PACIFIC JOURNAL OF MATHEMATICS
Vol. 15, No. 4, 1965

BOUNDARY MEASURES OF ANALYTIC DIFFERENTIALS
AND UNIFORM APPROXIMATION ON
A RIEMANN SURFACE

LAURA KETCHUM KODAMA

A classical theorem of F. and M. Riesz establishes a one-
to-one correspondence between analytic differentials of class
H, on the interior of the unit disc and finite complex-valued
Borel measures on the boundary of the disc which are orthogo-
nal to polynomials. The main result of this paper gives a
similar correspondence when the unit disc is replaced by a
compact subset, satisfying a finite connectivity condition, of
any noncompact Riemann surface. The analytic differentials
on the interior of the set satisfy a boundedness condition
analogous to the classical H, differentials and the measures
on the boundary of the set are those orthogonal to all mero-
morphic functions with a finite number of poles in the comple-
ment of the set. This result is then used to obtain theorems
on uniform approximation on the set by such meromorphic
functions,

This paper extends results of Bishop in [2] and [5] where he
considers compact subsets of the plane staisfying a simple connectivity
condition.! He obtained such a one-to-one correspondence between
boundary measures and analytic differentials and used his result together
with an approximation theorem for nowhere dense sets to give a proof
of Mergelyan’s approximation theorem [6]. We are able to extend
Mergelyan’s theorem to our more general sets and also show that
“‘local’’ approximation implies approximation on the whole set.

I. Boundary measures of analytic differentials.

A. DEFINITIONS AND PRELIMINARIES.

In this section S will denote an open Riemann surface. If K is
a compact subset of S, we denote by C(X) the algebra of all continuous
complex-valued functions on K with norm |[|f| = sglp [ f(z)]|, and by

A(K) the closed subalgebra of C(K) consisting of those functions which
are limits of meromorphic functions on S with finitely many poles in
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! The case with smooth boundary is discussed by Royden in [7].
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S ~ K. By Runge’s Theorem when S is the plane, or by the extension
of Runge’s Theorem due to Behnke and Stein [1, p. 445 and p. 456]
in the general case, A(K) can also be characterized as all functions
of C(K) which are uniform limits on K of functions analytic in a
neighborhood of K.

The sets for which our results are obtained are defined as follows.

DEFINITION 1. A compact subset K of S will be called n-balanced
if there exists a finite family {U;}.-, of components of S ~ K such
that any point of the boundary of K lies on the boundary of one of
the U,. An open subset of S will be called n-balanced if it is the
interior of its closure and its closure is a compact n-balanced set.

The following properties are clear.

LEMMA 1. The interior of a compact n-balanced set is an open
m-balanced set for some m < n. The boundary of a compact n-balanced
set ©s a nowhere dense compact n-balanced set.

The measures on the boundary of K to be considered are now
defined.

DerFINITION 2. If K is a compact subset of S, we denote by M(K)
all finite complex-valued Borel measures /¢ on the boundary of K such

that S fdp =0 for all fe A(K).

Several preliminary definitions will be necessary to describe the
boundedness condition on the analytic differentials to be studied.

By an arc we will mean a continuous map f: [a, b] — S of a closed
interval ¢ = ¢t <0b into S. We will identify ares f: |a,b]— S and
g: le,d]— S whenever b —a =d — ¢ and g(t) = f(t + a —¢). The
image of [a, b] under f will be denoted by |f|. By a subarc of f we
mean the restriction of f to a subinterval [¢,d], a =c<d =b. If
g: la, b]— S is such that f(b) = g(a,) then by the product of f and
g, written fg, we mean the arc h: [a,b + b, — a,] — S defined by

f(@®) if a=t=b

h(t) = .
gt + a, — b) if b=t=b-+0b —a,.

An are f:[a,b]— S is an analytic arc if f can be extended to be
analytic with nonzero derivative in a neighborhood of [a, b]. A piece-
wise analytic arc is a product of a finite number of analytic arecs. A
simple closed curve is an arc f: [a, b]— S such that f(a) = f(b), and
if % a and 2 # b then f(x) # f(¢) and f is one-to-one on the open
interval (a, b).
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DerFINITION 3. If U is an open subset of S we say that a sequence

{v;} delimits U if
(i) each v, is a finite family of disjoint piecewise analytic simple
closed curves «,; such that |«,;;| < U and U;|«;;]| is the boundary of
an open set V,; c U and each «,; is positively oriented with respect to
V..
(ii) if T is any compact subset of U, then for all sufficiently

large 7, TC V..

