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ON A COINCIDENCE THEOREM OF F. B. FULLER

E. FADELL

Our objective is the following theorem.

TueoreM (1.1). Let X denote a space dominated by a finite
n-polyhedron K such that H*(X; Z) is torsion free. Let M be
a compact topological n-manifold which is 1-connected and
let f,9:X— M be two given maps, Then, there is a map
g’ ~g: X— M such that f and g’ are coincidence free if, and
only if, the (rational) Lefschetz coincidence class L(f, g) = 0.

If X is a finite n-polyhedron and M is a triangulated, 1-connected
compact manifold, the theorem is implicit in the work of F. B. Fuller
([5],[6]). In this case, one shows that the obstruction to deforming
fXxgK—MxM toamap f' X ¢: K— M x M — 4, 4 the diagonal
of M x M, is zero. Thus, one obtains maps f' ~ f, ¢’ ~ ¢, such that
f" and ¢’ are coincidence free. Then, as shown in Fuller’s thesis [6],
one observes that since M is a manifold (local homogeneity is all that
is necessary), deforming both f and ¢ to obtain coincidence free maps
is equivalent to deforming just one of them to achieve coincidence
freeness. We will use a direct approach, employing general obstruction
theory for deforming cross sections into fiber subspaces, simple techniques
in fiber spaces to relax the conditions on X and the fact that the
classical computations relating H*(M x M, M x M — 4) and H"(M x M)
where M is a triangulated manifold remain valid for topological mani-
folds by employing the techniques of tangent fiber spaces [4] or the
recent result of Kister [7] that microbundles are bundles. An immediate
application of this theorem is an obstruction theory proof of the following
converse of the Lefschetz Fixed Point Theorem for compact 1-connected
topological manifolds.

COROLLARY (1.2). Let M denote a compact 1-connected topological
mansfold, f: M — M a given map and L, the Lefschetz number for f.
If L; =0, there is a map ¢, g ~ f, such that g s fized point free.

The corollary for triangulated manifolds, because of our previous
remarks, is implicit in Fuller [6]. The triangulated case (which is
doubtless classical but hard to find explicitly stated anywhere) may also
be shown using the theory of Nielson-Reidemeister fixed point classes
and results of Wecken [11]. An alternative proof of the corollary in
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the topological case, without obstruction theory, may be given using
Nielson-Reidemeister fixed point classes, results of Weier [12] and the
existence of a local index theory for fixed points in the category of
ANR’s ([2] or [3]). Finally, we remark that (1.1) was discovered by
the author before he became aware of Fuller [6] in order to answer a
question, raised to him by E. E. Floyd, which is answered by (1.2).
(1.2) is easily seen to be false for polyhedra in general.
Singular homology is employed throughout.

2. Preliminaries. We recall first the necessary obstruction theory
[6].
Let £ = (F, p, B, F), & = (E,, p,, B, F;) denote locally trivial fiber
spaces over B such that F,C E, p, = p| E, and for each x,€ B there is
a neighborhood U of z, and a homeomorphism of pairs

(0~(U), p(U)) <~ (U x F, U x Fy)
such that ppy(x,y) =, (x,y)e U x F.

DEFINITION (2.1). (£, &) is called a locally trivial pair, with fiber
(F, Fy).

Suppose now that (&, &) is a locally trivial pair, as above, such that
the fibre (F, Fy) is n-simple. Then, 7, (F, F,) is a local system of groups
on B. Suppose further that B is a locally finite simplicial complex,
with k-skeleton denoted by B*, and f: B— FE is a given cross section
such that f(B"")C E,. We paraphrase Theorem 3.2 of [6] as follows.

THEOREM (2.2). There exists an obstruction class
d*(f)e H*B; w,(F, F,))

such that if d"(f) = 0, then fis homotopic (rel B*) to a cross section
f': B— E such that f'(B")C E,.

REMARK (2.3). It is understood that when cross sections are
homotopic we mean homotopic in the family of cross sections.

Suppose now we add the assumption that 7 (F, F,) = 0 for k < n
and 7 ,(B) acts trivially on 7,(F, F,). If g: B— E is a given cross section,
then by (2.2) there is a cross section f: B— E, homotopic to g, such
that f(B**) C E, Lundell [6, p. 167] has computed d"(f) as follows.
Designate w,(F, F\) by 7. The Hurewicz homomorphism h: 7w — H,(F, F,)
is an isomorphism. Let 0"e H"(F, F,; ) denote the fundamental class
of (F', F)), i.e., the class corresponding to A~ under the universal coef-
ficient isomorphism H™(F, F,; 7) ~ Hom (H,(F, F,); r). Consider the
diagram
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H™E, By, 7y~ H™E; )

|

H"(F, Fy; m) — H"(B; )

where 4 and k are inclusion maps.
PROPOSITION (2.4) ([6]). d"(f) = f*k*i*=%(6").

