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ALMOST INVARIANT MEASURES

R. LARSEN

Let ¢ be a regular complex-valued Borel measure on a
locally compact topological (LC) group G which is finite on
compact sets; and for each sc G define the measure T;¢ by
T:,u(E) = p(E + s), E€ B{G) the collection of all Borel subsets
of G with compact closure, If f is a function on G then for
each s€G we set T.f(t) =f(t+ s), teG. Let X be a transla-
tion invariant subspace of Cy(G), the space of continuous com-
plex-valued functions on G which vanish at infinity, i.e., a
subspace such that f€ X implies 7-,fc X, s€G; and let U be
an open symmetric neighborhood of zere in G. Then we shall
say u acts U-almost invariantly on X if 8 [R@) | d ] @) < oo,

G

he X, and
S WA Top(t) — iaxs)S WOdTout) (U, heX),
2] i=1 @

where s;,s;, -+, s, are fixed elements of U. We shall say ¢
is a U-almost tnvariant measure on G if {T;u|s<c U} spans a
finite dimensional space of measures. When U= G we shall
say p acts almost invariantly and p is an almost invariant
measure, respectively, The main results of this paper show
that if ¢ acts U-almost invariantly on X then there exists
some continuous function f such that

S h(t)d,u(t)zg hOfOdmE) ,  heX,
G &G

where dm is right invariant Haar measure on (; and that
¢ is a U-almost invariant measure if and only if there exists
a continuous f such that du(t) = f(t)dm(t) and {Tf | s € U} spans
a finite dimensional space of functions.

We shall also establish the equivalence for connected groups of
the two notions of acting almost invariantly and of the two notions of
almost invariance, and shall say something about the uniqueness of
measures which act U-almest invariantly.

We shall denote by V{(G) the linear space of all regular complex
valued Borel measures on a LC group G, and by C.(G) the subspace
of C,(G) consisting of those functions with compact support. Through-
out the paper we shall use m and dm to denote right invariant Haar
measure on the LC group G, i.e., m(E + s) = m(E).
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REMARKS. (a) The concept of a measure which acts U-almost
invariantly is o generalization of the notion of a measure acting in-

variantly, i.e. a measure g such that S h(t)d T, p(t) :S R(t)dp(t),
G G

se @G, he X. For abelian LC groups measures which act invariantly
were considered in [1].

(b) Since, in general, we shall consider nonabelian groups it would
perhaps be better to speak of measures which ‘‘act right U-almost
invariantly’”’ or are ‘‘right U-almost invariant’”’. However, in the
interests of notational simplicity we choose the terminology given
above. It is easy to see that a similar development can be made using left
invariant Haar measure, T(E) = p{s + E) and T, f(t) = f(s + ©).

(¢) The restriction in the definitions that U be an open symme-
tric neighborhood of zero in G is mainly one of convenience. Indeed,
it is not difficult to see that if W is a Borel subset of G with finite
positive Haar measure for which

[ 0Tt = S | 10T o0 e W, he X)

then some left translate of W + W contains an open symmetric neigh-
borhood U of zero in G for which a similar relation holds. However,

in the proofs which follow it is necessary that the Haar measure of
U be positive.

2. Measures which act almost invariantly, For G a LC
group and X a translation invariant subspace of Cy(G) we shall denote
by L(X) the topological linear space of all linear complex-valued fune-
tionals on X with the topology given by pointwise convergence; i.e. a
net of functionals < F, > < L(X) converges to Fye L(X) if and only
if lim F(h) = F(h), he X. If pe V(G) acts U-almost invariantly on
X, then for each se€ G we define the functional F,e L(X) by

F(h) = Sah(t)dTS;z(t) (he X).

This notation for the funectionals F', will be used consistently in the
remainder of the paper. It should be noted that the functionals F,
need not be continuous.

The main result of this section is the following theorem which is
comparable to Theorem 2 in [1].

THEOREM 1. Let G be a LC group, X a translation invariant sub-
space of Cy(G), re V(G) and U an open symmetric neighborhood of zero
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an G. If pacts U-almost invariantly on X then there exists a continu-
ous function f such that

S R dpt) — S WefEdmty  (he X) .
a @

Proor. Since g acts U-almost invariantly on X it is clear from
the definition 1 that, without loss of generality, we may write

=Sk, (el

where F, , F,, -+, F, , are assumed to form a linearly independent subset
of L{X). Let C be the subspace of L{X) spanned by F,, F,,, -+ +,F, .

