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ON TOPOLOGICALLY INDUCED GENERALIZED
PROXIMITY RELATIONS II

MicHAEL W. LODATO

In the theory of proximity spaces of Efremovic, (The
geometry of proximity, Mat. Sbornic, N.S. 31 (73), (1952),
189-200,) the result:

A set X with a binary relation ¢ A close to B’ is a

proximity space if and only if there exists a compact Haus-
dorff space Y in which X can be imbedded so that A is close
to B in X if and only if A meets B in Y (A denotes the
closure of the set A) (Y.M. Smirnov, on proximity spaces,
Mat. Sbornic, N.S. 31 (73), (1952), 543-574.)
Raises the question: Can we display a set of axioms for a
binary relation & on the power set of a set X so that the
system (X, ) satisfies these axioms if and only if there is a
topological space Y in which X can be imbedded so that

1.1 AéB in X if and only if AN B+ ¢ in Y.

In (M.W, Lodato, On topologically induced generalized pro-
ximity relations, Proc. Amer. Math. Soc. vol. 15, no. 3, June
1964, pp. 417-422), it is shown that an affirmative answer can
be given if Y is T, and if X is regularly dense in Y, The
clusters of S, Leader, On clusters in proximity spaces, Fund.
Math., 47 (1959), 205-213, were used in (M.W. Lodato, On
topologically induced generalized proximity relations, Proc.
Amer. Math, Soc. vol. 15, no. 3, June 1964, pp. 417-422), The
present paper generalized this notion and thus relaxes the condi-
tion that X be regularly dense in Y, We actually characterize
every system (X, d) for which there exists a mapping f (not nec-
essarily one-to-one) of X into a Hausdorff space Y such that

1.2) A6Bin X if and only if AfnfB+¢ in Y.

2. P.-Spaces. Recall from [3] that a symmetric generalized
proximity space or P,-space is a system (X, 6) where ¢ is a binary
operation on the power set of X satisfying

(P.1) A6(B U C) implies that either A6B or AoC

(P.2) A0B implies that A # ¢ and B # ¢

(P.3) AN B+ ¢ implies AoB

(P.4) AdB and bdC for all points b in B imply that A6C

(P.5) A0B implies BoA

We read the symbols ‘“ A6B’’ as ‘“ A is close to B’’; and we say
that ‘“ A is remote from B’’-in symbols, ‘‘ A¢gB ’-if A is not close to B.
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(2.1) The following facts are evident: (1) If A6B, AcC, and
Bc D then C6D. (2) Define

A’ ={xe X: w0}

then in a P,-space (A%d(B° if and only if AJB,

3. Bunches, Let X be a P-space. A bunch over X is a class
o of subsets of X satisfying:

(B.1) A6B for all A,Beo

(B.2) AU Beo implies that Aco or Beo

(B.3) Xeo

(B.4) If Aco and adéB for all ¢ in A then Beo.

(3.1) The following facts are easily established:

(1) Every cluster is a bunch.

(2) For z, a point in a P,-space X, the class ¢, of all subsets A
of X such that z0A is a bunch over X,

(8) If a point x of X belongs to a bunch o, then ¢ is identical
to the class o, of all subsets A of X such that x6A.

(4) Any bunch o from a P,-space (X, 9) is closed under the opera-
tion of supersets: If ¢ is a bunch from X, Aco and AS B, then
Beo.

4. Extensions characterized by bunches.

(4.1) THEOREM. Given a set X and some binary relation 0 on
the power set of X, the following are equivalent:

(I) There exists a T, topological space Y and a mapping f of
X into Y with fo =Y and such that (1.2) holds.

(I) ¢ is a P,-relation satisfying the additional axiom:

(P.7) There exists a family 3 of bunches from X such that

(i) A0B implies that there exists a o€ such that A, Beo,
and

(i) ¢f o and o' are in X and either Aco or Beo' for all sub-
sets A and B of X such that AU B = X, then ¢ = o',

Proof. Suppose that (I) holds and define § by (1.2). (P. 1), (P.2),
(P.3), and (P.5) are trivial consequences of the properties of closure.
For (P. 4) suppose that A6B and b3C for all b in B, Then fAN fB+#¢
f6n fC +# ¢ for all b in B, which since Y is T, implies that fbe FC
for all b in B. Thus fBc fC or fBc fC so that fAN fC # ¢ show-
ing that A6C. For (P.7), define g, = {A S X:yec fA} for each point
ye Y., Clearly, o, is a bunch.

Now let 3 = {0,: ye Y} and we will show that ¥ satisfies (i) and
(ii).
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(i) If AGB, then fA meets fB in Y so we can take a point y in
FfAN fB and o, will be a bunch containing both A and B.

(ii) Suppose g, # 0,. Then xz # y in Y so that, using the T,
property, there exist disjoint open sets U and V, containing z and y
respectfully., Thus, y¢ Y — V=Y —Vand ¢ Y—-U=Y — U so
that y¢fX — Vand z¢fX — U. Hence, A= f(fX— V)eo, and
B=fYfX—U)¢o, and

SAUB) = (fX - V)U(/X - U) =fX—(VnU) =rX

so that AU B = X.