Since f* = g*, d"(f) depends only on g and we may employ the
notation d"(f) = d"(g) and state the following.

PROPOSITION (2.5). Given a locally trivial pair (€, &) satisfying all
the assumptions imposed above, then a given cross section g: B— FE is
homotopic to a cross section ¢': B— E such that ¢'(B")C E, if, and
only if, d*(g) = g*k*i*~(6") = 0.

Let &€ = (E, p, B, F') and & = (&, p,, B, F}), where (&, &) is a locally
trivial pair. Let ¢: K— B denote a map. Then, ¢ induces a locally
trivial pair (¢, &) = 7§, &) over K in the usual manner as follows.
g = (E', 9, K, F), where

E' = {(x,y)e K x E: p(x) = p(y)} ,
p'(x,y) =2.
& = (E{, p,, K, F,), where

E; = {(z,y) € K X Ey: p(x) = py(y)}
(@, Y) = .
Suppose g: B— E is a given cross section in & Then, ¢'(z) = (z, gp(x)),

x € K, defines a corresponding cross section in ¢’. Letting @(x, ) = v
we have the following commutative diagram

E' -5 E
p’l Tg’ D Hg
K *.B
and @(E;) C E,.
LEMMA (2.6). Suppose v,;: B— E, is a map (not necessarily a cross
section) such that g ~ v, (as maps). If (&, &) ts a fibered pair in the

sense of [1] (e.g. tf B 1s paracompact), g is homotopic to a cross
section g,: B — K.

Proof. This lemma is a special case of Lemma (5.1) given in § 5.
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LeMMA (2.7). Suppose ¢: K— B is a dominating map, i.e., there
s @ map v B— K such that oy ~ 1, and (& &) is a fibered pair.
Then, there is a cross section g, B— E,, g, ~ ¢, &f, and only if, there
is a cross section g K— K, gy~ ¢'.

Proof. The necessity is simple and hence we confine ourselves to
the sufficiency argument. Suppose, therefore, that there is a cross
section gy: K— E, such that g/~ ¢. Let v = @g'y and v, = Pgi.
Obviously ¥ ~ v, On the other hand, v = gpy ~ g. Therefore, g ~ v,
Y. B— E,. Lemma (2.6) applies to give the cross section g,: B— K,
90~ g.

Continuing with the above notation where (£, &) is locally trivial
fikered pair and g: B— E is a given cross section let us assume further
(i) z(F, F) =01 < n,rn,(F, F) is simple ,

A) (ii) w(B) acts trivially on n,(F, F),
(iii) there is a dominating map @: K— B where K is a

finite polyhedron of dimension == .

We have the following commutative diagram where (¢, &) is the locally
trivial fibered pair induced over K by ¢, ¢’ is the cross section in &
associated with g as above, and 7 = =, (F, F},).

HYE', B m) 2 HYE"; 1) 2 HAK; )

'/
B)  H“F, F; ) <: Ln* %* L*

H™E, By, 1) - H™E: 7) L H"B: 1)

1,1, k, k' are inclusion maps.

PRoPOSITION (2.8). The cross section g: B— E is homotopic to a
cross section g¢,: B— E, if, and only if, g*k*¢*~ (") = 0, where 6" is
the fundamental class of (F, F)).

Proof. The assumptions (A) tell us that, via (2.5), the associated
cross section ¢g': K— E' is homotopic to a cross section g K— E| if,
and only if, d™(¢') = ¢"*k'*i"*~%(6™) = 0. Thus (2.7) implies that there
is a cross section g,;: B— E,, g ~ ¢, if, and only if, ¢'*k"*i'*~%(6") = 0.
But diagram (B) gives

q)*g*k*’i*“l(ﬁ") — gl*k'*i'*—l(an) .

Since @* is injective the proposition follows.
The preceding material will be applied to the following situation.
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Let M denote a topological m-manifold (connected, separable metric).
Let €= (M x M, p, M, M), where p(b,y) = b and

SOZ(MXM—A’pmM,M_b)

where 4 is the diagonal in M x M and p, is the restriction of p. Then,
(&, &) is a locally trivial fibered pair with fiber (M, M — b),be M. Let
R denote a principal ideal domain and suppose M is R-orientable, i.e.,
(M) acts trivially on H,(M, M — b; R) or, alternatively, (&, &) is R-
orientable. Then, the inclusion map ¢: (M, M — b) — (M x M, M x M — 4)
induces an isomorphism (see [4])

i H M x MM x M — 4;R)—> H" (M, M —b; R)~ R .