It is easy to verify that the mapping @:G— L{X) defined by
@ls) = F,, se G, is continuous; and hence the mapping v =@ |, i3 2
continuous mapping on U to C in the relative topology inherited from
L(X). Thus, since C is a finite dimensional subspace of L{X), the
mapping + is also continuous if we put on C the topology given by
the norm, || >\,0,F,, (| = > | b; |.

Furthermore, in thiz norm topology it is clear that the projection
mappings P, :C — C defined by

PSbF,) = b.F.,, h=1,2 - n
are also continuous.

But then from the continuity of the composite mappings P.o -,
k=12 ---, 0, it is immediate that «,«,, ---, @, are continuous
functions on U.

Let A be the set of all functions in C,(G) with support contained
in U. For each ge A we define the linear functional F, e L(X) by

P = S gls) F.dmds) .
G

This vector valued integral makes sense since the support of ¢ lies in
U and so

) F,= | g9 Saor, |one
= 5| swaisamsr.,
where the coefficients in the last expression exist sinee «a,, &, ---, @

are continuous on U.
Set B={F,|ge A}). From (1) it is clear that Bc C, and simple

n
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verification shows that B is linear space. Hence B is a closed sub-
space of C. ‘
Let < gs> C A be a net of functions such that

(i) | gatyam(e) =1, all 5;
e
(ili) for any open symmetric neighborhood W of zero in G there
is a B, such that for 8 > B, the support of g, is contained in W.

(We shall call such a net of functions a compact approximate identity.)
Then since «,, «,, ---, &, are continuous on U, using (1), we obtain:

lim F, = lim 3 S gas)a(s)dm(s)F,,
B B 1=1J6

B

= ai(O)Fsi = Fo.

T

Il
-

Therefore F,c B, and so there exists some ke A such that F, =
F, = Sgk(s)Fsdm(s).
But then for each he X,

|, W) = B
= Fy(h)
- SG Jo(s) F(h)dm(s)

k(s) Sg It — s)de(tydmis)
| B + Dh(—s)idm(s)dpue)

|, B(—s + Oh()4(—s)dm(s)de(t
Hs)A(—9) | Io(—s + idput)dm(s)
= |, nefedm)

where 4 is the modular function of G and f is the continuous [unc-
tion defined by

Fo) = d(—9) | k(—s + i) .
The applications of Fubini’s theorem are valid since it is clear that
[, 1) | 10 =) ] 2] @dmis) < o= .

This completes the proof of the theorem.
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REMARKS. (a) Clearly the function f is, in general, not unique.

(b) For Euclidean groups E™, m > 0, it is easy to see that we
may choose f to be infinitely differentiable.

(¢) One cannot conclude that a measure which acts U-almost
invariantly is either a U-almost invariant measure or even absolutely
continuous with respect to m. For example let G be any infinite com-
pact abelian group, X the space spanned by any nonzero continuous
character (., v}, U = G and g the measure with unit mass concentrated
at zero. Then # is neither almost invariant nor absolutely continuous,
but it does act almost invariantly on X.

The next theorem shows that for connected groups the two notions
of acting almost invariantly are identical.

THEOREM 2. Let G be a connected LC group, X a translation
wmvariant subspace of C(G), e V(G) and U an open symmetric neigh-
borhood of zero tn G. Then the following are equivalent:

(i) ¢ acts almost invariantly on X,

(i) g acts U-almost invariantly on X.

Proor.' Clearly (i) implies (ii)

Now suppose g acts U-almost invariantly on X. Then the space
C spanned by {F, |se U} is a finite dimensional subspace of L(X). Let
E ={s|se@G, F,eC}. Without loss of generality we may write F, =

L1a(s)F,,, s€ E; where s, s,, -+, s, are fixed elements of U.

Clearly E is not empty'as Uc E. We shall show that E is both
open and closed, and hence, since G is connected, K = G; i.e. ¢ acts
almost invariantly on X.

