
PACIFIC JOURNAL OF MATHEMATICS
Vol. 18, No. 1, 1966

THE SUM OF TWO INDEPENDENT
EXPONENTIAL-TYPE RANDOM

VARIABLES

E. M. BOLGER

Let Xi, X2 be nondegenerate, independent, exponential-type
random variables (r.v.) with probability density functions,
(p.d.f.) fi(xi; θ)9 f2(x2; 0), (not necessarily with respect to
the same measure), where / fe; θ) = exp {XiPi(θ) + #;(#)} for
θ 6 (a, b) and piiβ) is an analytic function of θ (for Re θ e (α, &))
with p'i(θ) never equal to zero on (α, b). If Xu X2 are neither
both normal nor both Poisson type r.v.'s, then Xi + X2 is an
exponential-type r.v. if and only if pΊiβ) =

2. Lemmas* It follows from PatiPs result ([3]) that a r.v. X
is of exponential type if and only if the cumulants, λ, (0), exist and
satisfy

( 1 ) λj(0) - p'(θ)\i+ι(θ) for j - 1, 2, 3, .

Lehmann ([2], p. 52) has shown that q(θ) and hence also λ, (0) are

analytic functions of p(θ). Then \j(θ) is an analytic function of θ

for Re θ G (α, &).

Let λ i f i(^) be the i t h cumulant of X^ and λ^tf) the jth cumulant

of Y. Then

( 2 ) λy(β) - XM(0) + λ i f ί(ί)

( 3 ) X'JM = v'i(θ)\+iM for i = 1, 2, 3, .

Let hj(θ) = \SΛ(Θ)\Λ(Θ) - \JΛ(Θ)\Λ(Θ) and c(β) = \

LEMMA 1. / / h3(θ) = 0 and if c\θ) = 0, then either Xx and X2

are both normal or p[(θ) Ξ p'2(θ).

Proof. Since hs(θ) = 0,

( 4 ) Uί)

Since c'(^) = 0,

(5) KM)

From (3), (4) and (5) it follows that
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If λs>2(0) = 0, then λSϊl(0) = 0 and Xu X2 are both normal. If there is
a point θ0 such that λ8f2(0) Φ 0, then there is a neighborhood, N(θ0), in
which λ3,2(0) ^ 0. For θ e N(θ0), p[(θ) = p'2{θ). By analyticity, p[(θ) =
pί(0) for 0 G (α, b).

LEMMA 2. 1/ hό(θ) = 0 for j >2 and if c'(0) =£ 0,

X2 are Poisson type r.v.'s.

Proof. Since hά(θ) ~ 0,

( 6 ) \jΛ(θ) = c(θ)Xjfl(θ) .

Differentiating (6) and using (3), we get

c(θ)\'sM + c'(θ)\itl(θ) = p

Then,

( 7) c(θ)p[(θ)Xj+1M + c'(θ)\SΛ(θ) = p[{

In particular,

( 8 ) c(θ)p[(θ)X3M + c\θ)\9l(θ) = pflθ

Multiplying (7) by λ3>1(0) and (8) by Xj+1>1(θ), we find t h a t

( 9 ) c:(β)[X2Λ(θ)\+iΛ0) - λ8>1(0)λifl(<?)] - 0 for j ^ 2 .

Since c'(θ) Ξ£ 0, there is a sub-interval M of (α, 5) in which c'(θ) Φ 0
For θeM,

or

(10) λ i + l i l ( ί) =

By analyticity, (10) is true for all θ e (a,b). Now let a(θ) = λ3f

Then, by (3),

Since λ4fl(0) = a{θ)X3tl(θ)f it follows that

a'(θ)X2fl(θ) = 0 .

So α'(0) = 0 and α(0) = d. Then (10) becomes

(11) ^i+i.i(0) = ^λ i f l(0) for i ^ 2 .
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This implies

(12) \JΛ(Θ) = *-2λ2l l(0) for j ^ 2 .

By (6),

(13) XJM = &-*c{θ)X,Λ{θ) for j S: 2 .

Now,

So

(14) ^ ( 0 ) - d-%.^) + ^ .

Similarly,

(15) λ1>2(^) = d-χc(θ)X2M +

Using (12), (13), (14) and (15), we find that

logM^t; θ) = U + d-2λ2,1(^)(^ί - 1)

logM2(t; θ) = kφ + d~2c(θ)X2Λ(θ)(edt - 1) ,

where Λf<(έ; ^) is the moment generating function corresponding to

This concludes the proof of Lemma 2.

3* The sum of two independent exponential^type random
variables*

THEOREM 1. If Xu X2 are neither both normal nor both Poisson
type r.v.'s, then Xx + X2 is an exponential-type r.v. if and only if

Proof. If pί(θ) = p'3(θ), then if follows from (2) and (3) that

xj+1(θ) = \J+1Λ(θ) + * i+iM

= [pmrxΛθ) + [P[(Θ)T%M

Conversely, assume X,, + X2 is an exponential-type r.v.. Then, using
(1), (2), and (3), we find that

(16)

In particular,
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(17) P'(θ)[\9l(θ) + X2f2(θ)] = pί(θ)\tl(θ)

Multiplying (16) by λ2ίl(0) and (17) by λ^^) and then subtracting, we
get

(18) W(θ) - p'%(θ)\h(0) Ξ 0 for i ^ 2 .

Now, if for some j0 ^ 2, hh(θ) Ξ£ 0, then there is a subinterval, M, of
(α, b) in which hh(θ) Φ 0. Then, for θ e M, p'2(θ) = p'(θ). By analyti-
city, p[(θ) = p\θ) for all θ e (a, b). Substitution in (16) yields p[{θ) =
p\θ) for θ e (α, 6). If, on the other hand, hό{θ) = 0, for j ^ 2, the
result follows from Lemmas 1 and 2 since we assumed that Xu X2

are neither both normal nor both Poisson type r.v.'s.

It should be noted that Girshick and Savage [1] proved that if
X± and X2 are independent identically distributed r.v.'s such that their
sum is of exponential-type, then X1 and X2 are also of exponential-
type.

The following theorem gives necessary and sufficient conditions
for the sum of two Poisson-type r.v.'s to be exponential-type.

THEOREM 2. If log Mfa θ) = C4ί + AtfW* ~ *L then X, + X2

is an exponential-type r.v. if and only if either bλ = b2 or p[(θ) =

Proof. If X1 + X2 is an exponential-type r.v., then, as in the
proof of the preceding theorem,

\P'(Θ) ~ PtfMsW) Ξ 0 for j ^ 2 .

Equivalently,

= vmWm-WM^M λ^^^^] for jϊ>2.

Since, for j ^ 2, λ,-,^) = bJ

iAi(θ)f (19) becomes

[b[bl - MbίlA^A^Θ) =

But AX{Θ)A2(Θ) > 0, so that

Now, if b{bt=Mbl for all j ^ 2, then b\b\ = b\b\, so that bλ = 62. On
the other hand, if, for some j 0 , 6f°61 — &|°6? ̂  0, then 292

f(̂ ) = p'(θ) and
it follows that p[(θ) = p[(θ).

Conversely, if p[{θ) = pf

2(θ), then Xx + X2 is an exponential-type
r.v. since (1) is satisfied. If bx — δ2, let
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p\θ) = [A[(θ) + A'2(θ)]/bAA(θ) + A2(θ)] .

It is easy to see that (1) is again satisfied.

The author wishes to thank William L. Harkness for his help in
the preparation of this paper.
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