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THE SUM OF TWO INDEPENDENT
EXPONENTIAL-TYPE RANDOM
VARIABLES

E. M. BOLGER

Let X, X; be nondegenerate, independent, exponential-type
random variables (r.v.) with probability density functions,
(p.d.£.)  fi(x; 0), fo(xz; 0), (not necessarily with respect to
the same measure), where f;(x;;0) = exp {x;p;(0) + ¢;(0)} for
0€(a,b) and p;(0) is an analytic function of ¢ (for Red < (a,b))
with p/(0) never equal to zero on (a,d). If X;, X; are neither
both normal nor both Poisson type r.v.’s, then X; + X, is an
exponential-type r.v. if and only if p{(6) = pi(0).

2. Lemmas. It follows from Patil’s result ([3]) that a r.v. X
is of exponential type if and only if the cumulants, \;(6), exist and
satisfy

(1) Ni(0) = ' (O)N;.(0) for j=1,2,3,---.

Lehmann ([2], p. 52) has shown that ¢(f) and hence also \,(§) are
analytic functions of p(d). Then X\,(f) is an analytic function of ¢
for Ref € (a, b).

Let A;(6) be the j* cumulant of X; and \;(#) the j*® cumulant
of Y. Then

(2) M(0) = Nja(0) + Ny.o(0)
(3) N5il0) = DAOIN41,4(0) for j=1,2,3,---.
Let 7;(0) = Nj(0)Na,s(6) — Nj,o(0)Nes(6) aDd (8) = Ng,s(6)/Nas(6).

LEMMA 1. If hy0) =0 and if ¢'(6) = 0, then either X, and X,
are both mormal or pi(0) = piy6).

Proof. Since hy(6) = 0,

(4) Aao(0) = €(O)Ns,i(6) .
Since ¢'(6) = 0,
(5) 73,0(0) = c(0)N5,.(0) .

From (3), (4) and (5) it follows that

DYOIN5,5(0) = e(O)Di(O)N5,1(0) = DI(O)\s,e(6) .
31
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If A;,(6) =0, then \,,(6) = 0 and X,, X, are both normal, If there is
a point 6, such that A, ,(f) # 0, then there is a neighborhood, N(6,), in
which N, ,(6) = 0. For 8 N(6,), pi(d) = py(f). By analyticity, pi(0) =
2y0) for 0 € (a,d).

LEMMA 2. If h(0) =0 for j§ >2 and f ¢/(6) = 0, then X, and
X, are Potsson type r.v.’s.

Proof. Since h;(0) = 0,
(6) N,o(0) = e(0)N;,4(0) .
Differentiating (6) and using (3), we get

¢(OMNG1(0) + C'(O)N;,4(0) = DHOM;41,5(0)

Then,

(7) e(O)PUOMNj414(0) + €' (OIN;,1(0) = DUO)C(O)N;41.1(0)
In particular,

(8) e(O)PUO)s,1(0) + ¢'(O)Ne,1(0) = DUOYE(O)Nss(60)

Multiplying (7) by \s,(6) and (8) by \;.,,(d), we find that
(9) (D) N, 1(OINj11,4(0) — Nas(0)N5,1(0)] = O forj=2.

Since ¢'(d) %= 0, there is a sub-interval M of (a, d) in which ¢'(9) = 0.
For 6e M,

No 1 (ONs41,1(9) — Nau(O)N,,(0) = 0,
or

Ag,i(0)
)’2,1(0)

By analyticity, (10) is true for all 6 € (a,b). Now let a(0) = \;,,(0)/X.,.(0).
Then, by (3),

P1(0)N,1(0) = N31(0) = @/ ()N, 0(0) + (1,(0)?\4;,1(0)
= @/(0)\e,1(0) + a(0)pi(O)Ns,:(0) .

Since N\, ,(0) = a(0)rs,(0), it follows that

(10) Nir1a(0) = Nia(0) .

a'(0)\,,(6) = 0,
So a/(f) = 0 and a(d) = d. Then (10) becomes
(11) Nir1a(0) = dN;,(0) forj=2.
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This implies

(12) Nia(0) = di~N,,1(6) forj=2.
By (6),

(13) Nja(0) = di*e(0)s,1(6) for j=2.
Now,

D1(0) = NM,(0)/X,1(0) ,
DU(0) = N5,1(0)/N5,1(0) = N;,1(60)/dN,,4(0) .