Suppose now that f: X— M is any given map where X is an
arbitrary space. Let E= X X M, E,= X X M — 4;, where 4, is the
graph of f. Let q: E— X be projection on the first factor and ¢, =
q|E,. Forfixedeze X,q(@)=2 X M= Mandg;(z) =2 X (M — f(x)) =
M — f(z). Let &(f) = (H, q, X, M), &(f) = (Ey, ¢, X, M — f(2)).

PROPOSITION (2.9). (&(f), &(S)) is a locally trivial fibered pair with
fiber (M, M — f(x)). If (& &) is R-orientable, so is (E(f), &(f)).

Proof. (E(f), &(f)) may be identified with f~YE, &).

REMARK (2.10). There is a natural map 1 E =X X M—M x M
given by f(x, y) = (f(x), ) which gives rise to a commutative diagram

E-l MM

L

X— M

and f(B) = f(Xx M —4)CMx M — 4.

If M is 1-connected and dim M = 3, then M — b is 1-connected
and 7,(M, M —b) =0 for k < n and w,(M, M — b) is a simple system.
If furthermore, X is dominated by a finite polyhedron of dimension
=n, then (&(f), &(f)) satisfies the conditions in (A).

REMARK (2.11). If M is a compact, l-connected 2-manifold, then
M = S* (the 2-sphere) and the preceding remarks remain valid.

3. Some computations. We discuss first Lefschetz coincidence
theory in this setting.

Let M denote an orientable (= Z-orientable) compact topological



830 E. FADELL

n-manifold, R any principal ideal domain. Let e H"(M; R), i € H,(M; R)
denote fundamental classes corresponding to a given orientation of M.
Then for be M, the inclusion map j: M — (M, M — b) induces an
isomorphism [8]

H*(M; R) — H*(M, M — b; R)

and we define U, by j*(U,) = ¢t. Now consider the fibered pair (£, &)
where £ = (M x M, p, M, M), &, = (M x M — 4, p,, M, M — b) (see §2)
which gives rise to the diagram

H*(M, M — b; R) «— H*M x M, M x M — 4; B) " H\M » M; R),

where ¢ and k are inclusions. Define U by +*(U) = U, and set U =
k*(U). This class U is studied by Milnor [7] in case R is a field and
M is an R-orientable differentiable manifold. The techniques carry over
to the topological situation by using the techiques of tangent fiber
spaces [4] or a recent result of J. Kister [7] and we will make use of
this fact. For convenience we refer to U as the basic R-class for M.
It is well-defined up to orientation

DEFINITION (3.1). Let M denote an R-orientable compact topological
manifold with basic R-class U. Let f, g: X — M denote two maps from
a space X to M. These maps induce f X g: X X X—M x M. Further-
more, let 0: X— X x X denote the diagonal map. The class

o*(f x 9)*(U) = L(f, g; R)
is called the R-Lefschetz coincidence class for f and g.

REMARK (3.2). When R = @, the field of rationals, L(f,g;Q) is
the Lefschetz class usually considered and we distinguish it by the
notation L(f, g).

The following theorem in which we employ the notation in (3.1)
is immediate.

THEOREM (Lefschetz). If f and ¢ are coincidence free, then
L(f, g; R) = 0.

Let us assume now that R is a field and M is R-orientable as above.
Following Milnor [7] arrange a basis

(1) 1:a1ra2;”"a1\7:/‘£'

for H*(M; R) in increasing order of dimension. We find it also con-
venient to introduce the notation
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(2) K, = integer subseripts in (1) of p-dimensional elements.

Then, the basic R-class U takes on the form

(3) U=Seua x ;=5 (3 5 eual x a5~7),

P \I€K, j€EKy_,

where the matrix
(4) Cp,n—p:llcij[l ) (iaj)er X Kn—p
is square and if

(5) Y’n—-P,:D = H Yii || y Y = <a12 U aj, ﬁ> ’ (/"y .7) € Kn—p X KI) ’

we have

(6) (—1)"Cp,—pYu_p» = I (an identity matrix) .
Define

(7) By = (—1) . KZn,_p ciei" jeK,.

Then it is easily verified that

(8) U™ =20y, ik,

so that the #’s form a dual basis. A simple computation now gives
the classical formula

(9) L(f, 6 B) = 5 ((-17 3 f@nug )

where f,¢g are as in (8.1). If X=M,f=1, and R is the field of
rationals, another straightforward computation shows

(10) L1, ) = (~1*(S (= 1rtr(gh) ) = (=1 Ly

where trg} is the trace of g* in dimension p and L, = >, (—1)%tr(g;)
is the usual Lefschetz number for g.

REMARK (3.2). It is clear that the preceding material is applicable
to compact topological manifolds which are not necessarily orientable
if Z, coefficients are employed.