DEFINITION 4. If U is an open subset of S with compact closure
K and v is a finite family of piecewise analytic curves «; such that
la;]cU and o is an analytic differential on U, we denote by || @ ||,

the norm of the linear functional F' on C(K) defined by F(h) = S h@.
Y

DeFINITION 5. Let U be an open subset of S with compact closure.
The class H(U) consists of all analytic differentials @ on U such that
there exists a sequence {v;,} which delimits U and an M > 0 such that
lwll,, <M for all 1.

Our aim is to establish, in case K is an #n-balanced set, a one-to-
one correspondence between M(K) and H(U), where U is the interior of
K. The correspondence will be between a differential and its boundary
measure, in the following sense.

DEFINITION 6. Let U be an open subset of S with compact closure
and let B be its boundary. A finite complex-valued Borel measure p
on B is said to be a boundary measure of we H(U) if the sequence of
Definition 5 can be chosen so that

S ha)—»ghd/z as 1t — oo
Yi

for all he C(U U B).

We do not need any restrictions on K other than compactness in
order to show the existence of a boundary measure for every differential
we H(U). The following theorem has the same proof as Theorem 1 in [5].

THEOREM 1. Let U be an open subset of S with compact closure
K. Then any we H(U) has a boundary measure pe M(K).

In order to “fit together” sequences which delimit two different
open sets to obtain a sequence which delimits the union, we will need
the following lemma.

LEMMA 2. Let v and 0 each be a finite family of disjoint piece-
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wise analytic simple closed curves, a; and B; respectively, such that
Uil @;| is the boundary of an open set I' with each «; positively
oriented with respect to ' and similarly U;|B;| s the boundary of
an open set 4 with each B; positively oriented with respect to 4.
Then there exists o finite collection of analytic coordinate fumctions
h, with domain V., V, a neighborhood of a point p,e€ S (the p; need
not be distinct), so that given any wneighborhood U, of h,(p;) such that
U,ch(V,) and any ¢; > 0, there exists ¢, a finite family of disjoint
precewise analytic simple closed curves ;, such that \J;|+;| is the
boundary of an open set @ and

(i) each +; 18 positively oriented with respect to @

(ii) each +r; is the product of a finite number of subarcs, each
of which is either a subarc of some a; or B; or s an are f such that
for some t, the arc h;of has length less than ¢, and |h;o f| C U,.

(iii) rudcocrJd4JUxr™U,)

The proof is left as an exercise for the reader.?

B. PLANE SETS.

In this section we consider the special case where S is the plane.
The proofs of the following lemma and theorem are the same as
Lemma 4 and Theorem 1 in [5].

LEMMA 3. If K is a compact n-balanced subset of the plane and
iof 1 and v are both in M(K) and S(t —2)7'dp(t) = X(t — 2)7'dv(t) for
all z in the interior of K, then pt = v,

THEOREM 2. Let U be an n-balanced open subset of the plane
and K be its closure. Then given we H(U), its boundary measure,
which exists by Theorem 1, is unique and if @ = f(z)dz then

£ = (2miy (¢ - 2)7dput)
for all ze U.

The next lemma is a modification of LLemma 6 in [3]. The assump-
tion that v is orthogonal to all functions analytic in a neighborhood of
K rather than just all polynomials enables us to obtain the measure
8., with support in K. The proof is not given, as the same proof
applies with only obvious minor modifications and we prove a general
version for any open Riemann surface as Lemma 5 below.

2 A proof may be found in the author’s thesis.
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LEMMA 4. Let K be a compact subset of the complex plane. Let
v be a measure on K orthogonal to A(K). Then for almost all real
numbers x,, there exists a measure [, on the set KN {z: Re z = x,}
such that

[, hav=—{ nav={nas.,
Ry Ig

for all he A(K), where

0

R, =KN{z: Rez zx} and L, =KN{z: Rez =} .

