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NONNEGATIVE PROJECTIONS ON C0{X)

G. L. SEEVER

Let X be a locally compact Hausdorff space, CQ(X) the
space of continuous real-valued functions on X which vanish at
infinity, and let C0(X) be equipped with the supremum norm.
Let E: C0(X)~>C0(X) be a nonnegative projection (x ̂  0 => Ex ̂  0;
E2 = E) of norm 1. The first theorem states that E{xEy) =
E{ExEy) for all x,ye C0(X). Let Xo = Πί^tW]: a; ̂  0, Ex = 0}.
The second theorem states (in part) that M = E[C0(X)] under
the norm and order it inherits from C0(X) is a Banach lattice,
that the mapping x->x\X0 (=restriction of x to Xo) is an
isometric vector lattice homomorphism (=linear map which
preserves the lattice operations) of M onto a subalgebra of

and that for teX0, E(xEy)(t) = (ExEy)(t) for all

The paper concludes with a characterization of the con-
ditional expectation operators L1 of a probability space.

The characterization is complementary to (and inspired by) one given

by Moy [5; p. 61]. As a corollary to our first theorem we obtain the

theorem of Kelley [2; p. 219] which states that E[CQ(X)] is a subalgebra

of CQ(X) if and only if E(xEy) = ExEy for all x,yeC0(X).

Preliminaries* An M-space is a Banach lattice whose norm satisfies

the condition x, y ^ 0 => || x V y || = max (|| x \\,\\y ||) (x V y is the

maximum of x and 7/). An element u of a Banach lattice is a itmί if

and only if {x; 0 ^ α; ̂  u} = {x: x ^ 0, || x \\ ̂  1}. If a Banach lattice

has a unit, it has only one and is an M-space.

LEMMA 1. Let M be an Mspace with unit u. Then

( i ) X — {x* e M*: x*u = 1, x* is a vector lattice homomorphism}

is σ(M*, M)-compact;

(ii) the natural mapping of M into C(X) (X has the relative

σ(M*y My^opology) is an isometric vector lattice homomorphism onto.

If, in additions, M is order-complete1, then

(iii) X is Stonian2;

(iv) M is the (norm-)closed linear span of the set U of extreme

points of {xe M: 0 ^ x ^ u}, and xe M belongs to U if and only if

x A (u — x) = 0.

Received October 23, 1964.
1 That is, as a lattice M is conditionally complete.
2 X is Stonian if and only if it is compact and its open subsets have open

closures.
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Proof, (i) and (ii) are proved in [1] (pp. 1000-1006). (iii) is
proved in [7] (p. 185). We now prove (iv). By (i)-(iii) we may assume
that M = C(X) for some Stonian X. x is an extreme point of
{ye C(X): 0 <; y g 1} if and only if it is the characteristic function of
an open closed subset of X. This proves the second part of (iv). The
linear span A of U is a subalgebra and (since X is totally disconnected)
separates the points of X. By the Stone-Weierstrass Theorem A is
dense in C(X).

The adjoint of a Banach lattice with its natural norm and order
(x* ^ y* <=> χ*χ ^ y*χ for all x ^ 0) is an order-complete Banach lattice
(that the adjoint is a lattice is proved in [6], p. 36). In particular, if
X is a locally compact Hausdorff space, then both C0(X)* and C0(X)**
are order-complete Banach lattices.

LEMMA 2. Let X be a locally compact Hausdorff space. Then
C0(X)** is an M-space with unit, and when it is equipped with the
multiplication it so acquires, the natural embedding of CQ(X) in
C0(X)** is multiplicative.

Proof. The mapping μ—>\\μ\\ is additive and nonnegatively homo-
geneous on {μe C0(X)*: μ ^ 0} and so has a unique linear extension to
all of C0(X)*. This extension, which we denote by 1, is clearly a unit
for C0(Xy*.

