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SOME EXISTENCE THEOREMS IN THE
CALCULUS OF VARIATIONS

DAVID A. SANCHEZ

In this paper are discussed theorems of existence of a
minimum for nonparametric integrals of the calculus of varia-
tions defined on an infinite interval, depending on an unknown
function, its derivative, and on a convolution integral. The
approach of the direct methods of the calculus of variations
will be employed.

The author has shown previously that under the usual
conditions of convexity on the integrand the class of f unctionals
to be considered are lower semicontinuous with respect to uni-
form convergence on — oo < x < oo but not with respect to
uniform convergence on every compact set. Therefore addi-
tional hypotheses on the admissible class of functions and the
integrand must be imposed to assure that a minimizing sequence
of elements converges in the stronger sense.

The reason for the study of such functionals arose from
a certain class of optimization problems in communication
theory (see W.M. Brown and C. Palermo [1] for example).
The author discussed existence of a minimum and lower semi-
continuity of these f unctionals in [4], and the theorems given
here represent an improvement over those previously given
and consider a special linear case as well. Necessary condi-
tions for an extremum are not discussed, but have been con-
sidered in [6].

Consider F(x, y,d,p) a real-valued continuous function defined
on E\

DEFINITION 1. The function F(x, y,d,p) is said to be
(a) semiregular positive if the function z(d, p) — F(%, y, d, p) is a

convex function in E2 for every (x,y), and
(b) semiregular positive seminormal if (a) holds and for no

(a?0, yd is z(d, p) a linear function.
In addition, let P be a given compact set contained in Ez.

DEFINITION 2. The class K of admissible functions is any non-
empty collection of functions y — y(x), —c° < x < <*>, satisfying

1. The graphs of every yeK contains a point (x, y(x)) e P,
2. y(x) is absolutely continuous in every finite interval,
3. y'(x) e ^(-00,00),

4. F[xfy(x)fy
f(x)9p(x)]eL1(—oo9 00) where p(x) is one of the

following convolution integrals:
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y'*y' = Γ y'(χ - t)y'(t)dt,
J_oo

y'\*\y'\ = \~_Jy'(χ-t)\\y'(t)\dt,

S oo

I y'(x — t)\\ g(t) I dt
— CO

with g(x) as above, and
5. K is closed with respect to uniform covergence on every com-

pact set in — co < x < oo.

2* Existence theorems*

S oo

F[x, y(x), y'(x), p(x)]dx where
— CO

p(x) — y'*yf or p(χ) =z \y'\*\y'\, and suppose that for all (x, y) e E*
(a) F(x, y, d, p) is semiregular positive,
(b) F(x, y9d,p)^\d\ Ω(\ d |) for any value of p where Ω(s) is

defined in 0 ^ s < oo9 limβ(s) = ooy and for all s, Ω(s) ^ fc2, k Φ 0
8-»OO

and constant, and
(c) For any value of d there exists a constant L > 0 such that

I F(x, y, d, p,) - F(x, y, d, p2)\ ̂  L\px- p2\ .

Furthermore suppose that given a class K of admissible functions,
the following is satisfied:

(d) There exists at least one yeK and a constant N such that
I[y] ^ N where N satisfies NL < k\
Then I[y] possesses an absolute minimum in KΦ

Proof. We assert that hypotheses (a), (b) and, (c) guarantee that
( i ) mίl[y] = ί ^ θ ,

(ii) F(x,y,d, p) is semiregular positive semmormal,
(iii) given a minimizing sequence yn(x), n = l,2, •••, — oo<#<oo,

of elements of ^satisfying I[yn] ^ i +l/n, they contain a subsequence
which converges uniformly on every compact set in — oo < x < oo to
an element yo{x), — oo < x <oo, of K, and

(iv) j " I y'n(χ) [ dx £ (i + ̂ )J¥, n = 1, 2, f

s : I y't(χ) \dX^(i + ΐ)/k\

For a proof of this assertion only minor modifications of the proof of
Theorem 4.1 of [4] are required. We will denote the convergent
subsequence by yn(x), n = 1, 2, , — co < x < oo, to avoid additional
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indices.
Since y0 e K, given ε < 0 we may choose A > 0 such that

1 I y'0(x) I dx < ε and I F[x, yo(x), y[{x), po(x)]dx < ε .

I t follows that

1 1 CΛI2

— = i + — - i ^ F [ » , j/w(α?),!/;(»), pn(x)]dx
n n J--4/2

*Ί>, %(»), »ί(α), Po(α)]<te + &2 i »i(») I dx - e .
-4/2 J\x\^Λl2

ISίow define a new sequence of functions as follows:

(yn{x) if \x\£A

Vn{x) = W&) + [» (A) - 2/o(̂ )] if x > A

[vo(x) + [Vn(-A) - yo(-A)] if x < -A , Λ = 1, 2, . . .