So

(14) M (0) = AN, (0) + Ky
Similarly,

(15) M,o(0) = d7e(O)\y,,(0) + K. .

Using (12), (13), (14) and (15), we find that
log Mi(t; 6) = kit + d=X,, (0)(e* — 1)
log My(t; 6) = kst + d™°c(0)N.1(6)(e™ — 1),

where M(t; 6) is the moment generating function corresponding to
fi(;; 6).

This concludes the proof of Lemma 2,

3. The sum of two independent exponential-type random
variables.

THEOREM 1. If X, X, are neither both normal mor both Poisson
type r.v.’s, then X, + X, is an exponential-type r.v. tf and only if
pi(0) = pi(0).

Proof. If pi(6) = py@), then if follows from (2) and (3) that

7\'j+1(0) = 7\'j+1,1(‘9) =+ )“j+;.z(l9)
= [pUO]~N;u(0) + [PUO]N],2(0)
= [p(O)]725(0) .

Conversely, assume X, + X, is an exponential-type r.v.. Then, using
1), (2), and (3), we find that

(16) D(O)Na(0) + N o(0)] = DUOIN;1(0) + DAOIN;,(0)

In particular,



34 E. M. BOLGER

(17) p'(ﬁ)[)"m(a) + 7\'2,2(0)] = p{(ﬁ))"z,l(o) —+ p;(a))\'z,z(ﬁ) .

Multiplying (16) by A.,(6) and (17) by A;,(f) and then subtracting, we
get

(18) [2'(6) — p(0)]R;(0) = O forj=2.

Now, if for some j, = 2, h;(0) # 0, then there is a subinterval, M, of
(@, b) in which h;(6) # 0. Then, for 6 e M, p)(d) = p'(f#). By analyti-
city, pi(0) = p'(0) for all § € (a,bd). Substitution in (16) yields p{(0) =
p'(0) for € (a,b). If, on the other hand, h;(0) =0, for j = 2, the
result follows from Lemmas 1 and 2 since we assumed that X, X,

are neither both normal nor both Poisson type r.v.’s.

It should be noted that Girshick and Savage [1] proved that if
X, and X, are independent identically distributed r.v.’s such that their
sum is of exponential-type, then X, and X, are also of exponential-

type.
The following theorem gives necessary and sufficient conditions
for the sum of two Poisson-type r.v.’s to be exponential-type.

THEOREM 2. If log M(t; 0) = Cit + A(6)[l* — 1], then X, + X,
18 an exponential-type r.wv. tf and only tf either b, = b, or pi() =
pi(6).

Proof. If X, + X, is an exponential-type r.v., then, as in the
proof of the preceding theorem,

[p'(6) — PO)]hy(6) = O forjz2.

Equivalently,
5.1 (O0s,2(6) — N 2(O)N2,2(0)]

= PUOND (O)] 7 [Na(O)Ne,o(0) — N o(O)Ns,1(0)] forj=2.
Since, for j = 2, \; (0) = biA(0), (19) becomes

[bib; — bibi]A.(0)Ax(0) = piO)[p'(O)]7[bib; — bIbIIAL(0)AO) .
But A4,(0)A4.(0) > 0, so that
[bib: — bibi] = pi(O)[p'(0)]'[bib; — bibil .

Now, if bib2=0ib; for all j = 2, then bb: = bb;, so that b, =b,. On
the other hand, if, for some j,, bjob: — bjob? == 0, then pi(d) = p'(9) and
it follows that pi(0) = p:(9).

Conversely, if p(0) = py(d), then X, + X, is an exponential-type
r.v. since (1) is satisfied, If b, = b,, let

(19)
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p'(0) = [Ai(0) + AY0)]/b.[A.(0) + A 0)] .

It is easy to see that (1) is again satisfied.

The author wishes to thank William L. Harkness for his help in
the preparation of this paper.
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