THROREM 3. Let K be a compact n-balanced subset of the com-
plex plane with interior U. Then of pe M(K), there ewists an
analytic differential we H(U) such that pt vs the boundary measure
of ®.

Proof. The proof is by induction on #. If n = 1, K is balanced
in the sense of [5] and Theorem 3 of [5] is the required result.

Suppose for % > 1 the theorem is true for m-balanced sets for all
m < n. For ze U, define

1) = @miy|(¢ — 2 dp(t) -

Now suppose x, is as in Lemma 4 and furthermore that {z: Rez = x,}
intersects the interior of at least one of the bounded components U, of
Definition 1. Then L, and R, are both m-balanced for some m < 7.
Thus since ¢| L, + B,,¢ M(L,) and p| R, — B8, € M(R,) by Lemma 4
and Runge’s theorem, the induction hypothesis applies and they are
boundary measures of analytic differentials f,(z)dz and f,(z)dz respectively.

For z in the interior of L

5@ = @iy (6 = 7l | Ly + B.)(0)
= @mi)~ (¢ — 27l | L, + B0
+ (2w [ — 2)d(e | R, — 8.0
= @mi) [t — 2)dpu(t) = 7(@)
and for z in the interior of R, we have similary

£48) = (2miy= (¢ — 97dpu(e) = 512)
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Now let @, < @, both restricted as above. Then p¢|R, — 85, is a
boundary measure for f(z)dz on the set R,. Denote the delimiting
sequence by {v;}. Also ¢#|L, + B, is a boundary measure for f(z)dz
on the set L,. Denote the delimiting sequence by {d;}. Suppose I';
is the open set bounded by 7, and 4; the open set bounded by 0;, as
required in Definition 3. We apply Lemma 2 to v;, 0;, I';, 4, where U,
are chosen go that h;(U,) C U and ¢, chosen so that the length of the
arc in U; which is not from d; or v, is less than »; and =y, sggp Ifiz)| < 1.

The lemma yields @; a finite union of disjoint piecewise analytic
simple closed curves in U which form the boundary of the open set
@;, and I;U4d;,c@;cU. If S is a compact subset of U, let
T, < 2, < 2. Then S, =SN{z: Rez < x,} is a compact subset of the
interior of L, and S,=SN{z: Rez = x,} is a compact subset of the
interior of R,. Thus for all j sufficiently large,

81CAj and S2CFJ' and S:SIUS2CAJ‘U['J'CQ)J'.

Therefore {p;} is a delimiting sequence for U. Furthermore,

loll, = 17@11dl={ 1s@dzl+ | 17@)11dz!
+ 2,500 @) = ([0, + |, + 1.

Thus we H(U).

By Theorems 1 and 2 there exists a boundary measure v on the
closure of U such that for ze€ U,

fz) = (Zni)—lg(t — 2)~dy(t) and ve Mclsr U)c M(K) .

Applying Lemma 3 to p and v we see that ¢ = v and thus g is the
boundary measure of w.

C. SUBSETS OF AN OPEN RIEMANN SURFACE.

In this section we consider the general case where S is any open
Riemann surface. The function (f — z)™* used in the plane case must
be replaced by the elementary differential of Behnke and Stein [1].
The result needed is the following : there exists an elementary differ-
ential a(p) which for fixed p is a meromorphic differential on S with
exactly one pole, a simple pole at p with residue 1. Furthermore, if
h is an analytic coordinate function on an open set VS and a(p) =
A(z, p)dz on h(V'), then A(z, p) is meromorphic in p on S with exactly
one pole, a simple pole at 27'(z). Thus if A7(z,) ¢ K, A(z,, p)€ A(K).

We prove the following generalization of Lemma 4.
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LEMMA 5. Let K be a compact subset of S. Let vy be a measure
on K orthogonal to A(K). Then if f is a monconstant function
analytic on S, for almost all real numbers x,, there exists a measure
B., on the set KN {p: Re f(p) = x,} such that

S hdy = — g hdy = Shdﬁzo
Reg Lg,

for all he A(K) where
L,={p: Reflp)=a}NK and R, = {p: Reflp) =x}N K.

