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NONNEGATIVE PROJECTIONS ON C\(X)

G. L. SEEVER

Let X be a locally compact Hausdorff space, C\(X) the
space of continuous real-valued functions on X which vanish at
infinity, and let C,(X) be equipped with the supremum norm.
Let E:. Cy(X)—Cy(X) be a nonnegative projection (x = 0= Ex = 0;

= FE) of norm 1. The first theorem states that E(xEy) =
E(ExEy) for all z,y € Cy(X). Let X, =N{x[{0}]: x = 0, Ex = 0},
The second theorem states (in part) that M = E[C,(X)] under
the norm and order it inherits from C,(X) is a Banach lattice,
that the mapping © — x| X, (=restriction of x to X, is an
isometric vector lattice homomorphism (=linear map which
preserves the lattice operations) of M onto a subalgebra of
Co(X,), and that for te X, E@Ey)t) = (ExEy)t) for all
x, y € Co(X).

The paper concludes with a characterization of the con-
ditional expectation operators L' of a probability space.

The characterization is complementary to (and inspired by) one given
by Moy [5; p.61]. As a corollary to our first theorem we obtain the
theorem of Kelley [2; p. 219] which states that E[C(X)] is a subalgebra
of Cy(X) if and only if E(xEy) = ExEy for all x, y € Cy(X).

Preliminaries. An M-space is a Banach lattice whose norm satisfies
the condition =,y = 0=z Vy| =max(|z]|,|y]) (Vy is the
maximum of £ and y). An element u of a Banach lattice is a unit if
and only if {z:0<cx=<u}={r:2=0,|2z|| =1}. If a Banach lattice
has a unit, it has only one and is an M-space.

LEMMA 1. Let M be an M-space with unit w. Then

(i) X={*eM*.x*u =1, x* is a vector lattice homomorphism}
is o(M*, M)-compact;

(ii) the natural mapping of M into C(X) (X has the relatwe
o(M*, M)-topology) s an isometric vector lattice homomorphism onto.

If, in additions, M is order-complete', then

(iii) X s Stonian?;

(iv) M 1is the (norm-)closed linear span of the set U of extreme
points of {xeM:0 =z Zu}, and xe M belongs to U if and only +f
A\ w—2x)=0.
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1 That is, as a lattice M is conditionally complete.

2 X is Stonian if and only if it is compact and its open subsets have open
closures.
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Proof. (i) and (ii) are proved in [1] (pp.1000-1006). (iii) is
proved in [7] (p.185). We now prove (iv). By (i)—(iii) we may assume
that M = C(X) for some Stonian X. & is an extreme point of
{ye C(X): 0 <y <1} if and only if it is the characteristic function of
an open closed subset of X. This proves the second part of (iv). The
linear span A of U is a subalgebra and (since X is totally disconnected)
separates the points of X. By the Stone-Weierstrass Theorem A is
dense in C(X).

The adjoint of a Banach lattice with its natural norm and order
(z* = y* = x*xr = y*x for all x = 0) is an order-complete Banach lattice
(that the adjoint is a lattice is proved in [6], p. 36). In particular, if
X is a locally compact Hausdorff space, then both Cy(X)* and Cy(X)**
are order-complete Banach lattices.

LEMMA 2. Let X be a locally compact Hausdorf space. Then
Co(X)** is an M-space with unit, and when t 1s equipped with the
multiplication it so acquires, the mnatural embedding of Cy(X) in
Co(X)** 48 multiplicative.

Proof. The mapping ¢ — ||| is additive and nonnegatively homo-
geneous on {¢e Cy(X)*: £ = 0} and so has a unique linear extension to
all of Cy(X)*. This extension, which we denote by 1, is clearly a unit
for C(X)**.