4. Proof of Theorem (1.1). The necessity is immediate and we
confine ourselves to the “if part.”

Let (£, &) denote the fibered pair in § 3, i.e., € = (M x M, p, M, M),
E=(Mx M— 4,0, M, M — b). The given map f:X— M induces
the fiber space (£(f), &(f)) over X (§2) which satisfies conditions (A)
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(8§2). The fiber of (E(f), &(S)) over xe X is (M, M —b), b =f(x).
Letting &(f) = (E, q, X, M), £(f) = (Ey, ¢, X, M — b), we have the
commutative diagram

E-L .M« Mm
ql lp
x-L u

where f(z,y) = (f(®),y). The other given map g: X — M induces a
cross section §: X — E by §(x) = (x, g(x)), € X. We note at this point
that f§ = (f x g)0, where 0: X— X x X is the diagonal map and
fxg: Xx X—Mx M is the product map. Our objective is to deform
the cross section § into Ey, = X x M — 4;. Consider the commutative
diagram

H"(E, E,;; 7) -—];LH”(E', )
7] N
k*

H"(M,M—b:7) 7 7
N
UNHAM x M, M x M — 4;7)—— HMx M; 7)

H"(X;7)

where 1, 1, k, k& are inclusions and = = 7, (M, M — by~ Z. If 0" is the
fundamental class of (M, M —b), we need to show, by (2.8), that
g*k*i*-(0") = 0. We may choose an orientation pre H(M; ) of M so
that j*(6") = ¢ where j: M — (M, M — b) is the inclusion map. This
orientation determines

Ue HM x M, M x M — 4;7) and Ue H"M x M;)

such that U = k*¢*~%(0"). The corresponding m-Lefschetz class is given
by 0*(f x g)*(U) = L(f, g; w). On the other hand

g*l?*f*—l(m) — g*E*Z**li*(U) — N*E*f—*(U)
= §*fkx(U) = gr<U) = o*(f x 9)*(U) .

Therefore, L(f, g; ) = §*k*i*~%(6") and hence the integral Lefschetz
class is precisely the obstruction class in question. Now, if @ is the
field of rationals, the inclusion homomorphism [:7— @ induces
I*: H(X; ) — H*(X; Q). It is clear that I*(L(f, g; 7)) = L(f, g; Q) =
L(f, g), where the Lefschetz class L(f, g) is chosen in terms of the
orientation ¢. But the assumption that H*(X; x) is torsion free together
with the fact that X is dominated by a finite polyhedron implies that
[* is injective. Therefore, L(f, g) = 0 implies L(f, g; *) = 0, which in
turn implies §&*7*~%(0*) = 0 and the theorem follows.
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Since a compact topological n-manifold is always dominated by a
finite polyhedron of dimension %, we have the following corollary, which
is a converse to the Lefschetz Fixed Point Theorem.

COROLLARY (4.1). Let M denote a compact, 1-connected topological
manifold, f+ M — M a given map and L; the Lefschetz number for f.
If L; =0, there is a map g, g ~ f, such that g is fized point free.

Proof. By (10) of §3, L, f) = (—1)"L,¢, where n = dim M. If
L;=0, then L, f) =0 and f~ ¢ such that 1 and g have no coinci-
dences, i.e., g has no fixed points.

Corollary (4.1) may be reformulated as follows. Let « denote a
homotopy class of maps M — M. Call a fixed point free if « contains
a fixed point free representative Also define L, by L, = Ly, fea.

COROLLARY (4.2). If M s a compact, l-comnected topological
manifold and a: M — M is a homotopy class of maps, then « is fixed
point free if, and only +f, L, = 0.

5. Appendix.

LEMMA (5.1). Let (&, &) denote a locally trivial fibered pair where
&= (E,p,B, F), & = (B, p, B, F,). Suppose we are given a com-
mutative diagram of maps

E
e

x-'.B

and a map G: X — K, such that F' ~ G. Then, there is a homotopy
H: X x I— E such that H = F,pH, = f,0=t <1, and Hy: X — E,.

Proof. Since (&, &) is a fibered pair in the sense of [1], there is
a regular lifting function A for & which works simultaneously for &,
i.e., if ¢,€ E, and w e B, then \(e¢, w) is a path in E,. By assumption
there is a homotopy K: X x I— K such that K,= G and K, =F. K
induces a map K: X — E’ in the usual manner with I?(x)(t) = K(x, t),
0=t=1. Let a(r)e B’ denote the path p(x), and observe that
a@)(t) = p(K(x,t)),0 =t <1, and, in particular, a(x)(1) = f(x). For
0=s=t, let a(x), denote the path given by a(x),(t) = a(x)(s + t — st),
0=¢t=<1. a(x), is a path with initial point p(H(zx, s)) and terminal
point f(x). The required homotopy H is given by

H(x, s) = \[K(z, s)a(x),]1) , 0=s=1.
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