x).

Lett ing £(/) = (E, q, X, M), Uf) = (K, ?«, -X, Af - 6), we have the

commutative diagram

E-^M x Af

f

where f(x,y) = (f(%),y) The other given map g:X—>M induces a
cross section g\ X—+ E by <?($) = (cc, g{%)), x e X. We note at this point
that fg = (fxg)δ, where <?:X-+XxX is the diagonal map and
/ x g: X x X—>Mx M is the product map. Our objective is to deform
the cross section g into Eo = X x M — Jf. Consider the commutative
diagram

λ *

H«(E,E0;π) >H«(E;π)

H*(M,M-b;π)
\

f* H«(X;π)

>Hn(MxM;π)

where i, i,k,k are inclusions and π — πn(M, M —b) ^ Z. If θn is the
fundamental class of (M, M — 6), we need to show, by (2.8), that
g*k*i*-\θn) = 0. We may choose an orientation μ e Hn(M; π) of Λf so
that j*(θn) — μ where j : M—> (M, M — b) is the inclusion map. This
orientation determines

UeHn(Mx M, M x M-Λ π) and UeHn(Mx M π)

such that U = k*i*-\θn). The corresponding π-Lefschetz class is given
by <?*(/ x g)*(U) = L(f, g; π). On the other hand

g*kH*-\θn) = g*k*ϊ*-H*(U) = g*k*f*{U)

= g*f*k*(U) = gf*(U) = δ*(f X g)*(U) .

Therefore, L(/, g π) = g*k*i*-\θn) and hence the integral Lefschetz
class is precisely the obstruction class in question. Now, if Q is the
field of rationale, the inclusion homomorphism I: π —* Q induces
I*: Hn(X; π) - H*(X; Q). It is clear that l*(L(f, g; π)) = L(f, g; Q) =
L(f, g), where the Lefschetz class L(f, g) is chosen in terms of the
orientation μ. But the assumption that Hn(X; π) is torsion free together
with the fact that X is dominated by a finite polyhedron implies that
I* is injective. Therefore, L(f9 g) — 0 implies L(/, g\ π) = 0, which in
turn implies gk*i*~\θn) — 0 and the theorem follows.
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Since a compact topological -^-manifold is always dominated by a
finite polyhedron of dimension n, we have the following corollary, which
is a converse to the Lefschetz Fixed Point Theorem.

COROLLARY (4.1). Let M denote a compact, 1-connected topological
manifold, / l ^ I α given map and Lf the Lefschetz number for f.
If Lf = 0, there is a map g, g ~ f, such that g is fixed point free.

Proof. By (10) of § 3, L(l, /) = (-l)nLfμ, where n = dim M. If
Lf = 0f then L( l , / ) = 0 and f~g such that 1 and g have no coinci-
dences, i.e., g has no fixed points.

Corollary (4.1) may be reformulated as follows. Let a denote a
homotopy class of maps M—+M. Call a fixed point free if a contains
a fixed point free representative Also define La by Lω — Lf, fea.

COROLLARY (4.2). If M is a compact, 1-connected topological
manifold and a\ M-^ Mis a homotopy class of maps, then a is fixed
point free if, and only if, Lω = 0.

5* Appendix*

LEMMA (5.1). Let (ξ, ξQ) denote a locally trivial fibered pair where
ξ — (E, p, B, F), ξ0 — (Eo, p0, B, Fo). Suppose we are given a com-
mutative diagram of maps

E

and a map G: X—> EQ such that F — G. Then, there is a homotopy
H: X x I-+E such that H, - F, pHt = f, 0 ^ t ^ 1, and Ho: X->EQ.

Proof. Since (ξ, ξ0) is a fibered pair in the sense of [1], there is
a regular lifting function λ for ξ which works simultaneously for ξ0,
i.e., if eoeEQ and ωeB1, then X(eo,ω) is a path in EQ. By assumption
there is a homotopy K: X x I—> E such that Kϋ — G and Kλ — F. K
induces a map K: X-+E1 in the usual manner with K(x){t) — K(x, t),
O ^ ί g l . Let a(x)eBτ denote the path p(x), and observe that
a(x)(t) = p(K(x, t)), 0 <; t ^ 1, and, in particular, a{x)(l) = f(x). For
0 ^ s g ί, let a{x)s denote the path given by oc{x)s{t) — a{x){s + t — st),
O ^ ί g l . OL(X)S is a path with initial point p(H(x, s)) and terminal
point f{x). The required homotopy H is given by

H(x, s) = \[K(x, s)a(x)s](l) , 0 g s g 1 .
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