Let Q = {Ee Cy(X)***: &1 =1, & a vector lattice homomorphismj}.
Let £: Cy(X) — Cy(X)** be the natural embedding. We show the existence
of a meagre subset H of 2 such that for « and y in Cy(X), ®(x)e(y)
and k(xy), when regarded as functions on 2, agree on Q ~ H., £ isa
vector lattice homomorphism [6; p. 39] so that for §€ 2, fok is a vector
lattice homomorphism, i.e., £o£ is a nonnegative multiple of evaluation
at some point of X. Thus if |[[fok|| =1, then ok is evaluation at
some point of X and so is multiplicative. We now show that H =
{£eQ:||éok|| < 1} is meagre. Let A= {e():2=0,||a|[=1}. 4 is
directed by =< and is bounded above. Thus YA (=supremum of A in
Cy(X)**) exists and for ¢ a nonnegative member of Cy(X)*, (VA)(u) =
supse. f(12). Subse. f(f) = sup {p(@):a = 0, ||¢]| = 1) = || ¢l = 1(z2) When-
ever £t = 0. Thus VA =1, Since the supremum of a subset of C(2)
and the pointwise supremum agree off some meagre set, we have 1 =
EQL) = sup {§(f): fe A} = sup {(¢ok)(@): v = 0, |||l = 1} = [[or ]| save
for & in some meagre set. Thus, £(xy) and £(x)k(y), when regarded
as functions on 2, agree on 2 ~ H, i.e., £(xy) = £(x)e(y)

LEMMA 3. Let X be a compact Hausdorff space, and let E: C(X) —
C(X) be a monmmegative projection of norm 1. Then E[C(X)] with
the norm and order it inherits from C(X) is an M-space and has E1
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for a unat,

Proof. To show that M = E[C(X)] is a vector lattice it is enough
to prove that for e M, the maximum in M of x and 0 exists. Let
xeM., zrz2, 0=FEx"=2 0" =2\Vv0). If yeM, and y = =, 0,
then y = 2" so that y = Fy = Ex*. Thus Ex* is the maximum in
M of  and 0. Let w= FEl. We show that for ze M, ||z]| =
inf {a: — au < o < au}. This will show that M is a Banach lattice,
and that « is a unit for M. Letxe M. —|jz||=2 = ||2||= —||z||u =
E(-lzl) s EBz=ac=E(lzl)=lcllu;, if —aw=x=aw, then
—a = —au = au = «a so that a = |jx|).

Main Theorems.

THEOREM 1. Let X be a locally compact Hausdorff space, and let
E: C(X)— Cy(X) be a nonnegative projection of norm 1, Then E(xEy) =
E(ExEy) for all x,ye Cy(X).

Proof. We shall show that by passing to E** and Cy(X)** it is
enough to prove the theorem under the additional hypotheses

(a) X is Stonian; .

(b) if {«},e; is an increasing net in C(X) with x = Ve, x;, then

Ev =V ier Bu,.
First we prove the theorem under the additional hypotheses. Let M =
E[C(X)]. If {x;};e; is an increasing net in M with Ve, 2; = v € C(X),
then Fx = V,e; Ex; = Vier %, = © so that M is an order-complete M-
space with unit w = F1. By Lemma 1 M is the closed linear span of
the set % of extreme points of U={xeM:0 =2 <u}. By the
bilinearity and continuity of (x,y)— ay it is enough to prove that
E(xy) = E(xEy) whenever x€ %/ and 0 <y <1. Set z= E(xy) — E(xEy).
2 +2=FE@x -+ xy — xBy) = E(@(l +y — Ey)), and, since 0 <o =<1
and 1+y— Ey =0 (indeed, 1 — Ey = 0), we have 0 < E(x(1 +y — Ey)) =
EQl + vy — Ey) = E1 = w. Thus « + ze U. Similarly, « — ze U. Since
both © 4+ 2 and 2 — 2 belong to U and x<€ % we must have z = 0.
This proves the theorem under the additional hypotheses.

Now let X and E be as in the theorem. E** is a nonnegative
projection of norm 1, and by Lemmas 1 and 2 there is a Stonian space
Q such that Cy(X)** = C(2Q). Let {fi};e: be an increasing net in C,(X)**
with f=Vie;f:. For g a nonnegative member of Cy(X)*, f(p) =
sup; fi(¢) = lim, fi(¢1). Since any member of Cy(X)* is the difference
of nonnegative members, we have f(z) = lim, fi(#) for all pe C(X)*.
Since E** is 0(Cy(X)**, Cy(X)*)-continuous, {E**f;};e,0(Co(X)**, Co( X)*)-
converges to E**f, which, together with the monotonicity of {E**f:}ies,
implies that E**f =V e E**f;,., Thus E** and £ satisfy the ad-
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ditional hypotheses. Let &: Cy(X)— Cy(X)** be the natural embed-
ding. For w,yeCyX), K(E(xEy)) = E**(k(xEy)) = E**(p(x)r(Ly)) =
E** (k(x) E** (£ (y))) = E**(E** (£ (%)) E** (£ (y))) = E** (r(Ex) p(By)) =
E**(k(ExEy))=«t(E(ExEy)).