Let Ω — {ζe C0(X)***: ζl = 1, ξ a vector lattice homomorphism}.
Let κ\ C0(X) —> C0(X)** be the natural embedding. We show the existence
of a meagre subset H of Ω such that for x and y in C0(X), tc(x)tc(y)
and /c(xy), when regarded as functions on Ω, agree on Ω ~ H. ic is a
vector lattice homomorphism [6; p. 39] so that for ζe Ω, ζoκ is a vector
lattice homomorphism, i.e., ζotc is a nonnegative multiple of evaluation
at some point of X Thus if | | f ° £ | | = 1, then ξoκ is evaluation at
some point of X and so is multiplicative. We now show that H =
{ζ eΩ: | | ί °^H < 1} is meagre. Let A = {/c(x): x ^ 0, || x || ^ 1}. A is
directed by g and is bounded above. Thus \f A (=supremum of A in
C0(X)**) exists and for μ a nonnegative member of C0(X)*, (\f A){μ) =
sup / 6 i t/(/i). svpfeΛf(μ) = sup{^(a?): a? ̂  0, ||a?|| ^ 1} = \\μ\\ = l(^) when-
ever μ ^ 0. Thus V ^ = l Since the supremum of a subset of C(β)
and the point wise supremum agree off some meagre set, we have 1 =
5(1) = sup {ξ(f): fe A} - sup {(ξo/c)(x): x ^ 0, || x \\ S 1} = II ζ<>κ \\ save
for ζ in some meagre set. Thus, tc(xy) and ιc(x)κ(y), when regarded
as functions on β, agree on Ω — if, i.e., κ(xy) =

LEMMA 3. Let X be a compact Hausdorff space, and let E\ C(X)
C(X) δβ a nonnegative projection of norm 1. T&βw ^[C^X)
ίλe vorm and order it inherits from C(X) is an M-space and has El
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for a unit.

Proof. To show that M — E[C(X)] is a vector lattice it is enough
to prove that for x e M, the maximum in M of x and 0 exists. Let
x e l . x+ ^ x, 0 => Ex+ ^ x, 0(x+ = x V 0). If y e M, and # ̂  .τ, 0,
then y ^ x+ so that y = Ey ^ Ex"". Thus £Ό;+ is the maximum in
M oΐ x and 0. Let u = El. We show that for ccGikf, | |a j | | =
inf {a: — au ^= x ^ an). This will show that M is a Banach lattice,
and that u is a unit for M. Let a; G M. — | | # | | < ^ # < ^ | | α ; | | = > - - 1 1 a; 11 w =
ί ? ( - | | a ? | | ) ^ £ t e = a; ̂ E(\\x\\) = ||a?||w; if - α w g x ^ % , then
— α <; — an <L αw ̂  α: so that a ^ |j x

M a i n Theorems*

THEOREM 1. Let X be a locally compact Hausdorff space, and let
E: C0(X) —* Co(X) be a nonnegative projection of norm 1. Then E(xEy) =
E(ExEy) for all x,yeC0(X).

Proof. We shall show that by passing to i?** and C0(X)** it is
enough to prove the theorem under the additional hypotheses

( a ) X is Stonian;
(b) if {Xi}iei is an increasing net in C(X) with x — yieix{, then

Ex = yieiExi.
First we prove the theorem under the additional hypotheses. Let M —
E[C(X)]. If {Xi}iei is an increasing net in M with y iei x{ — x e C(X),
th^n Ex = Vie/ ̂ i ~y iei^i — ̂  so that Λf is an order-complete M-
space with unit u<= El. By Lemma 1 M is the closed linear span of
the set ^ of extreme points of U = {x e M: 0 ̂  x S v). By the
bilinearity and continuity of (x,y)—* xy it is enough to prove that
E(xy) = E(xEy) whenever x e <%s and O g i / ^ 1 . Set z = E(xy) — E(xEy).
x + z = E(x + xy — xEy) = ^(^(l + y — Ey)), and, since 0 ̂  # ̂  1
and 1 + y-Ey^O (indeed, 1-Ey^ 0), we have 0 ̂  2?(α(l + y — %)) ^
E{1 + y - Ey) = El = ̂ . Thus a? + 2 G !7. Similarly, a? - 2 G ί7. Since
both a; + z and a; — z belong to U and x e ^ we must have 2 = 0.
This proves the theorem under the additional hypotheses.

Now let X and E be as in the theorem, i?** is a nonnegative
projection of norm 1, and by Lemmas 1 and 2 there is a Stonian space
Ω such that C0(X)** = C(Ω). Let {/Jί€z be an increasing net in C0(X)**
with f=\fisifi. For μ a nonnegative member of CQ(X)*, f(μ) —
supί/ί(μ) = liπii/i^). Since any member of CQ(X)* is the difference
of nonnegative members, we have f(μ) = \imifi(μ) for all μeC0(X)*.
Since E** is σ(C0(X)**,C0(X)*)-continuous, {^**/,},6^(CO(X)**,C0(X)*)-
converges to E**f, which, together with the monotonicity of {£r**/t}iez,
implies that E**f =\/iei E**f. Thus # * * and β satisfy the ad-
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ditional hypotheses. Let κ\ C0(X) —> C0(-3Q** be the natural embed-
ding. For x,yeCQ(X), ιc(E(xEy)) = E**(fc(xEy)) = E**(φ)κ(Ey)) =
E**(tc{x)E**(ιc(y))) = E**{E**{tc{x))E**{ιc{y))) = E**(ιc(Ex)κ(Ey)) =
# * * (κ(ExEy)) = κ(E(ExEy)).