Proof. Since f is nonconstant, for all but finitely many real
numbers x, the differential of f does not vanish on K N {p : Re f(p) = =}.
Let 2, have this property and let x, > x, be such that the differential
of f does not vanish on KN {p: =, < Ref(p) < x.,}). Since the differ-
ential of f does not vanish, there exists a neighborhood of any point
of KN{p: 2, = Ref(p) <a,} on which f is a coordinate function.

Cover KN{p: =, = Re f(p) < wx,} by finitely many neighborhoods {U,}:_,
such that the closure of U, is compact and contained in V; and f is a
coordinate function on V,. Denote by f; ' the inverse of f as a coordi-
nate function on V..

There exists a nonnegative measure ¢t on K such that |y(B)| =
(B) for all Borel sets B. Let ¢ be the nonnegative, nondecreasing
function defined by ¢(z) = p({p: Re f(p) = «}). Then ¢'(x) will exist
for almost all ©. Let x, be such that ¢'(x,) exists and z, = o, = ..
Thus v vanishes on all subsets of L, N E, and since &€ A(K) implies

Shdu = 0 we have
S hdy = — S hdy for all he A(K) .
Rg;o Lg;o

Suppose now that % is a meromorphic function with finitely many
poles outside K. Let W be an open neighborhood of K on which 7% is
analytic. Let W, = W N U,. Choose ¢, 0 < e < 1 and let

T= U {pe W;: Re f(p) = @, and dist (f(p), (K N W) <¢} .
Let || 1|l = sup | (h(p) | .
If Ref(p) > x, define hy(p) = (2ﬂi)‘1STha(p) and if Ref(p) < x.,

define h,(p) = (2m‘)“‘g ha(p) where in each case integration is in a
T

positive direction with respect to {p: Ref(p) = w,}. Suppose p, is
interior to 7T relative to {z: Rez = x,}. Then for some 4%, f(p,) is
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interior to f(W; N T) relative to {z: Rez = x}. Let 7, = (TN W,).
Since the W, cover T, we can choose, for ¢ #* 4,, measurable sets
7;C{z: Rez =z} N f(W,) so that f;7'(z;) are pairwise disjoint and
each is disjoint from f;;%(z;) and so that T = Ui, fi'(z). Then if

pe U, (27t7})‘1grha(p) becomes

(2| BOFONE — )L+ @iy 3 | M@0 ), Od

where g; is analytic in f(clsr U,) in the first variable and in f(clsr U;)
in the second variable. The first term has continuous boundary values
both from the right and the left at p, with difference A(p,) and the
integrals in the summation are all continuous in p at p,. Thus h, and
h, have continuous boundary values %.(p,) and h,(p,) and

hy(po) — hy(po) = I(Dy) .

If we define hy(p) = h(p) + hyp) in Re f(p) < x, and hy(p) = k(p) + k(D)
in Re f(p) > x,, then h, and h, are analytic in a neighborhood of K
and h = &, — h,. Thus

S hdv:S hldu—g hzdvzg hldv+g hody
Ry, Ry, Ruy z

By %

and

S Rxohldv‘ - l S [(27”)_1& Tha(p)]dv(p) ‘

R”O

=

|, ra@ | du(o)

S(p:Re fip)>wo}

+ 51, [ hew)|aew) .

=1

Cover K N [p: Re f(p) = x,} by a finite number of open analytic neighbor-
hoods, which are the domains of analytic coordinate functions 4, each
with range the unit circle D. Continuing the inequalities we have

sinng, (1, 16— )i

=1

IR, 100, 01 d0dpm)

el s, (S 170, 01 d0due)

where g¢;; is analytic in the first variable in f(clsr U;) and in the
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second variable in f(clsr U;) and 7,,; is analytic in the first variable in
D and the second variable in f(elsr U,;). The g;; and 7v,; are therefore
bounded and we have a constant L, independent of ¢, so that the above
expression is less than or equal to

1m0 — o + #1vde doo) + L

where M is chosen, independent of &, so that if y = Im f(p) and
v = Im{ where pe R,, and { is in some z;, then |y —v| < M.
A bound N, independent of ¢, is found for

V0 L — @) + v1dt dso)
29 —A
as in [3, p. 42]. Thus

HR% hld”l = [|2]l (vN + L)

and a similar estimate can be made for

g hzdu,. Combining these
Ly
we have ’

g%hdu| <= Q|h].

where @ is independent of ¢, and thus

L hdu\ < Qsup{|h(p)| : pe KN {p: Reflp) =} .