Hence for | ί | ^ A/2 and | # | ^ A/2 we have \x — t\^A, and by
hypothesis (c) the following estimate can be made:

n(x) - VM \dx^(i+ ±)v\ I y'n(x) I dx + ε(^4l^- + ε )
\ n/ J 1*1̂ -4/2 \ fc2 /

J-AI2

This implies that

S
Λί2 Γ ^ 2 _ _ —

F[x, y%(x), y'n(x), pjp)]dx ^ F[x, yn(x),»!(»), 2>«(
-a/2 J -a/2

where the ε2 term is ignored.
By definition, the yjx), n = 1, 2, , are absolutely continuous

on every finite interval, yr

n(x)e L1(—oo9 oo)9 and lim^*, yn(x) = j/0(^)
uniformly on — oo < x < oo. This implies, by the proof of lower
semicontinuity in [4] that I[y0] ^ lim inf„_,«, I [ ^ J where the interval
of integration is restricted to — A/2 S % ̂  A/2. Therefore, for n
sufficiently large we have

A [ i + L(i + 1W] + ε[2 + L(ί + l)/k*] ̂  (&2 - Lί/A:2)( | ^ ( ^ ) | dx .
n j\\^Ai2

Hypothesis (d) implies that k2 — Lί/k2 > 0, and since A depends
only on y0 and the choice of ε, it follows that lim^oo yjx) = yo(x)
uniformly o n — o o < ^ < o o . A proof of this assertion can be found
in [5]. By the previously established lower semicontinuity we then



360 DAVID A. SANCHEZ

have that yQ gives I [y] the desired absolute minimum in K, and the
theorem is proved.

EXAMPLE 1. Let F(x, y, d, p) = | d | (| d | + 1) + | p |/(4 + x2) and K

the class of all functions satisfying 2, 3, and 4 of Definition 3 and
such that 2/(0) = 0 and y(l) = 1 for all y e K. Then P = {(0, 0)},
Ω(s) = s + 1, k2 = 1 and L = 1/4. Let τ/(cc) = 0 if x < 0, y(x) = a; if
0 ^ a; ^ 1,2/(α;) = 1 otherwise, and then I[y] < 3 = N so all the hypo-
theses of Theorem 1 are satisfied.

S CO

F [x, y(x), y'(x), p(x)]dx where
p(x) = 2/'*flr or p(x) = 12/'|*| # | where g = #(#), — °° < ^ < °°, is ^ive^

S oo

I g(x) I cZx Φ 0. Suppose that hypotheses
(a), (b), α^d (c) o/ Theorem 1 are satisfied and

(d) T/̂ β constants k2 and L satisfy k2 — L \ | r̂(̂ ) | cfe > 0. T/^e^
j — °°

I[y] possesses an absolute minimum in K.

Proof. No major changes are required in the previous proof to

show the existence of a minimizing subsequence yn{x),n= 1,2, •••,

— co < x < oo 9 of elements of K converging uniformly on every com-

pact set to an element y0 e K. Given ε > 0 choose A > 0 as above

and in addition such that i | g(x) | dx < ε. The sequence of f unc-
_ J\χ\^Λl2

tions yn(x), n — 1, 2, ., — oo < x < oo are defined as before, and w e

are led to t h e following inequality for sufficiently large n:

— έ ΓA:2 - L Γ I g(x) \dx\\ \ y'n{x) \ dx - ε[2 + L(ί + l)/k2] .
n L J-«> J J\xfeAl2

By hypothesis (d) the expression in the first bracket is positive and
we may now proceed as in Theorem 1 to show that y0 gives I[y] an
absolute minimum in K. Note conditions of the type (d) are found
in a different setting in [2],

3* A special linear case* We wish to consider the special case
in which p(x) — \y'\*\y'\9 or equivalently the admissible class K
is restricted to monotonic increasing or decreasing functions, and
F(x, y, d, p) is linear in p. As will be seen slightly weaker conditions
on the growth of the integrand with respect to d can then be given,
but the class K must be restricted as follows.

