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A CONVERGENT GRADIENT PROCEDURE
IN PREHILBERT SPACES

E. K. BLUM

In this paper, we present a new method of approximating
the minimum of a functional, J, defined on a prehilbert space
and subject to constraints of the form φ^x) = 0, 1 ^ i ^ p,
where the ψ{ are also functional on the space. The method
generates a convergent sequence of approximations using the
gradients of J and ψim However, it is not a steepest descent
procedure with respect to J. A theorem is proven which
establishes the convergence of the approximating sequence to
the minimum.

The literature on extremal problems in abstract spaces is fairly-
extensive. We refer to the bibliographies in [1], [5] for a partial list.
That part of the literature which deals with approximation procedures
for finding extrema subject to various constraints is also extensive.
Again, see [1], [5] and also [3] for bibliographies. In particular,
gradient-type methods have received considerable attention recently in
a variety of contexts as in [2], [7], [6] to mention a few. In this paper,
we present a new method of approximating the minimum of a functional,
J", defined on a prehilbert space and subject to equality constraints.
The method generates a convergent sequence of approximations using
gradients but it is not of the steepest descent type with respect to J.

2. Preliminary remarks* Let £Γ be a prehilbert space. For
u, v, e H, we denote their inner product by (u, ΐ/> and || u ||2 = ζu, u).

Let J and ψif 1 S i ^ P, be real functionals defined on some
subset in H. We shall say that u* e H is a solution of the minimiza-
tion problem defined by {J, fa] if ψt (u*) = 0, 1 ^ i ^ p and J(u*) ^
J(u) for those u in a neighborhood of u* which satisfy the con-
straints ψi(u) = 0, 1 ^ i ^ p.

By the gradient of J at u we mean an element of H, designated
by FJ(u), such that for all An in some neighborhood of 0 e H,

J(u + Δu) - J{u) = ζFJ(u), Any + e(u, An) ,

where | ε(u, An) |/|| An || —• 0 as Δu —• 0. Similarly, Fψ^u) denotes the
gradient of ψi at u.

If / is a real functional defined in a neighborhood of u e H and if
df(u; h) = lim^o (f(u + sh) — f(u))/s exists for all h e H, we call df(u; h)
the weak differential of / at u with respect to h. The relation
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between df(u; h) and ζyf(u), K) is well-known [8].
Now suppose that ψJ(u) and Fψi(u), 1 ^ i ^ p, exist at w. Suppose

further that the p x p Gram matrix,

is nonsingular. Let 7 be the p-dimensional row vector

and define λ'= (\, , λp) as the vector λ = yD"1. Then, as is well-
known, the "projection" of FJ on the subspace G c H spanned by
{Fψi(u) 11 ^ i ^ p) is given by FJ^(u) = Σ i λ /Ψi(^) The component
of VJ orthogonal to G is

FJτ(u) = ΓJ(w) - FJβ(u) .

If u* is a solution of the minimization problem defined by {J, ψi} and
FJ(u), Fψi(u) exist as continuous functions of u in a neighborhood of
w* with D(u*) nonsingular, then by the Lagrange multiplier rule [4],
[5], [8] it follows that FJτ{u*) = 0.

In the next section, we shall use this necessary condition as the
basis for a gradient method of obtaining successive approximations
which converge to u* when certain regularity conditions hold in a
neighborhood of u*. With obvious modifications, the method can also
be applied to the simpler problem of finding a solution of the system
{ψi(u) — 0}. In this context, it generalizes a method given in [7] for
finite-dimensional spaces.

3. The gradient method* For any ueH, we shall use the
notation "ΰ" to denote the normalized vector (l/\\u\\)u.

DEFINITION. Let u* be a solution of the minimization problem
defined by {J, ψi}. u* is a regular minimum if there is a neighborhood,
JV = N(u*), of u* in which the following conditions are satisfied:

(1) FJ(u) exists as a continuous function of u and VJG(u) Φ 0 for
ueN;

(2) Fψi(u), l^ίi^p, exists as a continuous function of u and
Fψi(u) Φ 0 for ueN;

(3) For each ueN, the matrix D(u) is nonsingular;

(4) For θ(u) = arcsin (|| FJτ(u) ||/|| FJ(u) ||), the gradient F0(%) exists
and || Fθ(u) \\ > a > 0,u Φ u*. At u* the weak differential
dθ(u*;h) exists and <FΘ(u),hy-+dθ(u*,h) as w->w*.
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( 5 ) For u = (u* + Au) eN, An Φ 0, let

— a r c c o s ( V ψ ^ u ) , A n y , I g i ^

a
0
 = a

o
(u) — arccos (PJ

τ
(u),

β = /3(%) = arccos <VΘ(u),

7 = 7(u) — arccos ζPΘ(u), VJτ(u)y .

There exist constants a1 > 0 and a2 > 0 such that

Σ
1

cos2 tfi + cos α 0 cos /3/| cos 7 | > αA

and I cos 7 I > α2 for all u e N except possibly u*. A neighborhood such
as N is called a regular neighborhood of u*.

REMARK. #(U*) = 0 by the necessary condition for a minimum.
If u* is the unique minimum, this condition is also sufficient under
the assumptions required in the multiplier rule.