COROLLARY. (Kelley) E[C0(X)] is a subalgebra of CQ(X) if and only
if E(xEy) = ExEy for all x,ye C0(X).

Proof. E[C0(X)] is a subalgebra of CQ(X) if and only if ExEy =
E(ExEy) for all x,yeCQ(X).

D E F I N I T I O N . Let L and M be vector lattices, and let T: L —> Λί

be a nonnegative linear map. | Ker \(T) = {xe L: T (\x\) — 0} (| a? | =
a? V (-a?)).

Note t h a t | Ker | (Γ) is a vector lattice ideal in L, t h a t is, |Ker | (T)
is a linear subspace of L and a;e | Ker | (Γ) , \y\ ^ | a? ( => y e | Ker | (T).

THEOREM 2. Leέ X be a locally compact Hausdorff space and
E: C0(X) —> C0(X) a nonnegative projection of norm 1. Let Xo =
Πί^'ΉO}]' x e I Ker I (£/)}, F δβ the set of level sets (sets of constancy)
of M= E[C0(X)], X, = U {A e Γ: -4 n Xo ^ 0}, αwd ϊβί Z = f| {^[{O}]:
^ G ilί}. TΛe^

( i ) M with the norm and order it inherits from CQ(X) is a
Banach lattice;

(ii) x —> x I XQ is an isometric vector lattice homomorphism from
M to C0(X0);

(iii) for xyyeMfxy\X0 — E(xy) \ Xo; in particular, {x \ XQ; x e M)
is a subalgebra of CQ(X0);

(iv) X1 U Z = {s G X: E(xEy)(s) = (ExEy)(s) for all x,ye CQ(X)}.

Proof. We saw in the proof of Lemma 3 that M is a vector lattice
under the order it inherits from C0(X). (ii) will imply that M is a
Banach lattice. First we prove that x —> x | Xo is a vector lattice
homomorphism. Let xe M. We have seen that the maximum of x and
0 in M is Ex+. Thus we must show that Ex+ | Xo = ar | Xo. ^ + ^ a;,
0 = - ^ + ^ x+. Ex+ -x+^0, E(Ex+ - a;+) = 0=>Ex+ - a;+ e |Ker| (E)=>
Ex+ — a;+ vanishes on Xo. Thus a? —> x \ XQ is a vector lattice homo-
morphism of M to C0(X0). Note that | Ker | (E) is a closed algebraic
ideal in CQ(X) and so is equal {x e CQ(X): x | Xo = 0}. Let 7/ G C0(-3Γ) be
an extension of a; | Xo with norm ||a?|JEo||. Since x and y agree on
X0,Ey = Ex = x. We thus have || a; | Xo \\ = ||i/1| S || % || = || x \\ ^
]| x I JΓ0II. Thus x —> a; | Xo is an isometry from M into C0(X0).

We first prove (iii) under the additional hypothesis that X is com-
pact. Mo = {# I Xo: x e M} is a closed vector sublattice of C(XQ). By
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the proof of the Stone-Weierstrass theorem in [4] (p. 8) Mo is a sub-
algebra if it contains the constants. For this it is enough to prove
1\XO = E1\XO. l-E1^0,E(l-El) = 0=~l-Ele\Ker\(E)=>l-El
v a n i s h e s o n X o . N o w l e t x , y e M . T h e r e e x i s t s z e M s u c h t h a t
z\X0 = xy\ Xo. xy and z agree on Xo so that E(xy) — Ez ~ z. Thus
xy I Xo = E(xy) \ Xo.

Now let us return to the general case. C0(X)** = C(Ω) for some
compact Ω, and E** is a nonnegative projection of norm 1. By the
above E**(fg) - fge | Ker | (E**) whenever /, g e E**[C0(X)**]. In
particular, if x,ye M, then E**(φ)/c(y)) - φ)fc(y) e | Ker | (E**),
where κ\ C0(X) -> C0(X)** is the natural embedding. Thus 0 =
# * * ( | S * * ( * ( a O ^
xy)\) = #**(/r(| ΐ7(aJ2/) - xy |)) = *(#( | £7(αi/) - αj/1)) so that E(\ E(xy) -
a?3/1) = 0, i.e., E(xy) — xy e | Ker | ( # ) . Thus 2?(ίC2/) and #?/ agree on Xo

whenever x, y e M.
Let the set on the right in (iv) be denoted by W. Clearly, ZczW.