It is immediate from the finite dimensionality of C and the con-
tinuity of the mapping ¢@:s— F,, cited in the proof of Theorem 1,
that E is a closed subset of G.

On the other hand, let s,c E. Since U is an open symmetric
neighborhood of zero in G there is an open symmetric neighborhood
W of zero such that W+ s,cU,1=1,2,---,n. Then W+s, is a .
neighborhood of s, and for each s + s,e€¢ W + s, we have:

Foop(h) = | MOIT .. 1t

h(t — 8)d T, p(t)

I
iy
s q

Il

as) | Bt — )T, gt

i=

i
_

a{8o0) Fyvs, (1) (he X) .

L

fl
e

! The author is indebted to J. Lindenstrauss for suggesting the simple proof
given here.
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eC;1=1,2, -+, m.
e C; and con-

But s+s,e W+s,cU,1=1,2, ---, n; and so F,.,,
Thus for each s + s,e W +s,, we see that F,
sequently £ is open.

Tsg

3. Almost invariant measures. Theorem 1 provides us almost
immediately with a necessary and sufficient condition for a measure to
be U-almost invariant.

THEOREM 3. Let G be a LC group, pe V(G) and U an open
symmetric neighborhood of zero in G. Then the following are equi-
valent:

(i) g is a U-almost invariant measure on G.

(iiy There s a continuous function f on G such that dp(t) =
fi)ydm(t) and {T,f | se U} spans a finite dimensional space of functions.

Proof. Clearly (ii) implies (i). Suppose p is a U-almost invariant
meagure. Then evidently g acts U-almost invariantly on X = C,(G);
and so by Theorem 1 there exists a continuous function f on G such
that

|, vzt = | hyedm (he CAG) .

Consequently, from the regularity of p it is easy to deduce that
dp(ty = f(t)ydm(t) and that {T,f|se U} spaygs a finite dimensional space
of functions; and this completes the proof.

Given a topological group G, let FDT(G) be the space of all
continuous complex-valued functions f on G such that {7.f|sec G}
spans a finite dimensional space. As an immediate consequence of
Theorem 3 we have the following theorem on almost invariant measures.

THEOREM 4. Let G be a LC group and pec V(G). Then the
following are equivalent:

(1) o s an almost invariant measure on G.

(i) There is an fe FDT(G) such that du(t) = f(t)dm(t).

REMARKS. (a) For U-almost invariant measures it is clear that
the dimensions of the spaces spanned by {T,pt|se U} and {T,f|se U}
must be the same.

(b) If g is almost invariant and T, = >, ai(s)T,, ¢, s€G, it
can be shown that «, «a,, ---, a, C FDT(G); and that we may write

f =2 f(s)a;.
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(¢) In general for U-almost invariant measures the function f
given by Theorem 3 need not belong to FDT(G). For example, let
G = Z, the additive group of the integers; U = {0}, and let ¢ be the
measure with unit mass conecentrated at zero. Then f(0)=1, f{¢t)=0,
t+=0; and f¢ FDT(Z).

(d) For a topological group G, let D(G) be the space of all linear
combinations of products of continuous complex-valued functions on G
which are either additive or multiplicative; i.e. functions f such that
either f(s + t) = f(s) + f(t) or f(s + t) = f(s)f(t). If G is an abelian
topological group it is known that FDT(G)= D(G) [2, p. 25]. Thus
if Gisa LCA group we can conclude that the function f of Thecrem
4 belongs to D(G).

(e) If G=R™ m >0, then the preceding remark implies that
each almost invariant measure /¢ must be of the form

dp(t) = 3 Pi(t) exp (b,, tydm(t) ,
) = %

where P; are arbitrary polynomials with complex coefficients, 7 =
1,2, .-.,1;b; are m-vectors of complex numbers, 7 =1,2, .-, and
t = (2, %y * 20y Tp)e

An immediate corollary to Theorem 4 is the following:

COROLLARY., Let G be a LC group; pe V(G), ¢+ 0, 1 singular
with respect to right invariant Hear measure. Then for each Borel
set W in G with finite positive Haar measure, {T,pt|se W} spans
an infinite dimensional subspace of V(G).