LEMMA. Let u* be the unique solution of the minimization
problem defined by {J, ψi} and let N be a regular neighborhood of
u*. For u = (u* + Au) e N, Au Φ 0, let

[ 6 ) hG — hG(u) =
i = l

7 ) hτ = hτ(u) - - (1/11 FJa(u) || |<17β(%), FJ r(^)> I) VJτ{u) ,

h — hG -\- hτ. Then there exists positive constants k, d and r,
with k < 1, swA £Aαί /or all u with 0 < \\ Au\\ < r, u is in N and
|| u + sΛ — u* || < fc || Ju || whenever d/2 < s < d.

Proof. By the definition of gradient,

where ε̂  = ε^u*, Au) is such that || ε{ ||/|| Au || —•» 0 as Au-^ 0.
(For convenience, we shall adopt the notational convention that

throughout the proof any quantity designated by ε with appropriate
subscripts or superscripts is such that || ε ||/|| Au \\ —» 0 as Au —> 0. We
shall make no further mention of this property.)

Now, by the continuity of vψi at u* (condition 2 of the definition),
ψi(u) — <Q7ψi(u), Auy + έ;. Using these relations in (6), we obtain

v

( 8 ) hG = — Σ (P7ψi(u)> Auy Fψi(u) + εG .
1

Since u + sh — u* — Au + shG + shτ, we have
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( 9 )

From

(10)

IN

(8)

+ sh — u* ||2

= | |zίtt | | 2 + 2s<^

it follows that

<λβ, Any = - |
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+ 2s<

Σcos2

[An, hτy H s%\\ hβ ||2 + || hτ

where the at are given in condition 5 of the definition. Applying the
Schwarz inequality to (8) yields

(11) II K II2 S II An ||2 (p ± c o s 2 ^ + wG(Au)) .
1

where wG(Au) —>0 as Δu—*0.
Using (7), we find

i l F J ^ ) l l II ̂ 1 1 cos«o __ „ t a n Θ ( Λ Λ II ̂ 1 1 cosα0

Γ (t a n Θ (

II Fθ(u) || I cos7 Γ ( Ίl W || | cos7

where <̂ 0 and 7 are given in condition 5. By the properties of θ(u) in
condition 4 and the definition of the weak differential, we have

tan θ{u) = tan θ(u*) + sec26>(^*) <yθ(u), Δuy + έ = <FΘ(u), Any + ε .

Since <j?θ(v), Any = || F^(^) || || J% || cos /9, we obtain

(12) ζhjt, Any = - II J u ||2 (cos ^ 0 cos β/\ cos 7 | + w(Au)) ,

where w(Au) —> 0 as Jw —> 0. Similarly, from (7) we see that

where wτ —* 0 as zto —• 0.

Combining (9)-(13), we obtain

(14) II u + sh - u* ||2 ^ II Δu ||2 (^(β) + 2swx{Δu) + s2w2(Δu)) ,

where w^Δu) —>0 and w2(Au) —>0 as J% —> 0 and

3»

δ — Σ cos2α^ + cos αr0 cos /S/| cos 7 | ,
1

Ci — P Σi cos2a{ + (cos /5/cos 7)2 .

If we replace Φx(s) by Φ(s) = 1 — 26s + cs2, where

c = cx + (2 Σ f cos 2^ + 1 + 1/1 cos 7 |)/| cos 7 | ,

the inequality in (14) remains valid. Now, 0 < Φ(s) < 1 for
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0 < s < 2b/c. Since c 5Ξ p2 + (2# + 3)/| cos 7 |2 and, by condition 5 of
the definition, | cos 7 | > a2 > 0 and 6 > aλ > 0, it follows that
0 < Φ(s) < 1 for 0 < s < d, where

(15) d = 2a1a]/(alp2 + 2p + 3) .

For d/2 < s < d! and 0 < || Δu || < r with r sufficiently small, there
exists a constant ¥ such that 0 < Φ(s) + 2sw1(/lu) + s2w2(Δu) < k2 < 1.
Hence, || M + sA — ^* || < A; || Δu || whenever d/2 < s < d, which com-
pletes the proof.

The lemma serves as the basis of a convergent procedure for
approximating u*, as described in the following theorem.

THEOREM. Let u*, k, d and r be as in the lemma. Let uQeH
be such that || u0 — u* || < r. For every integer n Ξ> 0 define

(16)
ί." = - (1/11 VJβ{un) \\ \ζVΘ{un), FJr{i

if FJτ(un) Φ 0. If FJτ(uJ — 0, take h^ = 0. Further, define for

(17) ^ n + 1 = i6w + sn/in, where d/2 < sn < d

Then lim^^^ un — u* and in fact,

II t^« ^ II \ rv \\ uQ — u ji .

Proof. Since || ^ 0 — u* || < r, u0 satisfies the conditions on the
point u of the lemma. Comparing h0 with h and s0 with s of the
lemma, we see immediately that || ux — u* || < & || u0 — u* | |. Since
A: < 1, II Ui — u* II < r and the lemma can be applied at ut to obtain
\\u2 - u* II < JcWu, - u* II < A:2 H ô -11* | |. By induction, (18) is
immediate and this establishes the theorem.

The application of this theorem to numerical procedures for solving
minimization problems with equality constraints will be the subject of
a forthcoming paper.
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