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ON A HOMOTOPY CONVERSE TO THE LEFSCHETZ
FIXED POINT THEOREM

ROBERT F. BROWN

Let a be a homotopy class of maps of X, a connected com-
pact metric ANR, into itself and let La denote the Lefschetz
number of a. A converse to the Lefschetz fixed point theorem
is: if La = 0 then a contains a fixed point free map. The
converse is true if X is a compact connected simply-connected
topological ^-manifold (Fadell) or if X is a compact connected
topological ^-manifold, with or without boundary, and a con-
tains the identity map (Brown-Fadell). Let μ(ά) denote the
fixed point class invariant of a, then every map in a has at
least μ(ά) fixed points. The purpose of this paper is to gener-
alize the preceding results by proving that if X is a compact
connected topological w-manifold, n ^ 3, with or without
boundary, then there is a map in a which has exactly μ(a)
fixed points. It follows that the converse to the Lefschetz
theorem will hold whenever a contains a map all of whose
fixed points are in a single fixed point class.

Let X be a topological space and let /: X —> X be a map. If
x, x' e X are fixed points of /, then x and xf are in the same fixed
point class [7], [9] of / if there is a path w: I—> X (I ~ [0,1])
homotopic to the path fw by a homotopy keeping x and xr fixed, i.e.,
there exists a map H: I x I —> X such that H(s, 0) = w(s), H(s, 1) =
f(w(s)), for all sel, and H(0, t) = x, H(l, t) = x', for all t e /.

In order to state our theorem, we will need the results of Browder's
extensive research on fixed point classes and the fixed point index [1],
[2], For the reader's convenience, we will summarize those results
which we require. Let X be a connected compact metric ANR. Let
/: X —> X be a map and let a denote the homotopy class of maps
containing /. The fixed points of / belong to a finite number of fixed
point classes %u , %r. There is a set of mutually disjoint open sets
©!,••-,©,. of X such that %3 c @, , j = 1, , r . The fixed point index
i(/, ®j) of / on ©y is well-defined and independent of the choice of ®3 .
Call this integer the index of the fixed point class gy a n ( * denote it
by ί(%j). Let μ(f) denote the number of fixed point classes %j of /
such that i(%j) =£ 0. If g e a, then μ(g) = μ(f) so we may replace

y μ(cc). Every map in a has at least μ(ά) fixed points.

THEOREM 1. Let M be a compact connected topological n-manifoldf
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n ^ 3, with or without boundary, and let a be a homotopy class of
maps of M into itself. There is a map fea which has exactly
μ(a) fixed points.

In the case of triangulated manifolds, Theorem 1 is a consequence
of Theorem 3 of [9]. (See [13] for the announcement of a different
extension of Weekends theorem to topological manifolds.) The restric-
tion on the dimension of the manifold in Theorem 1 is necessary; a
two-dimensional counter-example is known [14].

If all the fixed points of a map g e a are in the same fixed point
class g, then we can take @ = M and i(%) = i(g, M) = Lg = La [2,
Theorem 4], Therefore, we have the following homotopy converse to
the Lefschetz fixed point theorem.

COROLLARY. Let M be a compact connected topological n-manifold,
n ^ 3, with or without boundary, and let a be a homotopy class of
maps on M which contains a map all of whose fixed points lie in a
single fixed point class. If La = 0, then a contains a fixed point
free map.

It is clear that for manifolds of dimension at least three, the
converses to the Lefschetz theorem obtained by Fadell [5] and by
Brown and Fadell [4] stated above are immediate consequences of the
corollary.

Although the Lefschetz fixed point theorem itself holds for very
general categories of spaces [2], [6], the converse fails to be true
even for finite polyhedra, e.g., for the class of the identity map on
S2 V S1 V S1 (Y. H. Clifton).

2* Fixed points of maps on manifolds with boundary* The
results of this section are generalizations of theorems of Weier [12].
(A closely related development is given in [11].).

THEOREM 2. Let M be a compact connected topological manifold
with boundary and let f;M—>M be a map, then there exists a map
/': Λf —» M homotopic to f such that f has a finite number of fixed
points) none of which lie on the boundary of M.

Proof. If we identify two copies of M by the identity homeo-
morphism restricted to the boundary B of M, we obtain a compact
connected manifold without boundary called the double of M and
denoted by 2M. Denote one of the copies of M in 2M by Mx and
consider / to be a map on Mx. It follows immediately from [3,
Theorem 2] that there is a homeomorphism h oί B x I into M1 such
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that h(b, 0) = beB. Define a family of maps r*: M1 —>Mu te I, by
letting r*(x) = x for all x e [M1 — h(B x I)] and all te I and for
h(b, s) e h(B x I), let r*(/&(6, s)) = h(b, (1 - s)ί + s). The map / induces
.F: 2Λf--> Mi in the obvious way so that F(x) = f(x) for all xeMlt

Consider g — rxF: 2M-+MU then g is homotopic to F,g\M1 (g restricted
to Mj) is homotopic to /, and g{Mx) g [M, - h(B x [0,1))]. Let ε > 0
denote the distance from B to h(B x {1}). By Theorem 1 of [12], there
is a homotopy gι\ 2M—>2M, te I, such that g° = g, ρ(g*(x), g(x)) < e for
all te I and α; e 2M (p is the metric of 2M) and g1 has at most a
finite number of fixed points. By the definition of ε, it is clear that
/ ' = gι I Mi: Λfi -> M± is homotopic to / and /'(ΛΓi) S ^ - S so / ' has
no fixed points on B.