Therefore 7 ——»S hdy is a bounded linear functional on a dense subset
Ry

of A(K)|Kn {p: iRe S(p) = x,} and therefore on A(K) | K N {p: Re f(p)=
2,}. By the Hahn-Banach theorem we can extend this bounded linear
functional to C(K N {p: Re f(p) = x,}) and then apply the Riesz repre-
sentation theorem to obtain the desired measure £, .

LEMMA 6. Suppose K is an mn-balanced compact subset of S.
Suppose f is a monconstant analytic function on S and K, =
KN {p: Ref(p) = x,}. Then K, ts a compact m-balanced set for some
m=n.

Proof. K, is clearly compact.
Let {U;}7-, be the finite set of components of S ~ K from Defini-
tion 1. A point ¢ on the boundary of K, is either on the boundary
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of K or in the intersection of the interior of K with the boundary of
{p: Ref(p) = x,}. In the former case, ¢ is on the boundary of some
U, and therefore on the boundary of the component of S ~ K which
contains U;, which we call V,. There are n U, and therefore m V;
with m < n. In the later case, ¢ is on the boundary of some com-
ponent @ of {p: Ref(p) < x,}. Suppose Q@ C K, then clsr U < K and
clsr @ is compact. @ is open, so Re f(p) = 2, on the boundary of Q.
Since clsr @ is compact, Re f(p) must assume its minimum on eclsr @
is compact, Re f(p) must assume its minimum on clsr @ and by the
minimum modulus theorem for real parts of analytic functions, the
minimum must be assumed on the boundary, but there Ref (p) = ..
Thus Re f(p) = 2, on @ which is a contradiction. Since @ is not con-
tained in K, it must interset some U,. Therefore @ C V; and ¢ is on
the boundary of V,. This shows K, is m-balanced.

LeMMA 7. Under the hypotheses of Lemma 5, the measure
v| R, — B., 18 orthogonal to A(R,) and the measure v|L, + B, 18
orthogonal to A(L,,).

Proof. Let h be a rational function on S with poles at p,, 0,, *+ -, D,
in S~R, =S~Kn{p: Ref(p) <} Let p, -, p, be those poles
not in S~ K. Each p,2=1,---,k is in some component Q; of
{p: Ref(p) < x,}. By the proof of Lemma 6, such a component cannot
be contained in K. Thus we may choose ¢;,,2 =1, ---,k, ¢;€Q;, ~ K
and let J; be a curve in Q,; joining p; and ¢,. Let

k k ~ k n
B=S~UJi~Ufp) and BE=S~Ufed~ U v}

Then by Theorem 6 in [4], k, which is analytic on B, can be uniformly
approximated on FK,, a compact subset of B, by functions f; analytic
on B. Now letting B, = B and B, = S we apply Theorem 13 in [1, p.
456] and approximate f; on R, by meromorphic functions g; with poles
on the boundary of B, i.e., at the points q,, *--, @y, Drs1, =+, Pn. But

these are all in S ~ K. Thus g;¢ A(K). By Lemma 5, ngd(v |R,, —
B,) = 0. Thus Shd(v | R;y — B.,) =0 and v| R, + 8,, is orthogonal to
A(R,). The same argument shows v | L, + 8, is orthogonal to A(L,).

Given any finite collection of functions {g,},—; on S, and a real
number x,, we define an equivalence relation on the points of S as
follows. The points p and ¢ are equivalent, if, for all k, Re f.(p) < %,
if and only if Re f.(q) = ..

LEMMA 8. Let K be a compact subset of S and {U;} an open
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covering of K. Then there exists a finite collection of monconstant
Sunctions, each analytic on S, such that given any x, 1/4 < z, < 3/4,
each equivalence class of the relation defined with these functions
ltes in a single member of the covering.