COROLLARY. (Kelley) E[Cy(X)] s a subalgebra of Cy(X) if and only
iof E(xEy) = ExEy for all x,yec C(X).

Proof. E[Cy(X)] is a subalgebra of Cy(X) if and only if ExEy =
E(ExEy) for all z, ye Cy(X).

DEFINITION. Let I and M be vector lattices, and let T:L — M
be a nonnegative linear map. |[Ker|(T)={xcL:T(lz]))=0} (j]=
xV (—2x)).

Note that |Ker|(T) is a vector lattice ideal in L, that is, |Ker|(T)
is a linear subspace of L and z€ |Ker|(T), |y| = |x|=yec|Ker|(T).

THEOREM 2. Let X be a locally compact Hausdorff space and
E:C(X)— Cy(X) a monnegative projection of morm 1. Let X,=
N{z[{0}]: x € | Ker | (E)}, Y be the set of level sets (sets of constancy)
of M= E[C(X)], X, =U{4e Y: AN X, # Q}, and let Z =N {x*[{0}]:
xeM}. Then

(i) M with the norm and order it inherits from Cy(X) is
Banach lattice;

(ii) x—a| X, s an tsometric vector lattice homomorphism from
M to Cy(Xy);

(iii) for z,ye M, xy | X, = E(xy) | X;; in particular, {x | X;: x € M}
18 a subalgebra of Cy(X,);

(iv) X, U Z = {se X: E(xEy)(s) = (ExEy)(s) for all x,ye Cy(X)}.

Proof. We saw in the proof of Lemma 3 that M is a vector lattice
under the order it inherits from Cy(X). (i) will imply that M is a
Banach lattice. First we prove that x — x| X, is a vector lattice
homomorphism. Let xe M., We have seen that the maximum of x and
0in M is Ex*. Thus we must show that Ex*| X, = 27| X,. Ez* =z,
0=Ext=zga*, Ext — ot =0, E(Ex* — 2%) = 0= Ex* — ¢ ¢ |Ker|(F) =
Ex* — 2" vanishes on X,. Thus z— 2| X, is a vector lattice homo-
morphism of M to Cy(X,). Note that |Ker|(F) is a closed algebraic
ideal in Cy(X) and so is equal {xe C(X): x| X, = 0}. Let yec Cy(X) be
an extension of x| X, with norm ||z | X,||. Since « and y agree on
Xy, By = Ex = x. We thus have ||z |X,||=[y]|= | Byl =z =
o] X,|]. Thus 2 — 2| X, is an isometry from M into Cy(X,).

We first prove (iii) under the additional hypothesis that X is com-
pact. M,= {z|X,:xe M} is a closed vector sublattice of C(X,). By
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the proof of the Stone-Weierstrass theorem in [4] (p.8) M, is a sub-
algebra if it contains the constants. For this it is enough to prove
1/ X,=F1|X,.1-E1=0,EQ1—-FE1l)=0=1—FElec|Ker|(E)=1—F1
vanishes on X,. Now let x,ye M. There exists ze M such that
z| X, =woy|X,. 2y and z agree on X, so that E(xy) = Ez = z. Thus
vy | X, = E(vy) | X..

Now let us return to the general case. C,(X)** = C(£2) for some
compact 2, and E** is a nonnegative projection of norm 1, By the
above E**(fg) — fge|Ker|(E**) whenever f,ge E**[C(X)**]. In
particular, if «,ye M, then E**(k(x)k(y)) — £(x)k(y) < |Ker| (E**),
where £:Cy(X)— Cy(X)** is the natural embedding. Thus 0=
B (B (5(@)6(y) — £@)r () )) = B*( B (s(@y)) — k(xy)]) = B** (e(Bwy) —
xy)l) = E**(e(| E(ry) — wy [)) = £(E( E(xy) — xy |)) so that E(| E(ry) —
xy|) =0, i.e., E(xy) — xyc | Ker|(£). Thus E(xy) and xy agree on X,
whenever 2z, y € M.