To prove that X1czW it is enough to prove that Xo c W. Let
x,ye C0(X). By (iii) ExEy and E(ExEy) agree on Xo and by Theorem
1 E(ExEy) = E(xEy). Thus #£#7/ and E(xEy) agree on X,. Now let
s G T7 - Z. Set ikΓo = {̂  I Xoi x e M}. Let ^ e Mo* be defined by
ψ{x I Xo) = x(s), xeM. For x,yeM, <p((x \ X0)(y \ Xo)) = cp(̂ τy | Xo) =
φ(E(xy) I Xo) = E(xy)(s) = E(xEy)(s) - (ExEy(s) = (a?i/)(β) = φ(x)φ(y).
Thus 9 is a nonzero multiplicative linear functional on Λf0. Therefore
there exists £ e Xo such that <p(x | Xo) = x(ί), xeM, i.e., the level set
of M which contains s intersects Xo. Thus s e Xlm

DEFINITION. Let X be a locally compact Hausdorff space. For
teX, δteCQ(X)* is evaluation at t.

COROLLARY. Let u(s) = \\E*3S\\, se X. Then E[C0(X)] is a vector
sublattice of C0(X) if and only if ExEy = uE(xEy) for all x, y e C0(X).

Proof. Suppose E\CQ{X)\ is a vector sublattice of C0(X). Let
se X. x I Xo —> x(s) is a vector lattice homomorphism of MQ to R so
that there exist te XQ and α e β such that x(s) = αaj(ί) for all x e M.
x I X0—+x(t) is a linear functional of norm 1 on Mo so that \\E*δ8 \\ —
sxxp{x(s): xeMjWxW^lyX^ 0} = a mp{x(t): xeM,\\x\\^l,x^0} = a.

Thus a = u(s). Let x,ye C0(X). u{s)E(xEy)(s) = u{s)2E{xEy){t) =

u(s)2(^)(£)(£7τ/)(£) - (Ex)(8)(Ey)(8) = (ExEy)(s).

Now suppose that £rx£rτ/ = uE(xEy) for all a?, τ/e C0(X). First we
show that a?, yeM, xAMV — 0==>xAy=0. xAMyz=1^==>{^\ XQ) Λ
(1/1 Xo) = 0 => »i/1 Xo = 0, x, i/ ^ 0 - E(xy) = 0,x,y^0=*0 = uE(xy) =
ExEy — χyfx,y=>xAy — 0. Now let x be any element of M. Ex+ = x\/M0,
Ex~ = ( — x) VM0=>Ex+ AMEx~ = 0=*Ex+ A Ex~ = 0. x = Ex+ — Ex~
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and Ex+ Λ Ex" = 0 => x+ = Efc+ and ar = Ehr. 3 Thus a; e M => a+ e Mf

i.e., M i s a vector sublattice of C0(X).

EXAMPLES. Let X be the discrete space {0,1, 2}, and let E{: C(X) -*
C(X), i = 1, 2, 3, be defined by

s = 0, 1 f—x(l) 8 = 0
( S ) ) = 2

2?!, £72, and ^ are nonnegative projections on C(X), \\ E1 \\ = || E2 \\ = 1.
and || ^ II = 2; ^[C(X)] is not a vector sublattice of C(X); E2[C(X)]
is a vector sublattice of C(X) but not a subalgebra; i?3[C3(X)] is a
subalgebra of C(X), but £?3 does not satisfy the conclusion of Theorem 1.

(i) and (ii) were proved (essentially) by Lloyd [3; p. 172] for X
compact. Specifically, let X be compact, and let E, M and Y be as in
Theorem 2; let Yo be the set of elements of Y at which evaluation is
a nonzero extreme point of the nonnegative part of the unit ball of M *;
then YQ is compact (when Y is equipped with the quotient topology),
and the natural map of M to C(Y0) is an order-preserving isometry onto.
It can be shown that Yo = {Ae Y: A Π Xo Φ 0} so that (ii) follows from
Lloyd's result.

An application. In this section (S, Σf μ) is a probability space
(i.e., (S, Σ, μ) is a totally finite measure space with μ(S) = 1). For Σc

a cr-subalgebra of Σ, E( , ΣQ): L\μ) —> L\μ) is defined by

E(x, Σo) is 2Ό-measurable ]

E(x,ΣQ)dμ = \ xdμ for all AeΣQ)

t h a t is, E(x,ΣQ) is t h e R a d o n - N i k o d y m d e r i v a t i v e of (x μ)\Σ0 w i t h

respect to μ\ΣQ (x-μ is defined by (x μ)(A) = \ xdμ, AeΣ). E( ,ΣQ)

is the conditional expectation operator of Σo. The object of this

section is to characterize all such operators.