DEFINITION 3. The class K of admissible functions is any non-
empty collection of functions y = y(x), — oo < x < oo, satisfying-
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Definition 2 and
6. The total variation of elements of K is uniformly bounded

away from zero.

i oo

F[x, y(x), y'(x), p(x)]dx where
—oo

-p(x) — \y'\*\y'\ and suppose that
(a) F(x, y, d, p) is semiregular positive, and
(b) F(x, y, d, p) = φ(\ d |) + Ap + ω(x, y, d) where

( i) φ(s) is a positive continuous function defined on 0 < s < oo
and satisfies lim,.,*, Φ(s)/s = oo #

(ii) A is a positive constant, and
(iii) ω(x, y, d) is a positive continuous function defined on

E* and ω[x, y(x), y'(x)] e ! / (— oo, oo) for any yeK.
Then I[y] possesses an absolute minimum in K.

Proof. Since the integrand is positive we have i •=• m
and by hypothesis (b) that F(x, y, d, p) is semiregular positive semi-
normal. Let yn(x), 7 t = l , 2, •••,—oo<α;<oo > be a minimizing
sequence of elements of K satisfying I[yn] S i + 1/n. By the assump-
tions given for the class K there exists a positive constant Q such
that for each n = l,2, , there exists an xn for which | xn | ^ Q,
\ yn(xn) I ^ Q, and [xn, yn(xn)] e P.

Furthermore since each y'n{x)£ L\— oo, oo) we have that

d t = ( S i ' < ( x ) i dx(S
Hence for any x and n = 1, 2, ,

Q ^ I y.(aθ I - I tfn(ajj I ̂  J ^ l l/M*) I ^

J/A)1/2 ^ (i + I/A)1/2 ,

and we may assert the yjx), n = 1, 2, . . . , — o o < ί c < oo, are equi-
bounded.

It has been shown previously by Cinquini [3] that hypothesis (b)
is sufficient to insure that the sequence yn(x), n = 1, 2, . , — oo < a ; < o o i

is equicontinuous. This is an extension of a fundamental result due
to Tonelli [7] Therefore there exists a subsequence which converges
uniformly on every compact set in — oo < x < oo to a function yo(x),
— oo < x < oo, which is absolutely continuous on every finite interval.
Furthermore y0 e K.

Denoting the subsequence by yn(x), n = 1, 2, . . . ,—oo < ^ < c o ,
we have by the definition of the class K that there exists a positive

S CO

I y'n(x) I dx i> m, n = 0, 1, 2, . Therefore
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— ^i+ —
n n

\y'n(x)\dx~\~ \y'0(x)\dx\

+ \ G[x, yn(χ), Vn(x)]dx - \ G[x, yo(x), vΌ(χ)]dx
J_oo J_oo

where G(x, y, d) — Φ(\ d\) + ω(x, y, d). But this latter integrand is are.
ordinary type of the calculus of variations, and by hypothesis is also-
semiregular positive seminormal, i.e., strictly convex in d. By
an extension of the result of Cinquini this implies the functional

S CO

G[x, y(x), yf(x)]dx is lower semicontinuous with respect to uniform,
- c o

convergence on every compact set in — oo < % < oo.
Hence for n sufficiently large

Γ I V«{x) I dx - j " J y[{x) \ d x ^ ( ε + —

which implies that lim^*, yn(x) — yQ(x) uniformly on — oo < $ < oo _
By lower semicontinuity it follows that y0 gives I[y] the desired
absolute minimum in K which completes the proof.

EXAMPLE 2. Let f(x, y, d, p) ~ d2 + p and K as in Example 1.
Then P = (0, 0), φ(s) = s\ A = 1, m = 1, and ω = 0. All the hypo-
theses of Theorem 3 are satisfied and it is not difficult to show that
the function given in the previous example gives an absolute minimum
to I[y].

It should be remarked that a theorem similar to Theorem 3 can

be stated for the case p(x) = | yr |*| g \ where g == g(x), — oo < x < oô ,

is given and in Z/(— oo, oo) with 1 ] g(x) \ dx ^ 1. But since

p(x)dx = \ I g(x) \dx\ \ y'(x) \ dx
» J-co J-oo

one is essentially considering an ordinary integrand of the calculus of
variations and nothing is gained by requiring the stronger mode of
convergence.
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