Let the set on the right in (iv) be denoted by W. Clearly, Zc W.
To prove that X, W it is enough to prove that X, Cc W. Let
z,ye Cy(X). By (ili) ExEy and E(ExEy) agree on X, and by Theorem
1 E(ExEy) = E(xEy). Thus ExEy and E(xEy) agree on X,. Now let
seW~Z., Set M,={x|X:xeM}. Let pc My be defined by
p(x| X) = u(s), xe M. For z,yeM, p((x|X)(y| X)) = pley | X)) =
P(E(ry) | Xo) = E(zy)(s) = E(xEy)(s) = (ExEy(s) = (xy)(s) = p(@)p(y).
Thus ¢ is a nonzero multiplicative linear functional on M,. Therefore
there exists te X, such that o(x | X,) = x(t), x€ M, i.e., the level set
of M which contains s intersects X,. Thus se X,.

DEFINITION, Let X be a locally compact Hausdorff space. For
te X, 0,€ C(X)* is evaluation at ¢.

COROLLARY. Let u(s) = || E*0,||, se X. Then E[Cy(X)] s a vector
sublattice of Co(X) if and only if ExEy = uE(xEy) for all =, ye C(X).

Proof. Suppose E[C(X)| is a vector sublattice of Cy(X). Let
seX. w|X,—x(s) is a vector lattice homomorphism of M, to R so
that there exist te€ X, and € R such that x(s) = ax(t) for all xe M,
x| X, — «(t) is a linear functional of norm 1 on M, so that || E*J, || =
sup{(s):xe M,||z|| =1, 2=0=asup{a(t):ze M, ||z|| =1, 2=0}=a.
Thus « = u(s). Let z,yecCy(X). u(s)E(@Ey)(s)= ws)E@Ey)(t) =
w(s)(Ew)(t)(By) () = (Ex)(s)(By)(s) = (BxEy)(s).

Now suppose that ExEy = uE(xEy) for all x, ye Cy(X). First we
show that z,yeM, 2 Ayy=0=2 Ay=0. 2 Ayy=0=(]|X) A
Wl X)=0=0y|X,=0,2,y =2 0=E(y) =0,2,y = 0= 0=uk(wy) =
ExEy=axy,x,y=2xAy=0. Now let z be any element of M. Ex*=x\/ 40,
Er-=(—2)Vy0=FEz" NyEx-=0=FEx* N Ex~=0. v=FEx* — Ex~
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and Ex* A Ex~ =0=ga" = Ex* and 2~ = Ex~.* Thus xc M —=a*ec M,
i.e., M is a vector sublattice of Cy(X).

ExaMPLES. Let X be the discrete space {0, 1, 2}, and let E;: C(X) —
C(X), 1 =1,2,3, be defined by

2(s) s=0,1 . —;—x(l) s =0
() — (F.x)(s) =
0 s=20
(Eyx)(s) = gx(O) +21) s=1
Lx(2) s=2
E, FE,, and E, are nonnegative projections on C(X), || E,|| = || E,]| =1,

and || E,|| = 2; EJC(X)] is not a vector sublattice of C(X); E,[C(X)]
is a vector sublattice of C(X) but not a subalgebra; E;jJC(X)] is a
subalgebra of C(X), but E; does not satisfy the conclusion of Theorem 1.

(1) and (ii) were proved (essentially) by Lloyd [3; p. 172] for X
compact. Specifically, let X be compact, and let E, M and Y be as in
Theorem 2; let Y, be the set of elements of ¥ at which evaluation is
a nonzero extreme point of the nonnegative part of the unit ball of M*;
then Y, is compact (when Y is equipped with the quotient topology),
and the natural map of M to C(Y,) is an order-preserving isometry onto.
It can be shown that Y, = {Ae Y: AN X, # 0} so that (ii) follows from
Lloyd’s result.

An application. In this section (S, 2, ) is a probability space
(i.e., (S, 2, ) is a totally finite measure space with ¢(S) = 1). For %,
a o-subalgebra of X, E(-, ¥,): L'(¢) — L'(yt) is defined by

E(x, 2 is 2,-measurable
}w e L(p)
S Bz, 3)dp = S wdpe for all Ae,
4 A
that is, E(x,2;) is the Radon-Nikodym derivative of (x-y)|2, with
respect to x| 2, (@w-p is defined by (x-p)(4) = g xdp, Ae k)., E(-, %)
A

is the conditional expectation operator of %,. The object of this
section is to characterize all such operators.