Proof. Suppose the contrary, i.e. there exists a Borel set W of
finite positive Haar measure for which {T,zt|se W} spans a finite
dimensional subspace of V{(G). Then from a remark of section one
there exists an open symmetric neighborhood U of zero in G such that
{T,t|sc U} also spans a finite dimensional subspace of V(G).

Thus, by Theorem 3, # would be absolutely continuous with res-
pect to Haar measure, and hence zero; contrary to the hypotheses of
the corollary.

Considering measures ¢ € V(G) as acting on the space C,(G), Theorem
2 implies that for connected LC groups the notions of almost invariant
measures and U-almost invariant measures are equivalent. We state
this result as Theorem 5.

THEOREM 5. Let G be a connected LC group, pe V(G) and U an
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open symmetric neighborhood of zero in G. Then the following are
equivalent:

(i) p s an almost tnvariant measure on G.

(i) ¢ is a U-almost inmvariant measure on G.

4, Uniqueness theorems. As noted previously, a measure g
may act U-almost invarianty on a subspace X of Cy(G) without being
a U-almost invariant measure. The next two theorems provide conditions
which insure that a measure which acts U-almost invariantly is a
U-almost invariant measure. The first theorem is a generalization of
Theorem 1 in [1], and its proof is patterned after that in [1].

THEOREM 6. Let G be a LC group, X a dense translation in-
variant subalgebra of C{G), e V(G) and U an open symmetric neigh-
borhood of zero in G. If p acts U-almost imvariantly on X then p
is o U-almost invariant measure.

Proof. Without loss of generality we may assume that
2) SG h(t— s)dp(t) = }: a(s) SG Rt — s;)dp(t) (seU,heX).

For each fe C(G), since X is dense in Cy(G), there is a function
g € X such that g vanishes at no point of the support of f. Let
k= flg. Clearly k€ C,(G). Again by the denseness of X there is a
sequence < ¢, > C X which converges uniformly to k.

Then it is easy to verify that

3) lim | gu(t — )g(t — 9)dutt) = | At - 5)dpu(®) (se U),
and that
@ lim 3, as) | gu(t — s)a(t — s)duct

= Sa) | fit — sy (s¢U).

But < g,9 > < X as X is a subalgebra, and hence from (2) the
left hand sides of (3) and (4), and thus the right hand sides, are
equal.

Since this holds for each fe C.(G) we conclude from the regularity
of p that ¢ is U-almost invariant.

If the group G is compact then the functionals F, are bounded,
and it is easy to see that in this case the preceding theorem remains
true if we only require that X be a dense translation invariant
subspace. This leads us to search for conditions on X other than
the ones that it be a dense subalgebra which will insure that a
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measure which acts U-almost invariantly is a U-almost invariant measure.
A result in this direction is given by the following theorem.

THEOREM 7. Let G be a LC group, X a translation invariant
subspace of C(G), e V(G) and U an open symmetric meighborhood
of zero in G. If X contains a compact approximate identity and p
acts U-almost imvariantly on X then p is a U-almost invariant
measure.

Proof. Since p acts U-almost invariantly on X, {F,|se U} spans
a finite dimensional subspace B of L(X).

Let C be the linear subspace of V(G) spanned by {7,z |se U} and
define the mapping @:C — B by O(T,n) = F,,sc U. Clearly @ maps
C onto B. '

Furthermore, we claim @ is one-to-one. Indeed, let v = 3>j_.¢; 7. ¢t
be an element of C such that @(v) = 0, i.e. SG h(t)dv(t) = 0, he X. Let

< gg>C X be a compact approximate identity. Then, since X is
translation invariant, for each fe C,(G) we have

0 = lim SG F(r) SG g8t — P)dv(t)dm(r)
=lim | ga(—) | 70 + Dia(@dm(r)

= |, fnax

since S f(. + t)dy(t) is continuous. The applications of Fubini’s theorem
a

are valid as both f and < gg > belong to C.(G).

Thus, by regularity, v = 0, and hence @ is one-to-one.

But then @ is a one-to-one linear mapping of C onto the finite
dimensional space B. Therefore C is finite dimensional, i.e. p is U-
almost invariant.

REMARKS. (a) We have not, of course, circumvented the dense-
ness assumption of Theorem 6; as any translation invariant subspace
of C,(G) which contains a compact approximate identity is necessarily
dense in C\(G).