For the converse suppose that (II) holds. Given # in X the class o,=
{A € X:x0A} is a bunch from X, by (3.1), (2.). Thus for any subset
A of X, let .27 be the set of all bunches o, determined by the points «
in A and let .o be the set of all bunches in ¥ which have 4 as a
number. Define the correspondence, f(x) = 0, between X and 27 =fX
by identifying each « in X with the bunch ¢, determined by it. Let
Y = %, the family of bunches satisfying (i) and (ii).

We first show that fX < 3. Consider any o, in fX. Then since
by (P.3) adx, by (i) there exists a ¢ in Y such that xco. But by
3.1), 3.), 0, =0, hence g, ¢ Y and fXZ Y.

By (P.3), Aco, for each ¢ in A and so % < .7 .

A subset A of X absorbs a subset @ of Y if and only if A belongs
to every bunch in @, i.e., if and only if .o~ contains @. For any sub-
set @ of Y we define the closure, ¢l (@), of @ by

(4.2) o¢c cl(®) if and only if every subset E of X which absorbs
@ is in 0.

We next show that

(4.3) cl(w) = o7,

For if o€ cl(.7) then since A absorbs ., Aco so that ge. o7,
On the other hand, if 0¢.&” then Aco. Now let P be in every o,
in %7, i.e., Pda for every @ in A and hence Ac P°. Thus, by (B.4),
Pe o so that e cl(.7).

We now show that the Kuratowski closure axioms are satisfied by
the closure defined by (4.2).

(K.1) @cecl(@): This is trivial since if E absorbs @ then Eeco
for every oc @,

(K.2) cl(¢) = ¢: Suppose gecl(p). Since it is vacuously true
that every subset of X absorbs ¢, we then have that every subset of
X is in o. In particular, ¢ and X are in ¢. Thus, ¢6X, by (B.1),
contradicting (P. 2).
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(K. 3) cl(cl(®@)) S cl(®): Suppose o e cl(cl(@)) and that E absorbs
@. By (4.2) E absorbing @ implies that E absorbs ¢l(®). Hence Eec
showing that o e cl(@).

K.4) cl(@U@) = cl(@)Ucl(?’); Suppose that ocecl(@U@’) and
that A absorbs @ and A’ absorbs @’. Then by (3.1), (4.), AU A’ absorbs
QU so that AU A'es. But by (B. 2) this means that either Ae o or
A'eo, ie., ogecl(@) or oecl(@). On the other hand, o€ cl(@) U cl(?)
implies that either o€ ¢l(®) or oecl(®?’). Now if E absorbs @ U &',
then E absorbs @ and also absorbs @. Hence, Ec ¢ showing that
oecl(®@ U @) and (K. 4) holds.

Thus, (4.2) defines a topology on Y.

To show that f£X is dense in Y, we just note that by (4.3),
(Z)=2=17Y.

To show that the topology is 7, we must show that if ¢ and ¢’
are in Y such that ¢ # o', then there exist subsets @ and @' of Y
such that g ¢ cl(®@), ¢’ ¢ cl(@') and cl(@)Ucl(@') = Y.

So suppose ¢ # ¢’, then by (ii) there exist subsets A and B of X
such that A¢ o, Be ¢’ and AUB = X. Thus, .o and <Z are subsets
of Y such that o¢.o7 and ¢’ ¢ &, (since for instance A absorbs .27
but A¢o)and ¥ Uz =. v UZ = 2 = Y.

To finish the proof we need only show that (1.2) holds: AoB in X
if and only if .o meets 7 in Y. If A0B there exists, by (i) a
e Y to which both A and B belong. Thus, by definition of .57, we
have 0e.%” N.<. On the other hand, if c€. N then A and B
are in o so that by (B.1), AdB.

The proof is now complete,

5. Symmetric P-Spaces. A P,-Spaces (X, 0) in which ¢ satisfies
the additional axiom.

(5.1) 20y implies x = y
is called a symmetric P-space (see [4]). The following theorem follows
directly from (B.1) and (5.1).

(6.2) THEOREM. FEwery bunch o from a symmetric P,-space
(X, 0) possesses at most one point.

(5.3) THEOREM. Given a set X and a binary relation, o, on the
power set of X, the following are equivalent:

(I') There exists a T, topological space Y in which X can be
1mbedded so that (1.1) holds.

Ty 0 is a symmetric P-relation satisfying (P.7).
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Proof. The demonstration is very similar to that of theorem (4.1).
To see that (I') implies (5.1), note that TNy #* ¢ implies that
tNy+*d¢, or =1y,

Finally we note that, because of (5.2), the correspondence between
X and 2 induced by the identification of x# with the bunch o, deter-
mined by it is one-to-one,

REFERENCES

1. V.A. Efremovic, The geometry of proximity, Mat. Sbornic, N.S, 31 (73), (1952),
189-200.

2. S.Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213.

8. M.W. Lodato, On topologically induced generalized proximity relations, Proc. Amer.
Math. Soc. 15, No. 3, (1964), 417-422,

4, , Generalized proximity Spaces: A generalization of Topology; forthcoming,
5. Yu. M. Smirnov, On proximity spaces, Mat. Sbornic, N.S. 31 (73), (1952), 543-574,