LEMMA 4. Let M be an order complete vector sublattice of L°°(μ)
which contains 1. Then there is a σ-subalgebra ΣQ of Σ such that
M = {x e L°°(μ): x is ΣQ-measurable}.

3 If L is any vector lattice, xeL, u,v£L, u Λ v = 0, and if cc = u — v, then
u = cc+ and v = #~.
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Proof. M is an order-complete M-space with unit and so by Lemma
1 is the closed linear space of the set U of extreme points of the non-
negative part of its unit ball. U = {x e M: x A (1 — x) = 0}. Thus
U = {χΛ: AeΣ}Π M\ Set Σ0 = {Ae Σ: χA e M). That Σo is a α-sub-
algebra of Σ follows easily from the fact that M is an order-complete
vector sublattice of Lca{μ). The closed linear span of U is thus the
set of ^-measurable members of L°°(μ).

LEMMA 5. Let T: L\μ) —> &(μ) be a linear map of norm 1 such

that Tl = 1. Then T is nonnegative, and \Txdμ = \xdμ for all

xeU(μ).

Proof. Let x e L\μ), 1 ^ x ^ 0. 1 - \xdμ = || 1 - a; ||3 ^

T(l-x)\\1 = \\l- Tx\dμ^l- Wxdμ so t h a t \xdμ ^ f Γ ^ ^

| Tx\dμ^ || Γα; ||x g ]| α; |U = \xdμ. Thus, 0 ^ x ^ l = > ί x ^ = [\Tx\dμ =
j j J

1 Txdμ. The second equality shows that Tx ^ 0 whenever 1 ^ x ^ 0,

and it follows immediately that T is nonnegative. The equality of

\xdμ and \Γxd/j for 0 ^ α? ̂  1 implies equality for all x e L\μ).

THEOREM 3. Let E: L\μ) —•> Lι{μ) be a projection of norm 1 such
that El — 1. T%e% ίΛ^re is a σ-subalgebra Σo of Σ such that

Proof. By Lemma 5 E is nonnegative. Since El = 1 and E> 0,

E maps L°°(^) into L°°(/J). The restriction £Ό of E to L~(μ) is thus a

nonnegative projection of norm 1. We first show that | Ker | (Eo) — {0}.

Let x ^ 0, and suppose Eox = 0. Since 1 Λ $ — 0=>x — 0, and since

E0(l A x) ~ 0, we may assume 0 <Ξ a; ^ 1. 1 — lακZμ = || 1 — x ||i ^

|| JSΌ(1 - x) 111 = II # 1 111 - 1. Thus x = 0. L~(μ) - Cψ) for some com-
pact Ω so that we may apply Theorem 2. Thus Eo(xEoy) = EoxEoy for
all a, 7/ G L~(μ), and J&0[L°°(^)] = Jkf is a vector sublattice of I/~(μ). We
assert that M is an order-complete vector sublattice. Let {Xi}iei be
an increasing net in M with x = \f ieiXi. {x^ei L'-converges to £c so
that # O E = L'-linii JE70̂ < = I/Mim^,- = x, i.e., x e M. By Lemma 4
there is a σ-subalgebra Σo of I7 such that M = {xe L°°(μ): x is 2Ό-
measurable}. We conclude the proof by showing that E and E{-,ΣQ)
agree on L°°(μ). Let x e L°°(μ). Ex and E(x, Σo) are immeasurable and
so are equal if and only if 1 E(x, ΣQ)dμ = 1 Exdμ for all A e ΣQ. Let
A e Σ Q . ^ E d \ E d ^ E ( J E d ^ E ( E ) d ^ E ( ) d

4 We identify bounded ^'-measurable functions and the corresponding elements
Of L~{μ).
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\xχAdμ = I xdμ = I 2

COROLLARY. (M02/) Lβ£ E: L\μ) —> L\μ) be a linear map of norm
1 such that

( a ) # 1 = 1 ;
(b) E(xEy) = ExEy for all x,ye L°°(μ).

Then there is a σ-subalgebra ΣQ or Σ such that E — E( ,ΣQ).

Proof. For x e L~(σ), E2x = E(lEx) = ElEx = Ex. Thus E2 and
E agree on Z/°°(μ), i.e. E is a projection.

REMARK. AS was mentioned in the introduction, Theorem 3 was
inspired by Moy's theorem. In particular, had Moy's theorem required
that E be nonnegative, it would never have occurred to me that the
condition of nonnegativeness could be dropped. The proof of Theorem
3 can, of course, be much shortened by using Moy's theorem. How-
ever, our proof is substantially different from hers and for this reason
is given.
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