Proof. Fix a metric on S. By the Lebesgue covering lemma,
there exists o > 0 such that any set of diameter less than or equal
to p, containing a point of K, lies in a single member of the covering
{U;}. Cover K by a finite number of sets of diameter less than p/3
which are homeomorphic to a closed disc. Call these sets {D}r,. For
1, j such that D,N D; is empty, let f;; be a function analytic on
S such that Re f;; < 1/4 on D, and Re f,; > 3/4 on D;. This is possible
since by the Behnke-Stein extension of Runge’s theorem [1, p. 445 and
p. 456] we can approximate a function which is identically zero on a
neighborhood of D, and identically one on a neighborhood of D; by
functions analytic on S.

Now if A is an equivalence class of the equivalence relation defined
by these functions, we will show diam A = p.

Let p,cA. Then for some 4, p,c D;. Let %, ---,%, be all ¢
such that D, N D, is not empty. Let pe K N {p: Ref,;(p) = 3/4, all
J %, %1, =+ -, ). Suppose pé& Uik, D;. Then since pe K< Ui, D,
pe D;, some J, # %, +++, 4. Thus f;;(p) > 3/4 which contradicts the
choice of p. We have shown

0fo

23
all j = i,, ---,ik}c UD;.

=1

3
K0 {p: Refislo) = 2
Now since p,€ D;, Ref,(p) <1/4, all j+# 1, «++, %, but p,e A4, so
for all pe A, we have Ref;(p) < 1/4 for ¢ + %, -, %,. Therefore

iz
AC KN {p: Re f; i(p) = —2— all 7 # 4, ---,ik}c Uob;.
1’:7’0

Each D, ---, D;, intersects D, and diam D, < 0/3. Therefore diam
i Di < 0 and the proof is complete.

THEOREM 4. If K is a compact subset of S and {U}i, ts an
open covering of K, and if p is a measure on K which is orthogonal
to A(K), then there exist measures v, with support contained in o
compact set T, K N U, such that v; 1s orthogonal to A(T;) and p =
U, U, e oy,

Proof. Let f. be the functions of Lemma 8, kt=1,---,1. The
proof will be by induction on l. If [ =0, let T = KC U, and v, =
is orthogonal to A(K) = A(T).
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Suppose the theorem is true for I — 1. Let 1/4 < x, < 3/4 and
R, = KnN{p: Ref(p) =} and L, = KN {p: Refi(p) = x}. R, and
L,, are both compact, and {U;}i, is a covering for each. An equiva-
lence class of points of R, of the relation defined by f, -+ ,f;_, lies
in a single member of {U,}:,. Similarly for an equivalence class of
points of L,. Thus we may apply the induction hypothesis to the
measures p; = (¢t | R, — £, which is orthogonal to A(R,) by Lemma 7,
and p, = p| L, + B, which is orthogonal to A(L,) by Lemma 7.
Thus we have measures v;; with support contained in a compact set
T;;< U; N K which is orthogonal to A(Ty;) j=1,2, ¢+ =1, .-+, 7n and

MU=V + VYVt cer + Yy, Uo =Vy Voo 4+ =00 + 1,

Thus p=p+ = (Vi + Vor) + Wi F V) + o00 + (”m + v2n) and y;; + v,;
has support contained in T, UT,cUNK. If feA,;T,;U Ty), then
f1T;e A(T,) and f| Ty e A(Ty;) and

| s+ 2 = [fdvs+ [ v =0
Thus v,; + v,; is orthogonal to A(T,; U T,;) and the theorem is proved.

THEOREM 5. If K is a compact subset of S and <f for every
pe K, there is a closed neighborhood W of p such that f| W € A(KN W),
then f e A(K).

Proof. Suppose f ¢ A(K). Then there exists a measure g on K
such that g is orthogonal to A(K) and S fdpe =+ 0. Let V be the

interior of W. Then {V} is an open covering of K. Let {V}7_, be a
finite subcovering. Apply the last theorem with this covering to get
measures v; with support contained in a compact set T,Cc V,NKcCc W;N K
and v; is orthogonal to A(T;) and pg=v, 4+v,+ -+ +y,.
FIWe A(KNW,) implies f| T; € A(T;). Thus Sfdvi =0 and Sfdy =0
which is contradiction.

COoROLLARY 1. If K 4s a compact subset of S and for every
pe K there ewists an analytic -coordinate function h with h(p) = 0
and the range of h is {z: |z| <1} and an r, 0 <r <1, such that
AMK)N{z: [z] = r}) =CK)N{z: |z]| = 1}), then A(K) = C(K).