REMARK. Suppose x,x'eM are fixed points of f;M—>M which
are in the same fixed point class of / by means of a path w, that is,
w is a path in M from x to xr which is homotopic to fw by a
homotopy which keeps x and xf fixed. Let w':I—*M be a path from
•X to α/ which is homotopic to w by a homotopy which keeps x and xf

fixed, then cc and x' are in the same class of / by means of w'.

THEOREM 3. Let M be a compact connected topological n-manifold,
n ^ 3, with boundary B and let g; M—>M be a map with a finite
number of fixed points, none of which lie on B. If x0 and x1 are
fixed points of g in the same fixed point class, then there exists an
open set I f g l , containing x0 and xx but no other fixed point of g,
and a map gf\ M-+M such that gr is homotopic to g, g'(x) = g(x) for
all x e M — W, and x0 is the only fixed point of gr in W.

Proof. We first show that xQ and x1 belong to the same fixed
point class of g by means of a path w'\I-*M such that w'(I) (Ί B ~
0 . By hypothesis, xQ and x1 are in the same class by means of a
path w". By Theorem 2 of [3], there is a neighborhood U of B in
M and a homeomorphism h : B x [0,1) —•> U (onto) such that h(b, 0) =
beB. Since neither x0 nor xx is in B, we can construct U so that it
does not contain these points. Define the path wf by

w"(t) $ U

w"{t) = h(b, r)eU (beB, re [0,1)) .

Define K: I x I->M by

(w"(t) w"{t) $ U ,
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then K is a homotopy connecting w" and wr keeping xQ and x1 fixed,
so by the remark, wr is the required path. Now suppose that for
some fixed point x2 of g we have w'~\x^ = J Φ 0. Let N be a
Euclidean neighborhood of x2 containing no other fixed point of g and
let α: N—+Rn be a homeomorphism taking #2 to the origin. Let A be
the closed unit ball in Rn centered at the origin and let V = a~\A)9

Let {Cy} denote the components of w'~\ V) c I, then by the continuity
of w\ there are only a finite number of such components {C^?=1 with
the property C< Π J Φ 0. Note that Ci = [ĉ , <ZJ c (0,1) for i = 1, , m
and let d : [cx, c£J —>N — F such that ζfa) = w'(ci), d(di) = w'(di), then
the path tc ί defined by

w'(ί) ίeJ-fo,^)

is homotopic to w' by a homotopy which is constant outside of N and
so, in particular, keeps x0 and xx fixed. Thus, by the remark, x0 and
a?i are in the same fixed point class of # by means of w[. Repeating
this construction a finite number of times, we obtain a path w: I—+M
such that xQ and x1 are in the same fixed point class of g by means
of w, w(I)Γ\B — 0, and w intersects no other fixed point of g. Hence
there exists an open set W in M — B containing w and disjoint from
all fixed points of g except x0 and xl9 We can now apply the proof of
Theorem 5 of [12] to g, W, xQ the xx without any changes whatsoever
to obtain the required map g':M—*M.

3. Proof of Theorem I* By Theorem 2, there is a map / ' e a r
with a finite number of fixed points, none of which lie on the boundary
B of M. Applying Theorem 3 to / ' a finite number of times, we
obtain a map gea no two of whose fixed points are in the same fixed
point class of g. Denote the fixed points of g by xu , xr(εM — B)r

then there exist Euclidean neighborhoods Ul9 ,Ur such that xά e Uj9

j = 1, , r, Uj Π Uk = 0 for j Φ k, and i(xi9 Uά) - i(%5) where %
denotes a fixed point class of g. By a result quoted above (§ 1), i(g, ) Φ 0
for exactly μ(a) of the classes g y . Let xi be a fixed point of g such
that i(%j) = 0. There is a homeomorphism fe: U5-^Rn (onto) taking
flc^ to the origin. Let A be the closed unit ball in Rn centered at
the origin and let V — h~\A). We may obtain a finite triangulation
of V of mesh small enough so that if P is the closed star of xά then
g(P) c 7 . A slight modification of the proof of Proposition 1.1 of [4]
permits us to identify O'Neill's index on U3 [8] with the index we
have been using in this paper. Therefore, the index of g on Uά as
defined in [8] is zero and by Corollary 5.3 of that paper, there is a
map g' M—^M such that gf has no fixed point on Ud and g' is suf-
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ficiently close to g so that g\P) c Uό. Furthermore, from the proof
of Theorem 5.2 of [8], it follows that, for x e M - P, g'(x) = g(x).
Thus gf ea and gr has the same fixed points as g except for xj9 If
we repeat this construction for each fixed point xk of g such that
i($k) = 0, we obtain in a finite number of steps a map fea with
exactly μ(a) fixed points.
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