(b) Let pre V(G) act U-almost invariantly on a translation invari-
ant subspace X of Cy(G), and let f be any function given by Theorem
1 such that
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[, Moty = | mosdme) e X) .

In general the precise nature of f is not clear. A plausible conjecture,
in the light of the structure of U-almost invariant measures, might
be that one could always find some f as above for which {7T,f|se U}
spans a finite dimensional space of functions. Some support for this
conjecture can be found in the fact that for compact groups and
measures ¢ which act almost invariantly one can construct such a
function f as a linear combination of the characters common to the
space X and the support of the Fourier-Stieltjes transform of pe.

5. Additional comments. In a previous version of this paper
a seemingly more general problem was considered. A subsemi-group
S of a LC group G will be called admissible if

(i) S is an open subset of G and

(ii) the zero of G is a point of closure of S.

For such subsemigroups (with the obvious changes in the previous
notation) one can consider translation invariant subspaces X of Cy(S),
measures ¢ € V(S) and open symmetric neighborhoods U of zero in G
such that

L (YA T, pu(t) = Z' as) S MBdT, ) (se UNS, he X),

i.e. one can consider measures g on S which act U-almost invariantly
on translation invariant subspaces X of Cy(S). Similarly one can consider
pe V(S) which are U-almost invariant measureson S, i.e. {T,;t|se UN S}
spans a finite dimensional subspace of V(S).

It is now seen that the most appropriate way to investigate such
measures is to reduce the problem to the context of groups which was
discussed in the preceding four sections. Let us indicate how this
reduction takes place. We shall restrict ourselves to the case where
p € V(S) acts U-almost invariantly; the situation for U-almost invariant
measures is similar,

Suppose X is a translation invariant subspace of C.(S), re V(S)
and U is an open symmetric neighborhood of zero in G; and assume
that g acts U-almost invariantly on X. Define a new measure ¢ e V(G)
by #{E) = m(ENS), Ec B,(G). This clearly defines a measure in V(G)
as S is an open subset of G. Also, since S is open the functions in
CyS) must vanish on the boundary of S, and hence we may consider
C«(S) as a subspace of C(G) by defining for each fe Cy(S),f(t) =0,
teS. Let Y be the subset of C,(G) which consists of X, considered
as a subspace in C(G), and all its translates by elements of G. Clearly
Y is a translation invariant subspace of C(G). Moreover, it is easy
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to check that ggi Rty dl | {t) < eo,he Y, and that {F,|se UnN S}
spans a finite dimensional subspace of L(Y).

But UN S has finite positive Haar measure since S is open; and
80 by a remark in the first section there must exist some open symme-
tric neighborhood W of zero in G such that {F,|se W} spans a finite
dimensional subspace of L{Y), i.e. £ acts W-almost invariantly on Y.

We now can employ the developement of the preceding sections
to investigate 2, and then restricting the functions and measures so
obtained to the admissible subsemi-group S we get the analogous in-
formation about the measure ft. In particular, one can in this fashion
establish theorems for spze V(S), S an admissible subsemi-group of G,
which are analogs of Theorems 1-7 above.

The reduction just obtained makes it clear that nothing really new
is to be gained by a separate consideration of admissible subsemi-groups.
Therefore a detailed exposition of this situation has been omitted.

REMARKS, It should be noted that a similar development for ar-
bitrary subsemi-groups of G is not possible. Indeed, let G = R, the
additive group of the real line; S, and S, the subsemi-groups of G defined
by S, ={s|s = 0} and S, = {s|s > 1}; and define the measure p, € V(S
by p(E)=1if 0cE, n(E) =0 if 0¢ E; and the measure g, e V(S,)
by p(E)=11if 3/2¢ E, p(F) = 0 if 3/2¢ K. Clearly neither S, nor
S, is an admissible subsemi-group, as each violates one of the conditions
for admissibility. Furthermore it is easy to check that {7,z |seS;}
i =1,2, span finite dimensional spaces, but that there exist no con-
tinuous functions f; on S;, ¢ =1, 2, for which dg,(t) = fi(t)dm(t) and
{T.f:|se Si} span finite dimensional spaces of functions, ¢ = 1, 2; i.e.
the analog of Theorem 4 fails.
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