Proof. Let fe C(K). For every p,

foh?|hz: |2z]| = rjeCMK)N{z: |2]| £ 7})
=AEK)N{z: |z| = 7}).
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Thus fIKNh™Hz: |z|=r}cAKNRANHz: |2]| = 7r}). Applying the
theorem, fe A(K).

Thus a local condition on a compact set in the plane which implies
that any continuous function can be uniformly approximated by rational
functions, such as Theorems 2.4 and 3.4 in [6], can be applied in
coordinate neighborhoods of every point of K to show A(K) = C(K).
As a special case, using Theorem 2.4 of [6] we have the next corollary
which we will need to prove uniqueness of boundary measures.

COROLLARY 2. If K is a nowhere dense compact n-balanced subset
of S, then A(K) = C(K).

We also obtain a generalization from the plane to Riemann surface
of the approximation theorem of Bishop [4].

COROLLARY 3. If K 18 a compact noz'ohere dense subset of an
open Riemann surface and M 1s the minimal boundary of A(K), then
M = K implies A(K) = C(K).

Proof. Let h be an analytic coordinate function at p e K such that
h(p) =0 and the range of h is {z: |z| <1}. Let » be 0 < » < 1.
Let M’ be the minimal boundary of A(WM(K)N{z: |z| = 7r}). Let
2z€ h(K) and |z| =< 7, then h'(2)e K = M. There exists fe A(K) such
that f(h7(2)) =1 and |f(g)| <1 if ge K and q # h7'(z).

foh7 e AMK)N{z: [z =7}, foh™(®)=1, [foh™ ()| <1
if {eh(K)and |{|=7r, {+#2. Thus ze M’'. Since
M =nK)N{z: |z| =7},
by Theorem 4 in [4], we have
AME) N {z: [zl =7h) = C(EK)N{z: |z| =71} .
Now the theorem applies and we have A(K) = C(K).

LEMMA 9. Suppose K is an n-balanced compact subset of S. If
© 8 o measure on the boundary B of K which ts orthogonal to all

rational functions on S with poles in the interior of K or wn S ~ K,
then p =0,

Proof. The hypothesis implies ¢t is orthogonal to A(B). By
Lemma 1, B is an m-balanced nowhere dense compact subset of S.
Thus by Corollary 2, A(B) = C(B) and x = 0.
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THEOREM 6. If K is a compact n-balanced subset of S and o is
an analytic differential on the interior of K, then the boundary
measure p of @ which exists by Theorem 1 is unique, and if h s
an analytic coordinate function on an open set V.C S and w = f(z)dz
on h(V), then

£ = @xi)| ~ Az, 0) du(@)
where a(p) = A(z, p)dz on h(V).

Proof. Suppose p and v are both boundary measures of w. Let
g be a rational function on S with poles in the interior or the com-
plement of K. Then

Sgd(/z )= Sgdﬁ _ Sgdv — lim & g® — lim S 9o .

n n n 'Yn
If » is large enough so both 4, and <, surround all the poles of ¢
which lie in the interior of K, then

SS g0 = Zpeing Res,(gw) = S go .

n y'ﬂz

Therefore Sgd(;z —v) =0 and by Lemma 9, p = .

A(z, @) is meromorphic in ¢ with a simple pole of residue —1 at
h=(z). Thus

(2mi)| — Az, 9)dpa) = @rD)*lim | —AGs, o =

n

— Resh—l(z) (Alz, QW) = f(Z) .

THEOREM 7. Let K be a compact m-balanced subset of S with
intertor U and let pe M(K). Then there exists o differential
we H(U) such that pt is the boundary measure of .

Proof. Let f,, ---,f, be the finite set of functions analytic on S
and satisfying the conditions of Lemma 8 using coordinate neighbor-
hoods for the covering. The proof will be by induction onl. If [ =0,
K lies in a single coordinate neighborhood and we may consider K as
a subset of the plane. In this case we have the result in Theorem 3.