LEMMA 4. Let M be an order complete vector sublattice of L=(tt)
which contains 1. Then there s a o-subalgebra X, of X such that
M = {xe L>(p): x ts X-measurable}.

8 If L is any vector lattice, x€L, u,veL, w Av=0, and if x = u — v, then
=2+ and v=20".
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Proof. M is an order-complete M-space with unit and so by Lemma
1 is the closed linear space of the set U of extreme points of the non-
negative part of its unit ball. U= {xeM:x A (1 — ) = 0}. Thus
U={ys:Aec3}nN M. Set ¥ ={AeX:y,eM}. That 3, is a o-sub-
algebra of Y follows easily from the fact that M is an order-complete
vector sublattice of L=(z). The closed linear span of U is thus the
set of Y;-measurable members of L=(z).

LEMMA 5. Let T:L'(p) — L'(pr) be a linear map of norm 1 such
that Tl =1, Then T is nonnegative, and STﬂcd/x: gxd;e Sfor all
x e L(p).

Proof. Let zeLp), lz=u=0. 1-§xd/,z:[]1—x[[,g
;iT(l—x)legu—Tx|d,,¢gl—§:rxdy so that deﬂé Twdy <
lTxld/x:HTacHl:<__||oc1|1:§xdp. Thus,ngélzgmdp:S\Txtd;z:

Sdep. The second equality shows that Tx = 0 whenever 1 =« = 0,
and it follows immediately that 7 is nonnegative. The equality of
Swdy and STacd/x for 0 < » < 1 implies equality for all @ e L'(zx).

THEOREM 3. Let E: L'(yt) — L'pt) be a projection of norm 1 such
that E1 =1, Then there is a o-subalgebra 3, of 2 such that
E = E(' ’ 20)-

Proof. By Lemma 5 E is nonnegative. Since E1l=1and E >0,
E maps L=(¢) into L=(¢). The restriction F, of E to L=(y) is thus a
nonnegative projection of norm 1. We first show that | Ker | (E,) = {0}.
Let © = 0, and suppose EFx = 0. Since 1 Az = 0=2 = 0, and since
E(lANx)=0, we may assume 0 <z =<1, 1—\edpg=|1—2],=
| E(l—2)||,= || E1l|,=1. Thus ¢ = 0. L=(p) = C(2) for some com-
pact @ so that we may apply Theorem 2. Thus E,(xEy) = ExEy for
all », y € L=(p), and E[L=(p)] = M is a vector sublattice of L=(y). We
assert that M is an order-complete vector sublattice. Let {x;}:e; be
an increasing net in M with © = Ve, @;. {2;};e; L'-converges to 8o
that Ew = L'-lim; Ex;, = L“-limx, — z, i.e.,, xe€M. By Lemma 4
there is a o-subalgebra X, of ¥ such that M= {xec L=(p):« is 3
measurable}, We conclude the proof by showing that E and E(-, %)
agree on L=(¢). Let e L=(yt). Ex and E(x,Y,) are Y, measurable and

so are equal if and only if S E(x,3)dp =\ Exdp for all AeZ, Let
A A
A, | Bodp = (rBedp = B ) Bodp = | BeBrdn=Beridp—

* We identify bounded Y-measurable functions and the corresponding elements
of L=(p).
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SxxAdy = SAxd;_e = SAE(x, Sydp.

COROLLARY. (Moy) Let E: L'(t1) — L'(1t) be a linear map of norm
1 such that

(a) FE1=1,

(b) E(xEy) = ExEy for all x, ye L=().
Then there is a o-subalgebra X, or X such that E = E(-, X).

Proof. For xe L>(0), E’x = E(1Ex) = E1Ex = Ex. Thus E*? and
E agree on L>(y), i.e. E is a projection,

REMARK. As was mentioned in the introduction, Theorem 3 was
inspired by Moy’s theorem. In particular, had Moy’s theorem required
that E be nonnegative, it would never have occurred to me that the
condition of nonnegativeness could be dropped. The proof of Theorem
3 can, of course, be much shortened by using Moy’s theorem. How-
ever, our proof is substantially different from hers and for this reason
is given.
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