Suppose the theorem is true for I — 1. Let 1/4 < x, < 3/4 satisfy
the conditions of Lemma 5 for f;, ¢, K. Let L,, R,, and 5, be as
in Lemma 5. By Lemma 6, R, and L, are compact m-balanced sets for
some m and by Lemma 7, ¢t | R, — 8, € M(R, ) and p | L, +8, € M(L,).
Since fi, -+, fi_, partition R, and L, in the sense of Lemma 8, the
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induction hypothesis applies. Thus we have analytic differentials w,
and ®, on the interiors of R, and L, for which p¢|R, — 5, and
tt| L, + B,, are the boundary measures respectively.

If h, is an analytic coordinate function on V,C int R, and o, =
fi(®)dz on h(V,) and a(q) = Az, ¢)dz on h(V)) then

%0

£2) = @riy | = Az, @)d(pe | R, — B.)a)

— Az, )d(¢t | B,) — B.)(q)

+ (2ze)™

S
— (2mi)~ S
S Az, )dlpe | Ly, + 8,)(@)

= <zm>~1§ — Az, dpq) .

Similarly, if h, is an analytic coordinate function on V,Cint L, and
w, = fy(2)dz on h,(V,) and a(q) = A,(z, q¢)dz on h,{V,) then

£48) = @mi) | = Az, dpa) -

Since we have this for almost all &, between 1/4 and 3/4 we can define,
for any coordinate function 2 on Vc U, a differential w = f{z)dz on
(V) with

f@ = @i | — A, dpa)

where a(q) = A(z, ¢)dz on W{(V), @ = », on intR,, and ® = @, on
int L.

Let 1/4 < x, < x, < 3/4 and both 2z, and =z, satisfy the conditions
of Lemma 5. Let the delimiting sequence of Definition 6 for the
boundary measures /| L,, + 8,, and p¢| R, — 5, be {9;} and {v;} respec-
tively. Let 4; and I'; be the open sets of which 0, and v, are the
boundaries. Let p;, V, be the finite collection of points and coordinate
neighborhoods obtained in Lemma 2 with %; the analytic coordinate
function on V;. Let U; be a closed neighborhood of p; so that
U;cV;NU. Let k; be the maximum of |f(h;(p))| for pe U where
o = f(z)dz on V,;. Let ¢; = (k;7'277). Using these U; and ¢; we apply
Lemma 2 to get ¢; a2 finite union of disjoint piecewise analytic simple
closed curves forming the boundary of @; and |p,| U @®; CcU. Further-
more, since {0;} and (v;} delimit the interiors of L., and R, , respectively,
and I"; U 4;,C @;, {p;} delimits U.

Finally we see that

Holly, = ll@lly, + @b, + Zike; = ll@|ly, + @], + 1.
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Therefore we H(U) and by Theorem 1, @ has a boundary measure v
on the boundary of clsr U.

Now let g be a rational function on S with poles in U or S ~ K.
Choose 2, 1/4 < x, < 3/4, as in Lemma 5 and so that no pole of ¢ lies
on {p: Re fi(p) = x,}. Let {0;} and {r;} be the delimiting sequence of
Definition 6 for the boundary measures | L, + 8., and p| R, — B,
respectively. Then

Joae =) = {od( | ., = ) + Jode| L, + ) — [oav

zlimS ga)—l—limS gw—li_mS go .

T (0717’

Letting 4 be large enough so that all the poles of ¢ in U are surrounded
by @,, and by either z; or o; and using the residue theorem we have
ggd(#—V)=S gw+§

kX

ga)——g gw =0 .
i n;

3

o @

Thus by Lemma 9, £ — v = 0 and g is the boundary measure of .

COROLLARY 4. If K 1is a compact m-balanced subset of S with
wnterior U, then A(K) consists of all functions in C(K) which are
analytic on U.

Proof. Clearly every function in A(K) is analytic on U. Suppose
A(K) does not contain all such functions in C(K). Then there exists
a continuous linear functional L orthogonal to A(K) with L(f) # 0
for some fe C(K), f analytic on U. The boundary of K is the Silov
boundary of the algebra of functions in C(K) analytic on U, so there

exists a measure ¢ on the boundary of K so that ggd/x = L(g), all

g€ C(K), analytic on U. Thus pec M(K) and there exists we H(U),
so that

O¢L(f):gfdy:li£ng fo =0

Yi

sinece f is analytic on U.
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